22.2(4)平行四边形的判定(2)
- 格式:ppt
- 大小:849.50 KB
- 文档页数:26
平行四边形的判定(二)一、教学目标1、知识与技能目标(1)、掌握用“一组对边平行且相等的四边形是平行四边形”来判定平行四边形。
(2)、通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力。
2、过程与方法目标通过平行四边形判定条件的探索过程,丰富学生从事数学活动的经验与体验,感受数学思考过程的条理性学生的实践能力及创新意识。
3、情感态度与价值观目标培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值。
二、教学重点掌握用一组对边平行且相等来判定平行四边形的方法。
三、教学难点几何推理方法的应用,平行四边形的判定定理与性质定理的综合应用。
四、教学过程(一)复习、引入1、什么叫平行四边形?2、平行四边形有什么性质?3、学了哪些平行四边形的判定?教师提问,学生口答,之后出示表1,让学生进一步理清所学平行四边形的判定。
(二)问题牵引,导入新知【探究一】 取两根等长的木条AB 、CD ,将它们平行放置,再用两根木条BC 、AD 加固,得到的四边形ABCD 是平行四边形吗?先有学生猜想,然后经过推理论证得出四边形ABCD 是平行四边形。
教师引导学生用不同的方法进行证明,以活跃学生的思维。
并让学生上讲台演示,得出本节的知识点。
一组对边平行且相等的四边形是平行四边形. 问题 平行四边形的判定方法共有几种?教师引导学生从边、角、对角线三个方面去总结,便于学生记忆这些判定定理。
出示例题已知:如图,ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE=DF .分析:证明BE=DF ,可以证明两个三角形全等,也可以证明 四边形BEDF 是平行四边形,比较方法,可以看出第二种方法简单。
证明:∵ 四边形ABCD 是平行四边形, ∴ AD ∥CB ,AD=CD .∵ E 、F 分别是AD 、BC 的中点, ∴ DE ∥BF ,且DE=21AD ,BF=21BC∴ DE=BF∴ 四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形) ∴ BE=DF此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路。
一、学习目标1、理解并掌握平行四边形的判别方法。
2、理解并会运用平行四边形判别方法及几何符号语言,解决相关问题。
3、通过练习和讨论,进一步发展观察、比较、分析解决问题的能力。
4、凝聚小组智慧,展现小组风采,实现小组共同达标。
二、学习过程第一步:创景引入:老师提问:1、平行四边形定义是什么?如何表示?2、平行四边形性质是什么?如何概括?3、上节课学的平行四边形判定方法有哪些?演示图片:选择各种四边形图片展示。
提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?请学生通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?第二步:应用举例:例1(教材P105例3)已知:如图ABCD 的对角线AC、BD交于点O,E、F是AC 上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.(证明过程参看教材)问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.例2(补充)已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2) △ABC的顶点分别是△B′C′A′各边的中点.如果学生仍不能够理解,教师可示范定理1,学生探讨定理2。
合作探究小组展示,展示的是思路和方法。
其它小组补充质疑、评价。
(三)巩固练习:先自主完成,再小组交流。
梳理小组问题,准备展示。
小组提出疑惑,其他小组帮助解决。
(四)总结梳理目的是让学生对照目标落实自己的学习情况,以便查漏补缺。
课题:平行四边形的判定韶关市始兴县沈所中学温茂华教材:人教版义务教育课程标准实验教科书《数学》八年级上册第19.1.2节一、教材分析1、教材的地位和作用:“平行四边形的判定”是初中数学几何部分一节十分重要的内容。
主要体现在知识技能和思想方法两个方面。
从知识技能上讲,它既是对前面所学的全等三角形和平行四边形性质的一个回顾和延伸,又是以后学习特殊平行四边形的基础,同时它还进一步培养学生简单的推理能力和图形迁移能力;从思想方法上讲,通过平行四边形和三角形之间的相互转化,渗透了化归思想。
综上所述,本节课不论从知识技能还是思想方法上,都是一节十分难得的素材,它对培养学生的探索精神、动手能力、应用意识和抽象建模能力都有很好的作用。
2、教学目标:根据教学大纲要求,结合学生的实际情况,我把教学目标确定为:(1)知识目标:经历并了解平行四边形判定方法的探索过程,使学生逐步掌握说理的基本方法;能根据判定方法进行有关的应用。
(2)能力目标:在探索过程中发展学生合作推理意识和主动探究的习惯。
(3)情感目标:通过平行四边形判定条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情。
3、教学重点和难点:重点:探索平行四边形的判定方法。
难点:判定方法的说理及应用。
二、过程分析教学程序教学过程设计理念温故知新,情景导入1、温故知新:1、平行四边形的定义。
2、平行四边形的性质。
(从边、角、对角线三个方面归纳,并结合图形用符号语言表达出来。
)2、情景引入,发现新知:一块平行四边形的玻璃片被碰碎了,只剩下如图所示部分,如何才能割一块和原来一样的玻璃片呢?(如图A,B,C为三顶点,即找出第四个顶点D).在复习平行四边形的定义和性质时,给出情景问题,让学生从真实的生活中感受数学,激起学生的学习欲望,而且自然引入本节课的课题。
活动感悟、发现新知教学活动一:如图将两长两短的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边.这个四边形是平行四边形吗?转动这个四边形,使它形状改变,它一直是一个平行四边形吗?1、各小组学生动手做出如图所示的四边形2、学生探讨证明的方法:(学生可能会想到的方法有)(1)、平行推移说明两组对边分别平行。
判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明•一、运用两条对角线互相平分的四边形是平行四边形”判别例1如图1,在平行四边形ABCD中,E、F在对角线AC上, 且AE=CF,试说明四边形DEBF是平行四边形.分析:由于已知条件与对角线有关,故考虑运用两条对角线互相平分的四边形是平行四边形”进行判别•为此,需连接BD.解:连接BD交AC于点0.因为四边形ABCD是平行四边形,所以AO=CO,BO=DO.又AE=CF,所以AO-AE=CO-CF,即卩EO=FO.所以四边形DEBF是平行四边形.二、运用两组对边分别相等的四边形是平行四边形”判别例2如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,并说明理由.分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用两组对边分别相等的四边形是平行四边形"进行判别.解:设每根木棒的长为1个单位长度,则AF = BC=1,AB=FC=1, 所以四边形ABCF是平行四边形.同样可知四边形FCDE、四边形ACDF都是平行四四边形.因为AE=DB=2,AB=DE=1,所以四边形ABDE也是平行四边形.三、运用一组对边平行且相等的四边形是平行四边形”判别例3 如图3,E、F是四边形ABCD的对角线AC上的两点,AE=CF,DF = BE,DF // BE,试说明四边形ABCD是平行四边形.分析:题目给出的条件都不能直接判别四边形ABCD是平行四边形,但仔细观察可知,由已知条件可得厶ADF CBE , 由此就可得到判别平行四边形所需的一组对边平行且相等”的条件.解:因为DF // BE,所以/ AFD=Z CEB.因为AE = CF,所以AE+EF=CF+EF,即AF=CE.又DF =BE, 所以△ ADF ◎△ CBE,所以AD=BC,Z DAF=Z BCE,所以AD // BC.所以四边形ABCD是平行四边形.E C四、运用两组对边分别平行的四边形是平行四边形”判别例4 如图4,在平行四边形ABCD中,/ DAB、/ BCD 的平分线分别交BC、AD边于点E、F,则四边形AECF是平行四边形吗?为什么?分析:由平行四边形的性质易得AF // EC,又题目中给出的是有关角的条件,借助角的条件可得到平行线,故本题应考虑运用两组对边分别平行的四边形是平行四边形”进行判别•图4 解:四边形AECF是平行四边形.理由:因为四边形ABCD是平行四边形,所以AD // BC, /DAB= / BCD,1 1所以AF // EC.又因为/ 1= / DAB,/ 2= / BCD ,2 2所以/ 1= / 2•因为AD // BC,所以/ 2= / 3, 所以/仁/ 3,所以AE/ CF.所以四边形AECF是平行四边形•判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。
平行四边形的判定方法(2)一、证明方法:方法一:两组对边分别平行的四边形是平行四边形。
(证明略)方法二:两组对边分别相等的四边形是平行四边形。
方法三:一组对边平行且相等的四边形是平行四边形。
方法四、对角线互相平分的四边形是平行四边形。
方法五、两组对角相等的四边形是平行四边形。
二、五种方法归纳:1、两组对边分别平行2、两组对边分别相等3、一组对边平行且相等4、对角线互相平分5、两组对角相等三、练习:1.在四边形ABCD中,(1)若AD=8cm,AB=4cm,那么当BC=___ cm,CD=___ cm时,四边形ABCD为平行四边形;(2)若∠A=50°,那么当∠B=_ _,∠C=__ ,∠D=__ 时,四边形ABCD为平行四边形;(3)若AC、BD相交于点O,AC=10cm,BD=8cm,那么当AO=__ cm,DO=__ _cm 时,四边形ABCD为平行四边形。
2、已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,求证:BE=CF Array3、.如图:在ABCD中,点E、F分别在BC、AD上,且AE∥CF。
求证:四边形AECF是平行四边形。
4、已知:如图,ABCD中,点E、F分别为AB、CD的中点。
求证:DFBE是平行四边形。
5、如图,平行四边形ABCD的对角线AC、BD相交于点O,点E、F是直线AC上的两点,并且AE=CF。
求证:四边形BFDE是平行四边形.(至少用3种方法证明)6、已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.7、如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.课后作业:1. 平行四边形的对边且,对角,邻角,对角线。
2、两组对边分别或的四边形是平行四边形。
3.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直4、能够判别一个四边形是平行四边形的条件是()A.一组对角相等B.两条对角线互相垂直且相等C.两组对边分别相等D.一组对边平行5、下列条件中不能确定四边形ABCD是平行四边形的是()A.AB=CD,AD∥BCB.AB=CD,AB∥CDC.AB∥CD,AD∥BCD.AB=CD,AD=BC6、一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是()A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88°7、四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠B=180°D.∠A+∠D=180°8、如图,对四边形ABCD是平行四边形的下列判断是否正确。