1-4流体在圆管内流动阻力的计算
- 格式:ppt
- 大小:935.00 KB
- 文档页数:18
第四节流体在管内的流动阻力实际上理想流体是不存在的。
流体在流动过程中需要消耗能量来克服流动阻力,本节讨论流体流动阻力的产生、影响因素及其计算。
§1.4.1牛顿粘性定律与流体的粘度1、牛顿粘性定律设有间距很小的两平行板,两平板间充满液体(如图)。
下板固定,上板施加一平行于平板的切向力F,使上板作平行于下板的等速直线运动。
紧贴上板的液体层以与上板相同的速度流动,而紧贴固定板的液体层则静止不动。
两层平板之间液体的流速分布则是从上到下为由大到小的渐变。
此两板间的液体可看成为许多平行于平板的流体层,这种流动称为层流,而层与层之间存在着速度差,即各液层之间存在着相对运动。
运动较快的液层对与之相邻的运动较慢的液层作用着一个拖动其向运动方向前进的力;而与此同时,运动较慢的液层对其上运动较快的液层也作用着一个大小相等方向相反的力,从而阻碍较快的液层的运动。
这种运动着的流体内部相邻两流体层间的相互作用力称为流体的内摩擦力(粘滞力)。
流体流动时产生内摩擦力的这种特性称为粘性。
在上图中,若某层流体的速度为u,在其垂直距离为dy处的邻近流体层的速度为u+du,则du/dy表示速度沿法线方向上的变化率,称为速度梯度。
实验证明,内摩擦力F与两流体层间的接触面积S成正比,与速度梯度du/dy成正比。
即:F∝S·du/dy亦即:F=μS·du/dy剪应力τ:单位面积上的内摩擦力,即F/S, 单位N/㎡于是:τ=F/S=μ·du/dy——牛顿粘性定律μ为比例系数,称为粘性系数或动力粘度,简称粘度说明:①牛顿粘性定律可表达为剪应力与法向速度梯度成正比,与法向压力无关,流体的这一规律与固体表面的摩擦力的变化规律截然不同。
②牛顿粘性定律的使用条件:层流时的牛顿型流体。
③根据此定律,粘性流体在管内的速度分布可以预示为:如图紧贴壁面的流体受壁面固体分子力的作用而处于静止状态,随着离壁距离的增加,流体的速度连续地增大,至管中心处速度达到最大。
关于阻力计算的公式一、圆形直管内的流动阻力:1)计算水平圆管内阻力的一般公式—范宁(Fanning )公式:22u d l f p ρ⋅⋅λ=∆①其中λ为摩擦系数,量纲为一;l 为管长;d 为管径;ρ为流体密度;u 为流速。
本式表明流体流动阻力Δp f 与流动管道长度呈正比;与管道直径呈反比,与流体动能ρu 2/2呈正比。
层流时摩擦系数有准确计算公式,是将式①和式②联立计算,完全靠理论推导方法得出。
公式如下:ρη=λu d 64由此式可见,圆形直管内流体层流流动时,摩擦系数与流体黏度呈正比,与管径、流速、流体密度呈反比。
湍流流动摩擦系数是根据实验得到的公式,最为常用是莫狄(Moody )摩擦系数图。
2)层流时直圆管内的阻力计算公式—哈根-泊谡叶(Han gen-Poiseuille )公式:2f lu 32p η=∆②由该式可见,层流时支管阻力Δp f 与管长l 、速度u 、黏度η的一次方成正比,与管径d 的平方呈反比。
二、局部阻力流体在管内流动时,还要受到管件、阀门等局部阻碍而增加的流动阻力,称为局部阻力。
它还包括由于流通截面的扩大或缩小而产生的阻力。
局部阻力可按式③计算:2u d l p 2e f ρλ=∆③或2u p 2f ρζ=∆④其中l e 为当量长度,即将局部阻力折合成相当长度的直管来计算;ζ成为局部阻力系数。
l e 和ζ都是由实验来确定的。
三、总阻力若将流体在管路中流动阻力归结为直管阻力和局部阻力之和,对于流体流动等直径管路,如果将局部阻力以当量长度表示,则阻力计算式为:g2u )d l l (g R h 2u )d l l (R p 2e f 2e f ∑+λ=∑=∑ρ∑+λ=∑ρ=∆或式中l —管路中直径为d 的直管长度,m;Σl e —管路上全部管件与阀门等的当量长度之和,m;u —流体流经管路的速度,m/s如果还有部分局部阻力必须用阻力系数表示,则阻力计算式为:g2u )d l l (g R h 2u )d l l (R p 2e f 2e f ζ∑+∑+λ=∑=∑ρζ∑+∑+λ=∑ρ=∆或式中Σζ—管路上部分管件和阀门等的阻力系数之和。
流体在管内流动阻⼒的计算第四节流体在管内流动阻⼒的计算⼀、压⼒降—流动阻⼒的表现流动阻⼒产⽣的根本原因——流体具有粘性,所以流动时产⽣内摩擦⼒。
如图1—11所⽰,在贮槽下部连接的⽔平管上开两个⼩孔(A、B),分别插⼊两个竖直敞⼝玻璃管,调节出⼝阀开度,观察现象:1) 当调节阀关闭时,即流体静⽌时,A、B管中液⾯⾼度与贮槽液⾯平齐(可⽤静⼒学⽅程解释)。
2) 当打开阀门,流体开始流动后,发现A管液⾯低于贮槽液⾯,⽽B管液⾯⼜低于A管液⾯。
3) 随着流速继续增⼤,A、B管液⾯⼜继续降低,但A仍⾼于B,分析如下:上述现象可⽤柏努利⽅程解释,分别取A、B点为截⾯,列柏努利⽅程: ++=Z2+++说明:(1)流体在⽆外功加⼊,直径不变的⽔平管内流动时,两截⾯间的压差与流动阻⼒⽽引起的压强降数值相等。
(2)若流体流动的管⼦是垂直或倾斜放置的,则两截⾯间的压差与流动阻⼒⽽引起的压强降数值不相等。
⼆、流体在圆型直管中阻⼒损失的计算通式流体在圆管内流动总阻⼒分为直管阻⼒(⼜称沿程阻⼒)和局部阻⼒两部分。
其中直管阻⼒是流体流经⼀定管径的直管时,由于流体的内摩擦⽽产⽣的阻⼒,这⾥讨论它的计算。
范宁(Fanning)公式是描述各种流型下直管阻⼒的计算通式。
(1—30)或(1—30a)式中λ——摩擦系数,⽆因次。
说明:(1)层流时,;(2)湍流时,。
利⽤范宁公式计算阻⼒时,主要问题是λ的确定。
(⼀)层流时λ的求取利⽤⽜顿粘性定律可推导出(1—31)则(1—32)(1—32a)式(1—32)及(1—32a)称为哈根—泊谡叶⽅程,是流体层流时直管阻⼒的计算式,它是有严格理论依据的理论公式。
(⼆)湍流时的确定由于湍流过程中质点运动情况复杂,所以尚⽆严格理论为依据,的求取⼀般采⽤经验式或⼯程图,这⾥介绍查取⽅便的图(摩擦因⼦图),如图1-12所⽰。
图 1—12 图该图中曲线分成四个区:层流区、过渡区、湍流区和完全湍流区。
1. 层流区即,在双数坐标中为⼀条直线,此时⽆关。
第四节流体在管内的流动阻力实际上理想流体是不存在的。
流体在流动过程中需要消耗能量来克服流动阻力,本节讨论流体流动阻力的产生、影响因素及其计算。
§1.4.1牛顿粘性定律与流体的粘度1、牛顿粘性定律设有间距很小的两平行板,两平板间充满液体(如图)。
下板固定,上板施加一平行于平板的切向力F,使上板作平行于下板的等速直线运动。
紧贴上板的液体层以与上板相同的速度流动,而紧贴固定板的液体层则静止不动。
两层平板之间液体的流速分布则是从上到下为由大到小的渐变。
此两板间的液体可看成为许多平行于平板的流体层,这种流动称为层流,而层与层之间存在着速度差,即各液层之间存在着相对运动。
运动较快的液层对与之相邻的运动较慢的液层作用着一个拖动其向运动方向前进的力;而与此同时,运动较慢的液层对其上运动较快的液层也作用着一个大小相等方向相反的力,从而阻碍较快的液层的运动。
这种运动着的流体内部相邻两流体层间的相互作用力称为流体的内摩擦力(粘滞力)。
流体流动时产生内摩擦力的这种特性称为粘性。
在上图中,若某层流体的速度为u,在其垂直距离为dy处的邻近流体层的速度为u+du,则du/dy表示速度沿法线方向上的变化率,称为速度梯度。
实验证明,内摩擦力F与两流体层间的接触面积S成正比,与速度梯度du/dy成正比。
即:F∝S·du/dy亦即:F=μS·du/dy剪应力τ:单位面积上的内摩擦力,即F/S, 单位N/㎡于是:τ=F/S=μ·du/dy——牛顿粘性定律μ为比例系数,称为粘性系数或动力粘度,简称粘度说明:①牛顿粘性定律可表达为剪应力与法向速度梯度成正比,与法向压力无关,流体的这一规律与固体表面的摩擦力的变化规律截然不同。
②牛顿粘性定律的使用条件:层流时的牛顿型流体。
③根据此定律,粘性流体在管内的速度分布可以预示为:如图紧贴壁面的流体受壁面固体分子力的作用而处于静止状态,随着离壁距离的增加,流体的速度连续地增大,至管中心处速度达到最大。
知识点1-4 流体在直管内的流动阻力目的是解决流体在管截面上的速度分布及柏努利方程式中流动阻力Σh f的计算问题。
2.本知识点的重点(1)流体在管路中的流动阻力的计算问题。
管路阻力又包括包括直管阻力h f和局部阻力h f’本质不同的两大类。
前者主要是表面摩擦,后者以形体阻力为主。
同时,解决了管截面上的速度分布问题。
(2)流体在直管中的流动阻力因流型不同而采用不同的工程处理方法。
对于层流,通过过程本征方程(牛顿粘性定律)可用解析方法求解管截面上的速度分布及流动阻力;而对于湍流,需借助因次分析方法来规划试验,采用实验研究方法。
因次分析的基础是因次一致的原则和∏定理。
局部阻力也只能依靠实验方法测定有关参数(z或l e)。
(3)建立“当量”的概念(包括当量直径和当量长度)。
“当量”要具有和原物量在某方面的等效性,并依赖于经验。
3.本知识点的难点本知识点无难点,但对于因次分析方法的理解和应用尚需通过实践来加深。
4.应完成的习题1-12.在本题附图所示的实验装置中,于异径水平管段两截面间连一倒置U管压差计,以测量两截面之间的压强差。
当水的流量为10800kg/h时,U管压差计读数R为100mm。
粗、细管的直径分别为60×3.5mm与φ42×3mm。
计算:(1)1kg水流经两截面间的能量损失;(2)与该能量损失相当的压强降为若干Pa?[答:(1)4.41J/kg;(2)4.41×103Pa]1-13.密度为850kg/m3、粘度为8×10-3Pa·s的液体在内径为14mm的钢管内流动,溶液的流速为1m/s。
试计算:(1)雷诺准数,并指出属于何种流型;(2)局部速度等于平均速度处与管轴的距离;(3)该管路为水平管,若上游压强为147×103Pa,液体流经多长的管子其压强才下降到127.5×103Pa?[答:(1)1.49×103;(2)4.95mm;(3)14.93m]1-14.每小时将2×104kg的溶液用泵从反应器输送到高位槽(见本题附图)。
管路阻力计算公式管路阻力是指液体在管道内流动时所受到的阻碍,其大小取决于流体的性质、管道的几何尺寸和流动的条件。
在实际工程中,准确计算管路阻力对于流体输送和工艺设计至关重要。
下面将介绍管路阻力的计算公式。
1.法氏公式法氏公式是计算管道流动阻力最常用的公式之一、它适用于圆形截面的水平、直立管道以及部分较短的水平、上升弯头。
其计算公式如下:ΔP=λ(L/D)(ρV^2/2)其中,ΔP为管道中的压力损失,单位为帕斯卡(Pa);λ为摩擦阻力系数,根据管道的材料及条件可以查表或参考标准值;L为管道的长度,单位为米(m);D为管道的内径,单位为米(m);ρ为流体的密度,单位为千克/立方米(kg/m^3);V为流体的流速,单位为米/秒(m/s)。
2.公因数法公因数法是另一种计算管道阻力的常用方法,适用于两端是同一直径的水平、上升和下降的圆管。
其计算公式如下:ΔP=KρV^2/2其中,ΔP为压力损失,单位为帕斯卡(Pa);K为公因数,其具体数值根据管道的条件可查表或参考标准值;ρ为流体的密度,单位为千克/立方米(kg/m^3);V为流体的流速,单位为米/秒(m/s)。
3.长度加速度法长度加速度法适用于水平直管或上升/下降弯头的计算中。
其计算公式如下:ΔP=1/2ρv^2(fL+g)其中,ΔP为压力损失,单位为帕斯卡(Pa);ρ为流体的密度,单位为千克/立方米(kg/m^3);v为流体的流速,单位为米/秒(m/s);f为管道长度与管径之比;L为管道长度,单位为米(m);g为液体的头压。
4.简化法式对于实际工程中的一些简化计算,可以采用以下常见的简化公式:-窄圆管公式:ΔP=32μLV/D^2,其中μ为动力黏度;-多种流状态公式:ΔP=αρV^2/2,其中α为系数;-工程系数法式:ΔP=βρV^2/2,其中β为系数。
需要注意的是,以上列出的公式都是针对一些特定条件下的近似计算公式,实际计算中需要结合具体的工程情况和流体参数,选择合适的公式进行计算。
流体在管内的流动阻力默认分类2008-01-13 08:58:10 阅读194 评论0 字号:大中小订阅一、计算圆形直管阻力的通式流体在管内以一定逮度流动时,有两个方向相反的力相互作用着。
一个是促使流动的推动力,这个力的方向和流动方向一致,另一个是由内摩擦而引起的摩擦阻力,这个力起了阻上流体运动的作用,其方向与流体前流动方向相反。
只有在推动力与阻力达平衡的条件下,流动速度才能维持不变,即达到稳态流动。
图1-23 直管阻力通式的推导如图1-23所示,流体以速度。
在一段水平直管内作稳定流动,对于不可压缩流体可写出截面1-1′,与2-2′间的柏努利方程式为:因是直径相同的水平管,左翼Z1=Z2,u1=u2=u,上式可筒化为:(1-39)现分析流体在一段直径为d、长度为l的水平管内受力的情况:垂直作用于截面1-1′上的压力P1=p1A1-p1πd2/4垂直作用于截面2-2′上的压力P2=p2A2-p2πd2/4P1与P2的作用方向相反,所以有一个净压力(P1-P2)作用于整个流体柱上,推动它向前运动,这就是流动的推动力,它的作用方向与流动方向相同,其大小为:平行作用于流体柱表面上的摩擦力为:摩擦力阻止流体向前运动,这就是流动的阻力,它的作用方向与流动方向相反。
根据牛顿第二运动定律,要维持流体在管内作匀速运动,作用在流体柱上的推动力应与阻力的大小相等,方向相反,即:则以式1-39代入上式得:(1-40)上式就是流体在圆形直管内流动时能量损失与摩擦应力关系式,但还不能直接用来计算hf ,因为内摩擦应力所遵循的规律因流体流动类型而异,直接用τ计算hf 有困难,且在连续性方程式及柏努利方程式中均无此项,故式1-40直接应用于管路的计算很不方便。
下面将式1-40作进一步的变换,以消去式中的内摩擦应力τ。
由实验得知,流体只有在流动情况下才产生阻力。
在流体物理性质,管径与管长相同情况下,流速增大,能量损失也随之增加,可见流动阻力与流速有关。
圆管流量公式圆管流量公式是描述液体或气体在圆管中流动时流量的数学表达式。
它是工程领域中广泛使用的重要公式之一,对于设计和分析管道系统的流动特性至关重要。
本文将介绍圆管流量公式的基本原理和应用,并探讨其在实际工程中的重要性。
一、圆管流量公式的基本原理圆管流量公式是基于质量守恒定律和动量守恒定律推导而来的。
根据质量守恒定律,流经管道截面的流体质量流量恒定,即入口质量流量等于出口质量流量。
根据动量守恒定律,流体在管道中的动量变化等于作用在管道上的力的总和。
通过对这两个定律的应用,可以得到描述圆管流量的公式。
二、圆管流量公式的应用圆管流量公式在工程中有广泛的应用,特别是在设计和分析管道系统的流动特性时。
它可以用来计算流体在管道中的流速、流量和压力等参数,为工程师提供重要的设计依据。
1. 圆管流速计算圆管流量公式可以用来计算流体在管道中的流速。
流速是指单位时间内流经管道截面的流体体积。
根据圆管流量公式,可以通过已知的流量和管道截面积来计算流速。
2. 圆管流量计算圆管流量公式还可以用来计算流体在管道中的流量。
流量是指单位时间内通过管道截面的流体体积。
根据圆管流量公式,可以通过已知的流速和管道截面积来计算流量。
3. 圆管压力计算圆管流量公式还可以用来计算流体在管道中的压力。
压力是指流体对单位面积的压力,是流体流动时产生的阻力。
根据圆管流量公式,可以通过已知的流量、管道截面积和流速来计算压力。
三、圆管流量公式在实际工程中的重要性圆管流量公式在实际工程中具有重要的应用价值。
它可以帮助工程师设计和分析管道系统的流动特性,确保系统运行安全和高效。
1. 管道系统设计在设计管道系统时,工程师需要考虑流体的流量、流速和压力等参数。
圆管流量公式可以提供这些参数的计算方法,帮助工程师确定合适的管道尺寸和流体流动条件,以满足系统的设计要求。
2. 管道系统分析在分析管道系统的性能时,工程师需要评估流体的流量、流速和压力等参数对系统性能的影响。