流体在管内的流动[专业知识]
- 格式:ppt
- 大小:1.80 MB
- 文档页数:8
2.2 流体在管内的流动阻力本节重点:牛顿粘性定律、层流与湍流的比较。
难点: 边界层与层流内层。
2.2.1 牛顿粘性定律与流体的粘度 1. 流体的粘性流体的典型特征是具有流动性,但不同流体的流动性能不同,这主要是因为流体内部质点间作相对运动时存在不同的内摩擦力。
这种表明流体流动时产生内摩擦力的特性称为粘性。
粘性是流动性的反面,流体的粘性越大,其流动性越小。
流体的粘性是流体产生流动阻力的根源。
2. 牛顿粘性定律与流体的粘度如图2-3所示,设有上、下两块面积很大且相距很近的平行平板,板间充满某种静止液体。
若将下板固定,而对上板施加一个恒定的外力,上板就以恒定速度u 沿x 方向运动。
若u 较小,则两板间的液体就会分成无数平行的薄层而运动,粘附在上板底面下的一薄层流体以速度u 随上板运动,其下各层液体的速度依次降低,紧贴在下板表面的一层液体,因粘附在静止的下板上, 其速度为零,两平板间流速呈线性变化。
对任意相邻两层流体来说,上层速度较大,下层速度较小,前者对后者起带动作用,而后者对前者起拖曳作用,流体层之间的这种相互作用,产生内摩擦,而流体的粘性正是这种内摩擦的表现。
平行平板间的流体,流速分布为直线,而流体在圆管内流动时,速度分布呈抛物线形,如图2-4所示。
实验证明,对于一定的流体,内摩擦力F 与两流体层的速度差.u d 成正比,与两层之间的垂直距离dy 成反比,与两层间的接触面积A 成正比,即图2-4 实际流体在管内的速度分布图2-3 平板间液体速度变化dyud AF .μ= (2-16) 式中:F ——内摩擦力,N ;dyud .——法向速度梯度,即在与流体流动方向相垂直的y 方向流体速度的变化率,1/s ; μ——比例系数,称为流体的粘度或动力粘度,Pa ·s 。
一般,单位面积上的内摩擦力称为剪应力,以τ表示,单位为Pa ,则式(1-26)变为dyud .μτ= (2-17) 式(2-16)、(2-17)称为牛顿粘性定律,表明流体层间的内摩擦力或剪应力与法向速度梯度成正比。
第四节流体在管内的流动阻力实际上理想流体是不存在的。
流体在流动过程中需要消耗能量来克服流动阻力,本节讨论流体流动阻力的产生、影响因素及其计算。
§1.4.1牛顿粘性定律与流体的粘度1、牛顿粘性定律设有间距很小的两平行板,两平板间充满液体(如图)。
下板固定,上板施加一平行于平板的切向力F,使上板作平行于下板的等速直线运动。
紧贴上板的液体层以与上板相同的速度流动,而紧贴固定板的液体层则静止不动。
两层平板之间液体的流速分布则是从上到下为由大到小的渐变。
此两板间的液体可看成为许多平行于平板的流体层,这种流动称为层流,而层与层之间存在着速度差,即各液层之间存在着相对运动。
运动较快的液层对与之相邻的运动较慢的液层作用着一个拖动其向运动方向前进的力;而与此同时,运动较慢的液层对其上运动较快的液层也作用着一个大小相等方向相反的力,从而阻碍较快的液层的运动。
这种运动着的流体内部相邻两流体层间的相互作用力称为流体的内摩擦力(粘滞力)。
流体流动时产生内摩擦力的这种特性称为粘性。
在上图中,若某层流体的速度为u,在其垂直距离为dy处的邻近流体层的速度为u+du,则du/dy表示速度沿法线方向上的变化率,称为速度梯度。
实验证明,内摩擦力F与两流体层间的接触面积S成正比,与速度梯度du/dy成正比。
即:F∝S·du/dy亦即:F=μS·du/dy剪应力τ:单位面积上的内摩擦力,即F/S, 单位N/㎡于是:τ=F/S=μ·du/dy——牛顿粘性定律μ为比例系数,称为粘性系数或动力粘度,简称粘度说明:①牛顿粘性定律可表达为剪应力与法向速度梯度成正比,与法向压力无关,流体的这一规律与固体表面的摩擦力的变化规律截然不同。
②牛顿粘性定律的使用条件:层流时的牛顿型流体。
③根据此定律,粘性流体在管内的速度分布可以预示为:如图紧贴壁面的流体受壁面固体分子力的作用而处于静止状态,随着离壁距离的增加,流体的速度连续地增大,至管中心处速度达到最大。
知识点1-4 流体在直管内的流动阻力目的是解决流体在管截面上的速度分布及柏努利方程式中流动阻力Σh f的计算问题。
2.本知识点的重点(1)流体在管路中的流动阻力的计算问题。
管路阻力又包括包括直管阻力h f和局部阻力h f’本质不同的两大类。
前者主要是表面摩擦,后者以形体阻力为主。
同时,解决了管截面上的速度分布问题。
(2)流体在直管中的流动阻力因流型不同而采用不同的工程处理方法。
对于层流,通过过程本征方程(牛顿粘性定律)可用解析方法求解管截面上的速度分布及流动阻力;而对于湍流,需借助因次分析方法来规划试验,采用实验研究方法。
因次分析的基础是因次一致的原则和∏定理。
局部阻力也只能依靠实验方法测定有关参数(z或l e)。
(3)建立“当量”的概念(包括当量直径和当量长度)。
“当量”要具有和原物量在某方面的等效性,并依赖于经验。
3.本知识点的难点本知识点无难点,但对于因次分析方法的理解和应用尚需通过实践来加深。
4.应完成的习题1-12.在本题附图所示的实验装置中,于异径水平管段两截面间连一倒置U管压差计,以测量两截面之间的压强差。
当水的流量为10800kg/h时,U管压差计读数R为100mm。
粗、细管的直径分别为60×3.5mm与φ42×3mm。
计算:(1)1kg水流经两截面间的能量损失;(2)与该能量损失相当的压强降为若干Pa?[答:(1)4.41J/kg;(2)4.41×103Pa]1-13.密度为850kg/m3、粘度为8×10-3Pa·s的液体在内径为14mm的钢管内流动,溶液的流速为1m/s。
试计算:(1)雷诺准数,并指出属于何种流型;(2)局部速度等于平均速度处与管轴的距离;(3)该管路为水平管,若上游压强为147×103Pa,液体流经多长的管子其压强才下降到127.5×103Pa?[答:(1)1.49×103;(2)4.95mm;(3)14.93m]1-14.每小时将2×104kg的溶液用泵从反应器输送到高位槽(见本题附图)。
知识点1-2 流体在管内的流动⒈ 学习目的通过学习掌握流体在管内流动的宏观规律——流体流动的守恒定律,其中包括质量守恒定律——连续性方程式及机械能守恒定律——柏努利方程式,并学会运用这两个基本定律解决流体流动的有关计算问题。
⒉本知识点的重点本知识点以连续方程及柏努利方程为重点,掌握这两个方程式推导思路、适用条件、用柏努利方程解题的要点及注意事项。
通过实例加深对这两个方程式的理解。
正确确定衡算范围(上、下游截面的选取)及基准水平面是解题的关键。
3.本知识点的难点本知识点无难点,但在应用柏努利方程式计算流体流动问题时要特别注意流动的连续性及上、下游截面选取的正确性。
4.应完成的习题1-5.列管换热器的管束由121根φ25×2.5mm的钢管组成。
空气以9m/s速度在列管内流动。
空气在管内的平均温度为50℃、压强为196×103Pa(表压),当地大气压为98.7×103Pa。
试求:(1)空气的质量流量;(2)操作条件下空气的体积流量;(3)将(2)的计算结果换算为标准状况下空气的体积流量。
[答:(1)1.09kg/s;(2)0.343m3/s;(3)0.84m3/s]1-6.高位槽内的水面高于地面8m,水从108×4mm的管道中流出,管路出口高于地面2m。
在本题特定条件下,水流经系统的能量损失可按Σh f=6.5u2计算,其中u为水在管内的流速,m/s。
试计算:(1)A-A’截面处水的流速;(2)水的流量,以m3/h计。
[答:(1)2.9m/s;(2)82m3/h]1-7.20℃的水以2.5m/s的流速流经φ的水平管,此管以锥形管与另一53×3mm的水平管相连。
如本题附图所示,在锥形管两侧A、B处各插一垂直玻璃管以面察两截面的压强。
若水流经A、B两截面间的能量损失为1.5J/kg求两玻璃管的水面差(以mm计),并在本题附图中画出两玻璃管中水面的相对位置。