激光与物质相互作用第二讲基础
- 格式:ppt
- 大小:3.19 MB
- 文档页数:15
激光与物质相互作用课程复习大纲1. 从激光的特性分析,为什么激光束可以用来进行激光与物质的相互作用,并举例说明.2. 高斯光束的空间传输公式,M2因子、K因子,光束参量乘积等的计算,M2因子的传输特性,聚焦光斑大小及焦深的计算及影响因素。
3. 激光切割中,不同板厚的材料,如何选择焦距(长焦距或短焦距),为什么?4. 线偏振光激光是怎么产生的,对激光切割的影响,怎么消除影响。
5. 金属材料对激光的衰减系数、穿透深度、反射率等的计算6. 金属材料对激光反射率的影响因素,各种影响因素的规律和原因。
7. 典型金属与非金属材料对Y AG激光和CO2激光的反射率的特点。
8. 热传导的基本定律,导热微分方程、热导率、热扩散率等基本概念9. 激光作用下非熔凝温度场的解析法(半无限大的判断、半无限大的判断依据、像热源处理边界问题方法、基模高斯光束、光束(TEM00+TEM01)、矩形均匀光束、任意分布光束等的热作用10、有限差分计算激光作用温度场的基本思想11、工业用的典型固体激光器与气体激光器的比较与发展趋向12、试叙述激光相变硬化的主要机制和激光相变硬化的两个主要条件。
13、激光淬火区横截面为什么时月牙形?在此月牙形区相变硬化有什么特点?14、在激光表面淬火中需要光束的光强分布尽可能均匀,你知道几种能使光束光强分布均匀的措施和方法。
15、在目前激光表面淬火中常对工件进行黑化处理,为什么?常采用的方法有哪些?16、试叙述激光表面熔覆与表面合金化的异同。
17、激光表面熔覆与表面合金化的对合金粉末有什么要求,各自有什么差别。
18. 激光毛化的原理和技术19 试叙述激光深穿透焊接的主要机制,并说明与激光热传导焊接的主要异同。
20在激光深穿透焊接中,何谓壁聚焦效应?21. 激光焊接的净化效应,分析激光焊接的接头质量有可能高于母材的原因。
22、试分析激光深穿透焊接的过程,光致等离子体的产生,对焊接的影响及抑制等离子体的措施23. 激光焊接和激光熔覆过程裂纹产生的原因,如何消除裂纹的产生。
激光与物质相互作用是一个极其广泛的研究领域,涉及到光学、物理、化学、医学等多个学科。
本文将从激光的基本性质、激光与物质的相互作用、激光应用等方面进行探讨。
一、激光的基本性质激光是一种特殊的光,与一般光有很大的不同。
它是指在一个封闭的光学腔中产生的光,具有高度的单色性、方向性和相位激发性。
这种特殊的光源可以通过控制光的频率、功率、径向模式和纵向模式等特性,产生不同的光束。
激光通常由三个基本部分组成:激光受体(激光介质)、激发体(激光泵浦源)和光腔。
激光受体是一种特殊的物质,通常是晶体或气体,可以在泵浦源的激发下产生光。
激发体则是提供能量的源头,常见的泵浦源包括闪光灯、电子束、激光二极管等。
光腔是一个空腔,它包含了激光受体和激发体,并用来引导光束,保证激光稳定输出。
二、激光与物质的相互作用激光与物质的相互作用是指激光辐射与物质发生的相互作用。
具体来说,激光辐射会引发物质内部的原子、分子、离子等进行相应的反应,从而改变物质的性质和行为。
一般来说,激光与物质的相互作用主要包括两种形式:线性光学和非线性光学。
线性光学是指激光在物质中传播时,遵循麦克斯韦方程组的规律,不会改变激光本身的性质。
而非线性光学则是指激光辐射与物质相互作用时,会引发一些非线性效应,例如激光飞秒脉冲、倍频、和频、差频、自聚焦等。
激光与物质的相互作用在实际应用中有很广泛的应用。
例如,激光切割、激光打标、激光焊接等都是利用激光与物质的相互作用产生的物理效应,实现材料加工和标记等目的。
此外,激光还可以应用于化学、医学等领域,例如激光手术、激光疗法等都是利用激光与生物组织的相互作用,达到治疗和诊断的效果。
三、激光的应用激光在现代科技中应用广泛,不仅有创造性的科学研究价值,而且已成为许多高技术产业的核心元器件,涉及到航空、航天、军事、医疗、工业制造等领域。
以下是一些典型的激光应用举例:1.激光材料加工由于激光具有高能量、高单色性等特点,因此它在材料加工领域中得到了广泛应用。
1、从激光束的特性分析,为什么激光束可以用来进行激光与物质的相互作用?答:(1)方向性好:发散角小、聚焦光斑小,聚焦能量密度高。
(2)单色性好: 为精密度仪器测量和激励某些化学反应等科学实验提供了极为有利的手段。
(3)亮度极高:能量密度高。
(4)相关性好:获得高的相关光强,从激光器发出的光就可以步调一致地向同一方向传播,可以用透镜把它们会聚到一点上,把能量高度集中起来。
总之,激光能量不仅在空间上高度集中,同时在时间上也可高度集中,因而可以在一瞬间产生出巨大的光热,可广泛应用于材料加工、医疗、激光武器等领域。
2、什么是焦深,焦深的计算及影响因素?答:光轴上其点的光强降低至激光焦点处的光强一半时,该点至焦点的距离称为光束的聚焦深度。
光束的聚焦深度与入射激光波长和透镜焦距的平方成正比,与w12成反比,因此要获得较大的聚焦深度,就要选长聚焦透镜,例如在深孔激光加工以及厚板的激光切割和焊接中,要减少锥度,均需要较大的聚焦深度。
3、对于金属材料影响材料吸收率的因素有哪些?……..答:波长、温度、材料表面状态波长越短,金属对激光的吸收率就越高温度越高,金属对激光的吸收率就越高材料表面越粗糙,反射率越低,吸收率越大。
在目前激光表面淬火中常对工件进行黑化处理,为什么?答:提高材料对激光的吸收率4、简述激光模式对激光加工的影响,并举出2个它们的应用领域?答:基模光束的优点是发散角小,能量集中,缺点是功率不大,且能量分布不均。
应用:激光切割、打孔、焊接等。
高阶模的优点是输出功率大,能量分布较为均匀,缺点是发散厉害。
应用:激光淬火(相变硬化)、金属表面处理等。
5、试叙述激光相变硬化的主要机制。
答:当采用激光扫描零件表面,其激光能量被零件表面吸收后迅速达到极高的温度,此时工件内部仍处于冷态,随着激光束离开零件表面,由于热传导作用,表面能量迅速向内部传递,使表层以极高的冷却速度冷却,故可进行自身淬火,实现工件表面相变硬化。
激光与材料相互作用机理研究一、概述激光与材料相互作用机理研究是材料科学领域中的一个重要研究方向。
激光加工技术在制造业中越来越受到重视,因为它具有质量高、效率高、可控性好等优点,被广泛应用于航空制造、汽车制造、电子设备等领域。
在激光加工过程中,激光再材料中的相互作用是一项关键的技术问题。
因此,深入研究激光与材料相互作用机理对于提高激光加工的质量和效率具有重要意义。
二、激光与材料相互作用的基本原理激光与材料相互作用的基本原理是光与物质之间的相互作用。
光在与材料相互作用时会被吸收、反射、散射等,并通过热传导、热辐射等方式作用于材料中,从而导致材料的物理和化学性质发生改变。
激光与材料相互作用的过程可以分为以下几个阶段:1. 光与材料的相互作用:当激光与材料相遇时,光子将能量传递给材料,使其进行状态变化。
2. 吸收过程:材料中的分子吸收光子能量,使它们从基态或低能量状态转变为高能量在态,在此过程中,物质发生热膨胀和蒸发。
3. 热传导和热辐射:被激发的材料分子通过热传导和热辐射方式传递能量。
4. 热损耗:材料受到激光照射后,内部吸收的能量不断积累,超过其耐受的极限,便会发生熔化、汽化、严重的塌陷等不同的物理和化学反应过程。
5. 材料剥落:材料剥落是指激光能量传递到物体表面后,材料出现爆炸性膨胀和极端量热反应,瞬间使物体表面形成高压气体。
此时,材料表面逐渐形成锥型孔洞,并随着气浪的爆发产生的物理冲击力,最终导致材料剥落。
三、激光与材料相互作用机理的影响因素1. 光学特性:光学特性是指材料吸收、散射、反射、透射激光的能力。
不同材料的反射率和吸收率不同,因此激光与材料相互作用过程中其产生的影响也不同。
2. 材料特性:不同材料的熔点、硬度、热导率等物理性质不同,因此激光与材料相互作用的过程中也会产生不同的影响。
3. 激光特性:激光的波长、能量密度、相干性等特性也会影响激光与材料相互作用过程中所产生的反应效果。
四、激光与材料相互作用应用激光具有高能量、高精度、无污染等特点,因此在制造业、医疗和科学研究等领域中,激光与材料相互作用技术正在不断应用和发展。