重力坝稳定及应力计算
- 格式:doc
- 大小:523.00 KB
- 文档页数:28
附录三 用材料力学方法计算坝体应力一、说明混凝土重力坝一般均用材料力学方法计算坝的应力指标并设计断面,所以本附录仍列入该法的有关计算公式,至于电子计算机的程序另见本规范参考资料。
本法假定坝体各水平截面上的垂直正应力σy 呈直线分布,因此,可以按材料力学中的偏心受压公式来确定σy ,然后依次应用平衡条件确定剪应力τ,水平正应力σx 以及主应力σz 1,σz 2和其方向。
作用在计算截面上的扬压力,通常呈折线形分布(附图6a ),这个图形,可分解为一个在全截面上呈梯形(或三角形)分布的图形(附图6b )和一些在上游部分呈局部三角形或矩形分布的图形,如附图6c 、d 、e 。
当扬压力沿全截面呈直线分布时(即附图6b 所示情况),其所产生的应力为:=-==τσσvy x p附图6v p 为计算点的扬压力,因此,这种扬压力所产生的应力可以不必专门计算,只须先不考虑扬压力的影响,确定各点上的应力σx ,σy 及τ,然后在正应力中扣去扬压力v p 即可,对于仅作用在截面局部部分上的扬压力(渗透压力),则必须作专门计算,以确定其所产生的应力。
用材料力学方法计算坝体应力时,以压应力为正,拉应力为负,y 为垂直轴,以向下为正,x 为水平轴,以向上游为正,原点取在计算截面与下游坝面的交点上(附图7),其余所用符号如下:T ——坝体计算截面沿上、下游方向的长度; n ——上游坝坡,n =tg φs ; m ——下游坝坡,m =tg φxi ; γh ——混凝土容重;γ、'γ——上、下游水的容重('γ在数值上常等于γ);p 、'p ——计算截面在上、下游坝面所受的水压力(如有泥沙压力时应计入在内);p y 、'p y ——计算截面在上、下游坝面所受地震动水压力;λ——地震惯性力总系数,λ=k H C z F 以入乘混凝土重量W ,即为地震惯性力,应按《水工建筑物抗震设计规范》计算;vs p 、vxi p ——计算截面在上、下游坝面处的扬压力;ηγH ——在上游的渗透压力(H 为计算截面以上的上游水深,η为扬压力系数); ΣW ——计算截面上全部垂直力的总和(包括坝体自重、水重、泥沙重及计算的扬压力等),以向下为正,对于实体重力坝,均切取单位宽度坝体为准(下同);ΣP ——计算截面上全部水平推力的总和(包括水压力、泥沙压力和地震水压力等),以指向上游为正;ΣM ——计算截面上全部垂直力及水平力对于计算截面形心的力矩的总和,以使上游面产生压应力者为正;其他符号将在宽缝重力坝计算中再加说明。
重力坝一、重力坝的工作原理及特点1、重力坝在水压力及其它荷载作用下必需满足:A 、稳定要求:主要依靠坝体自重产生的抗滑力来满足。
B 、强度要求:依靠坝体自重产生的压应力来抵消由于水压力所产生的拉应力来满足。
2、重力坝的类型:(1)按构造不同分为:实体重力坝,宽缝重力坝,空腹重力坝和预应力重力坝。
(2)按作用可以分:溢流重力坝,非溢流重力坝。
(3)按筑坝材料的不同分为:混凝土重力坝和浆砌石重力坝。
二,重力坝的荷载组合基本组合1:正常蓄水位情况,作用包括:①②③④⑤基本组合2:防洪高水位情况,作用包括:①②③④⑤⑦基本组合3:冰冻情况,作用包括:①②③④⑥偶然组合1:校核洪水位情况,作用包括:①④⑧⑨⑩⑾偶然组合2:地震情况,作用包括:①②③④⑤⑿重力坝按极限状态设计时一般要考虑四种承载能力极限状态:①坝趾抗压强度极限状态②坝体与坝基面的抗滑稳定极限状态③坝体混凝土层面的抗滑稳定极限状态④基岩有薄弱层时坝体连同部分坝基的深层抗滑稳定极限状态。
三 重力坝的抗滑稳定分析沿坝基面的抗滑稳定分析重力坝失稳破坏的机理:首先坝踵处基岩和胶结面出现微裂松弛区,随后在坝址处基岩和胶结面出现局部区域的剪切屈服,进而屈服范围逐渐增大并向上游延伸,最后形成滑动通道,导致大坝的整体失稳。
(一)抗剪强度公式:(1)当接触面呈水平时,其抗滑稳定安全系数)(∑-=U W f K S S /∑P(2)当接触面倾向上游时,其抗滑稳定安全系数∑∑∑∑-+-=ββββsin cos )sin cos (W P P U W f K S(二)抗剪断公式:∑∑'+-'=P A c U W f K S )(深层抗滑稳定分析(1) 单斜面深层稳定计算:如图将软弱面以上的坝体和地基视为刚体,按下式计算: ∑∑∑∑-+-=ββββsin cos )sin cos (W P P U W f K S(2) 双斜面深层抗滑稳定计算:提高抗滑稳定性的工程措施:1) 利用水重2) 采用有利的开挖轮廓线: ① 使坝基面倾向上游。
1、计算依据:《混凝土重力坝设计规范》(DL5108-1999)2、计算工况:按正常使用极限状态设计,考虑下列两种作用效应组合:a 、短期组合:持久状况或短暂状况下,可变作用的短期效应永久作用效应的组合。
b 、长期组合:持久状况下,可变作用的短期效应永久作用效应的组合。
3、计算公式:a 、短期组合采用下列公式:b 、长期组合采用下列公式:式中: C 1、C 2—结构的功能限值,Ss (·)、S l (·)—作用效应的短期组合、长期组合时的效应函数,γd3、γd4—正常使用极限状态短期组合、长期组合时的结构系数,ρ—可变作用标准值的长期组合系数,规范取ρ=1G K —永久作用标准值,Q K —可变作用标准值,f k —材料性能的标准值,a k —几何参数的标准值(可作为定值处理)4、计算计算中考虑将正常水位作为长期组合,设计水位和校核水位作为短期组合,计算中不考虑扬压力(因为上游面设置了C20混凝土防渗墙)。
因坝体横剖面有两个折点,因此计算分两个截面进行,分别为1078.770和1066.000高程。
计算内容为各截面在各种组合下上、下面的应力(拉应力和压应力)荷载水平方向以向右为正,垂直方向以向下为正,力矩以顺时针方向为正。
4.1 1078.770m 截面4.1.1荷载计算(1).永久作用标准值(自重):坝顶宽度 3.000m坝顶高程1083.452则截面高4.682m ,截面以上面积S=14.046m 2坝体材料容重为γ= 2.300t/m 3所以坝体自重G K 为:32.3058t 自重到截面中心的力臂为:0.000m 自重到截面中心的力距为:0t·m (2).可变作用标准值:正常水位1081.500水压力=0.5·γ·H 2=3.726t 水压力到截面中心力臂为:0.91m 水压力到截面中心力距为: 3.391t·m坝体应力计算书()310/,,,d K K K K S C a f Q G S g g £()420/,,,d K K K K l C a f Q G S g r g £设计水位1082.300水压力=0.5·γ·H 2=6.230t 水压力到截面中心力臂为:1.177m 水压力到截面中心力距为:7.331t·m校核水位1082.520水压力=0.5·γ·H 2=7.031t水压力到截面中心力臂为: 1.250m水压力到截面中心力距为:8.789t·m4.1.2应力计算:应力计算参照《土力学》,公式如下:式中:Pmin,Pmax—截面最小、最大压力,Mx —荷载对x—x 轴的力矩,Ix —基础底面积对x—x 轴的惯性矩P=32.3058(正常、设计、校核)A=B×1= 3.000M x= 3.391正常水位7.331设计水位8.789校核水位34.1.1荷载计算(1).永久作用标准值(自重):永久作用荷载计算分矩形和三角形两部分A 、矩形部分坝顶宽度 3.000m坝顶高程1083.452则截面高17.452m,截面以上矩形面积S 52.356m 2坝体材料容重为γ= 2.300t/m 3所以坝体自重G 1K 为:120.4188t自重到截面中心的力臂L 1为:-5.100m自重到截面中心的力距M 1为:-614.136t·mB 、三角形部分三角形高:12.77截面底宽:13.216则三角形底面宽度=10.216三角形面积S △=65.229坝体材料容重为γ= 2.300t/m 3y I M A P p x x ±=maxmin,所以坝体自重G 2K 为:150.027t自重到截面中心的力臂L 2为:-0.203m自重到截面中心的力距M 2为:-30.405t·m(2).可变作用标准值:正常水位1081.500水压力=0.5·γ·H 2=120.125t水压力到截面中心力臂为: 5.1666667m水压力到截面中心力距为:620.646t·m设计水位1082.300水压力=0.5·γ·H 2=132.845t 水压力到截面中心力臂为:5.433m 水压力到截面中心力距为:721.791t·m校核水位1082.520水压力=0.5·γ·H 2=136.455t水压力到截面中心力臂为: 5.507m水压力到截面中心力距为:751.413t·m4.1.2应力计算:应力计算参照《土力学》,公式如下:式中:Pmin,Pmax—截面最小、最大压力,Mx —荷载对x—x 轴的力矩,Ix —基础底面积对x—x 轴的惯性矩P=120.4188(正常、设计、校核)A=B×1=13.216M x=-23.896正常水位77.250设计水位106.872校核水位3 本工程坝体材料为C10混凝土砌毛石,毛石石料等级为500,查《浆砌石重力坝设计规范》,其允许压力值为,基本组合82.9t/m 2,特殊组合110t/m 2因此,根据上述计算可知,坝体满足最小应力大于0,最大压应力小于坝体允许抗压应力。
有限单元法是一种数值分析方法,通过将复杂的结构或系统离散为有限个小的单元,对每个单元进行单独分析,再将这些单元的响应进行组合,得到整体的响应。
这种方法在许多工程领域都有广泛应用,包括重力坝的应力计算。
使用有限单元法计算重力坝的应力,一般会遵循以下步骤:
建立模型:首先,需要建立一个数值模型来表示重力坝。
这个模型通常由一系列的有限单元组成,每个单元代表了坝体的一部分。
这些单元可以是线性的、二次的或更高阶的,取决于问题的复杂性和精度需求。
加载条件:定义重力坝上的载荷,包括坝体的自重、水压力等。
这些载荷将被施加到模型的相应部分。
边界条件:定义模型的边界条件,例如固定边界、自由边界等。
这些条件将影响模型中单元的位移和应力分布。
求解方程:使用有限元方法,将整体的结构方程离散到每个单元上,形成一系列的线性方程组。
然后,使用数值方法(如直接法、迭代法等)求解这些方程,得到每个单元的位移和应力。
后处理:分析求解结果,提取重力坝的应力、应变等信息。
根据这些数据,可以对坝体的安全性进行评估,并进行必要的加固或优化设计。
值得注意的是,使用有限元法进行计算时,需要注意选择合适的单元类型和网格密度,以确保结果的精度和可靠性。
同时,也需要考虑各种因素(如温度变化、材料非线性等)对计算结果的影响。
重力坝的荷载与稳定性怎么计算
重力坝主要依靠自重维持稳定
分类
重力坝的设计内容
①总体布置②稳定分析③剖面设计④应力分析⑤构造设计⑥地基处理
⑦泄水设计⑧监测设计⑨施工设计
作用与荷载
①自重(包括固定设备重):沿坝基面滑动,仅计坝体重量;沿深层滑动,需计入滑体内岩体重
②静水压力
③扬压力:扬压力=浮力+渗流压力(α:扬压力折减系数)
④动水压力
⑤浪压力
波浪三要素:波高、波长和壅高
⑥泥沙压力
⑦冰压力,⑧土压力,⑨地震作用,⑩温度作用等。
稳定分析
目的:核算坝体沿坝基面或坝基内部缓倾角软弱结构面抗滑稳定的安全度。
失稳机理:首先在坝踵处基岩和胶结面出现微裂松弛区,随后在坝趾处基岩和胶结面出现局部区域的剪切屈服,进而屈服范围逐渐增大并向上游延伸,最后,形成滑动通道,导致坝的整体失稳。
抗剪强度公式(摩擦公式)
抗剪断公式
规范要求:大型工程用抗剪断强度公式;中小型工程可以用摩擦公式。
项目名称:几内亚凯勒塔(KALETA)水电站工程项目阶段:复核阶段计算书名称:重力坝抗滑稳定及应力计算审查:校核:计算:黄河勘测规划设计有限公司Yellow River Engineering Consulting Co. ,Ltd.二〇一二年四月目录1.计算说明 (1)1.1 目的与要求 (1)1.2 基本数据 (1)2.计算参数和研究方法 (2)2.1 荷载组合 (2)2.2 计算参数及控制标准 (2)2.3 计算理论和方法 (3)3.计算过程 (5)3.1 荷载计算 (5)3.1.1 自重 (5)3.1.2 水压力 (6)3.1.3 扬压力 (10)3.1.4 地震荷载 (14)3.2 安全系数及应力计算 (17)4.结果汇总 (22)1.计算说明1.1 目的与要求下列计算是有关挡水坝段、溢流坝段、进水口、底孔坝段抗滑稳定性和基底应力计算。
1.2 基本数据正常蓄水位:110m;设计洪水位:112.94m;校核洪水位:113.30m;大坝设计洪水标准为100年一遇,校核洪水标准为1000年一遇;坝址区地震动峰值加速度为0.15g(g=9.81m/s²),地震动反应周期为0.25s,相应的地震基本烈度为7度,本工程抗震设计烈度为7度。
计算选取的挡水坝段坝顶高程114.00m,坝基底高程92.00m,坝高22m,坝顶宽5m。
上游坝面竖直,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。
计算选取的溢流坝段堰顶高程110.00m,坝基底高程96.00m,坝高14m,上游坝面竖直,下游坝坡在108.59m高程以上为Creager剖面,在108.59m 高程以下坡度为1:0.85。
正常蓄水位时,溢流坝段下游无水;设计洪水位112.94m时,下游水位104.80m;校核洪水位113.30m时,下游水位105.42m。
进水口坝段顶高程114.00m,坝基底高程87.80m,坝高26.2m,顶宽13.06m,上游坝坡为1:0.25,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。
二、重力坝的应力分析(一)重力坝应力分析的目的和方法应力分析的主要目的是:验算拟定坝体断面是否经济合理;确定坝内材料分区;为某些部位的配筋提供依据。
常用的分析方法有理论计算和模型试验两大类。
中、小型工程,一般采用理论计算方法即可。
理论计算法又包括材料力学法和弹性理论的解析法、有限元法,其中材料力学法是一种简便而较实用的方法。
(二)用材料力学法计算坝体边缘应力材料力学法通常沿坝轴线取单位宽度(1m )的坝体作为计算对象。
坝体的最大和最小应力一般发生在上、下游坝面,所以,应首先计算坝体边缘应力。
计算简图及荷载、应力的正方向,如图1所示。
图11、水平截面上的边缘正应力yu σ 和yd σ26yu ydWM TTσσ⎧⎫⎪⎪=±⎨⎬⎪⎪⎩⎭∑∑ (6—1)式中W∑——计算截面以上所有垂直分力的代数和(向下为正),kN ;M∑——计算截面以上所有作用力对截面形心的力矩代数和(逆时针方向为正),kN .m ;T——坝体计算截面沿上下游方向的水平宽度,m ;2、剪应力 u τ和d τ已知u τ 和 d τ以后,可根据边缘微元体的平衡条件解出上、下游边缘剪应力,见图2所示。
由平衡条件0y =∑ 可得:图2()u u y up n τσ=- (6—2) ()d y ddpm τσ=- (6—3)式中 u p 、d p ——计算截面处上、下游坝面的水压力强度(如有泥沙压力和地震水压力时也应计算在内),kPa ;n 、m ——计算截面处上、下游坝面的坡率,tan u n φ= ,tan d m φ=。
3、垂直截面上的边缘正应力 xu σ及xd σ仿照求边缘剪应力的方法,对微分单元体取0x =∑ ,可得:()()2x u u u y up p n k P a σσ=--(6—4) ()()2x d d y ddp pm k P a σσ=+-(6—5)4、边缘主应力 1u σ及1d σ由材料力学可知,主应力作用面上无剪应力,故上、下游坝面即为主应力面之一,另一主应力面与坝面垂直。
基于重力坝应力计算及稳定分析的优化设计重力坝是一种常见的水利工程结构,其稳定性是设计中需要考虑的重要问题。
在设计重力坝时,需要对其应力进行计算和稳定性进行分析,并进行优化设计。
首先,重力坝的应力计算需要考虑以下几个方面。
首先是坝体自重的计算,包括坝体上升水压力和上升地下水压力。
其次是坝顶压力的计算,包括抗倾覆稳定和抗滑移稳定的力学分析。
还需要考虑水侧坝体的压力计算,包括水压头的作用和大坝的承压强度。
最后是岩质坝体的应力分析,考虑岩性、节理的影响及坝体的变形与稳定性。
为了保证重力坝的稳定性,需要进行稳定分析。
稳定分析主要包括抗倾覆稳定和抗滑移稳定两个方面。
抗倾覆稳定分析是为了防止重力坝在承受水压力的作用下发生倾覆。
抗滑移稳定分析是为了防止重力坝在地基土的滑移力的作用下发生移动。
通过合理选择坝体的高度、坝基的强度和选择合适的岩质材料,可以有效地提高重力坝的稳定性。
在重力坝的优化设计中,可以从以下几个方面进行考虑。
首先是合理选择重力坝的形式,可以是三角形、梯形或者圆弧形等不同形式,根据工程实际情况进行选择。
其次是选择合适的坝基处理措施,包括混凝土垫层、防渗墙等,可以提高坝体的稳定性。
另外,可以考虑采用辅助措施,如设置消能防冲设施、阻水排水系统等,提高重力坝的安全性。
最后,可以进行不同形式的优化设计,如遗传算法、模拟退火算法等,寻找最优设计方案,既能满足工程要求,又能提高工程的经济性和可行性。
综上所述,基于重力坝的应力计算及稳定分析的优化设计是一个综合性的工程问题。
通过合理的应力计算和稳定分析,可以提高重力坝的稳定性。
同时,通过优化设计,可以选择合适的形式和措施,提高工程的安全性和经济性。
因此,在重力坝的设计中,需要综合考虑各种因素,进行全面的分析和优化设计。
一、计算荷载组合:坝体自重:区域① W11=10*125*24=30000KN 方向↓ 区域② W12=0.5*113*73.45*24=99598.2KN 方向↓ W1=W11+W12=30000+99598.2=129598.2KN 方向↓ 静水压力:垂直水压力PV=0.5*17*17*0.65*9.8=920.47KN 方向↓ 水平水压力,上游PH1=0.5*γw*H ²=0.5*9.8*120²=70560KN 方向→ 下游PH2=0.5*γw*H ²=0.5*9.8*17²=1416.1KN 方向← 淤沙压力:Ps=0.5*γsb*hs ²*tan ²(45-ⱷs/2)0.5*8.5*21.8²*tan ²(45-27/2)=758.47KN 方向 → 扬压力: 浮托力 U1=γw*H*B=9.8*17*83.45=13902.77 KN 方向↑ 渗流力,区域a U2=ωγα***)1(*5.01L H -=0.5*(1-0.2)*103*7*9.80=2826.32KN 方向↑区域b U3=ωγα**1H L =7*0.2*103*9.80=1413.16KN 方向 ↑区域c U4=ωγα***5.02L H =0.5*0.2*103*76.45*9.80=7716.86KN 方向↑ U=U1+U2+U3+U4=13902.77+2826.32+1413.16+7716.86=25859.11KN 方向↑ 荷载计算如下图所示:二、沿坝基面的抗滑稳定分析以单宽坝段作为计算单元,按抗剪断强度公式计算,认为坝体混凝土与基岩接触良好,接触面面积为A ,采用接触面上的抗剪断参数'f 和'c 计算抗滑稳定安全系数。
A=83.45㎡PA c U W f K s∑+-∑=''')(=(0.92*(129598.2+920.47-25859.11)+750*83.45)/(70560-1416.1+758.47)=2.273 满足要求。
坝体强度承载能力极限状态计算及坝体稳定承载能力极限状态计算〔一〕、基本资料坝顶高程:m校核洪水位〔P = 0.5 %〕上游:m下游:m正常蓄水位上游:m下游:m死水位:m混凝土容重:24 KN/m3坝前淤沙高程:m泥沙浮容重:5 KN/m3混凝土与基岩间抗剪断参数值:f `c `= 0.2 Mpa坝基基岩承载力:[f]= 400 Kpa坝基垫层混凝土:C15坝体混凝土:C1050年一遇最大风速:v 0 = 19.44 m/s多年平均最大风速为:v 0 `= 12.9 m/s吹程D = 1000 m〔二〕、坝体断面1、非溢流坝段标准剖面(1)荷载作用的标准值计算〔以单宽计算〕 m ,下游水位1094.89m 〕 ① 竖向力〔自重〕W 1 = 24×5×17 = 2040 KN W 2 = 24×× /2 = KN W 3×〔〕2× /2 = KN ∑W = KNW 1作用点至O 点的力臂为: (13.6-5) /2 = 4.3 m W 2作用点至O 点的力臂为:m 067.16.83226.13=⨯- W 3作用点至O 点的力臂为:m 6.58.0)10905.1094(3126.13=⨯-⨯-竖向力对O点的弯矩〔顺时针为“-”,逆时针为“+”〕:M OW1 = 2040×4.3 = 8772 KN·mM OW2 = -×1.067 = -1183.7 KN·mM OW3 = -×5.6 = -445 KN·m∑M OW = 7143.3 KN·m②静水压力〔水平力〕P1 = γH12×-1090)2 /2= -1178.4 KNP2 =γH22×(1094.89-1090)2 /2 = KN∑P = -KNP1作用点至O点的力臂为:-P2作用点至O点的力臂为:-静水压力对O点的弯矩〔顺时针为“-”,逆时针为“+”〕:M OP1 ×5.167 = -6089 KN·mM OP2 ×1.63 = 191.2 KN·m∑M OP = -5897.8 KN·m③扬压力扬压力示意图请见下页附图:H1 = -1090 = 15.5 mH2 = -1090 = m(H1 -H1) = -m计算扬压力如下:U1××= KNU2 = 9.81 ××/2 = KN∑U = KNU1作用点至O点的力臂为:0 mU2作用点至O点的力臂为:13.6 / 2-竖向力对O点的弯矩〔顺时针为“-”,逆时针为“+”〕:M OU1 = 0 KN·mM OU2 = -×2.267 = -1604.6 KN·m∑M OU = -1604.6 KN·m④浪压力〔直墙式〕浪压力计算简图如下:由确定坝顶超高计算时已知如下数据:单位:m使波浪破碎的临界水深计算如下:%1%122ln 4h L h L L H m m m cr πππ-+=将数据代入上式中得到: 013.183.02644.783.02644.7ln 4644.7=-+=πππcr H 由判定条件可知,本计算符合⑴H ≥H cr 和H ≥L m /2,单位长度上的浪压力标准值按下式计算:)(41%1Z m W Wkh h L P +=γ 式中:γw ── KN/m 3 其余计算参数已有计算结果。
项目名称:几亚凯勒塔(KALETA)水电站工程项目阶段:复核阶段计算书名称:重力坝抗滑稳定及应力计算审查:校核:计算:黄河勘测规划设计Yellow River Engineering Consulting Co. ,Ltd.二〇一二年四月目录1.计算说明 (1)1.1 目的与要求 (1)1.2 基本数据 (1)2.计算参数和研究方法 (1)2.1 荷载组合 (1)2.2 计算参数及控制标准 (2)2.3 计算理论和方法 (3)3.计算过程 (4)3.1 荷载计算 (4)3.1.1 自重 (4)3.1.2 水压力 (4)3.1.3 扬压力 (6)3.1.4 地震荷载 (7)3.2 安全系数及应力计算 (9)4.结果汇总 (11)1.计算说明1.1 目的与要求下列计算是有关挡水坝段、溢流坝段、进水口、底孔坝段抗滑稳定性和基底应力计算。
1.2 基本数据正常蓄水位:110m;设计洪水位:112.94m;校核洪水位:113.30m;大坝设计洪水标准为100年一遇,校核洪水标准为1000年一遇;坝址区地震动峰值加速度为0.15g(g=9.81m/s²),地震动反应周期为0.25s,相应的地震基本烈度为7度,本工程抗震设计烈度为7度。
计算选取的挡水坝段坝顶高程114.00m,坝基底高程92.00m,坝高22m,坝顶宽5m。
上游坝面竖直,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。
计算选取的溢流坝段堰顶高程110.00m,坝基底高程96.00m,坝高14m,上游坝面竖直,下游坝坡在108.59m高程以上为Creager剖面,在108.59m高程以下坡度为1:0.85。
正常蓄水位时,溢流坝段下游无水;设计洪水位112.94m 时,下游水位104.80m;校核洪水位113.30m时,下游水位105.42m。
进水口坝段顶高程114.00m,坝基底高程87.80m,坝高26.2m,顶宽13.06m,上游坝坡为1:0.25,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。
作业一重力坝的稳定应力分析重力坝是一种常见的大坝类型,以其简单、稳定的结构而被广泛应用于工程建设中。
重力坝主要依靠其自身的重量抵抗水压力,保证坝体整体的稳定。
在重力坝的设计和施工过程中,稳定性是一个重要的考虑因素。
稳定性分析可以帮助工程师确定重力坝的最佳尺寸、形状和材料,以确保坝体可以承受水压力和其他外力的作用。
重力坝的稳定性主要包括静力稳定性和动力稳定性两个方面。
静力稳定性分析是指坝体在静止状态下是否能够保持平衡,并通过重力抵抗来抵抗水压力的作用。
动力稳定性分析是指坝体在水流冲击和地震作用下是否能够保持稳定。
在进行重力坝的稳定应力分析时,首先需要确定重力坝的几何形状和材料参数。
重力坝的几何形状包括坝身高度、坝顶宽度、坝底宽度等。
材料参数包括坝体的抗压强度、摩擦角等。
然后,可以使用力学原理和数学方法对坝体进行静力稳定和动力稳定性分析。
静力稳定性分析主要包括重力平衡、摩擦力和附加压力等因素的考虑。
重力平衡要求坝体的重力和水压力之间达到平衡,即满足重力矩平衡和重力力平衡。
摩擦力主要指坝体与地基之间的摩擦力,需要保证摩擦力能够抵抗倾覆力矩的作用。
附加压力是指当坝体的水位发生变化时,由于地下水和孔隙水的作用,会对坝体施加额外的压力,需要考虑这一点来确保稳定。
动力稳定性分析主要包括水流冲击和地震作用的考虑。
在水流冲击分析中,需要考虑水流冲击力对坝体的作用,以及坝体的抗浮力。
地震作用分析中,需要考虑地震对坝体的作用,以及坝体的抗倾覆能力。
除了静力和动力稳定性分析外,还需要考虑其他因素对重力坝的稳定性的影响。
例如,温度变化会导致坝体的膨胀和收缩,可能对坝体结构造成影响,需要考虑温度因素。
此外,地下水位变动、洪水冲刷等等也需要在稳定性分析中进行考虑。
总之,重力坝的稳定力学分析是重力坝设计和施工的重要环节。
通过对重力坝的稳定应力分析,可以确保重力坝能够在不同条件下保持稳定,并能承受各种外力的作用。
这对于保障工程的安全运行和灾害防治具有重要的意义。
坝体强度承载能力极限状态计算及坝体稳定承载能力极限状态计算(一)、基本资料坝顶高程:1107.0 m校核洪水位(P = 0.5 %)上游:1105.67 m下游:1095.18 m正常蓄水位上游:1105.5 m下游:1094.89 m死水位:1100.0 m混凝土容重:24 KN/m3坝前淤沙高程:1098.3 m泥沙浮容重:5 KN/m3混凝土与基岩间抗剪断参数值:f `= 0.5c `= 0.2 Mpa坝基基岩承载力:[f]= 400 Kpa坝基垫层混凝土:C15坝体混凝土:C1050年一遇最大风速:v 0 = 19.44 m/s多年平均最大风速为:v 0 `= 12.9 m/s吹程D = 1000 m(二)、坝体断面1、非溢流坝段标准剖面荷载作用的标准值计算(以单宽计算)A 、正常蓄水位情况(上游水位1105.5m ,下游水位1094.89m ) ① 竖向力(自重)W 1 = 24×5×17 = 2040 KNW 2 = 24×10.75×8.6 /2 = 1109.4 KNW 3 = 9.81×(1094.5-1090)2×0.8 /2 = 79.46 KN ∑W = 3228.86 KNW 1作用点至O 点的力臂为: (13.6-5) /2 = 4.3 m W 2作用点至O 点的力臂为:m 067.16.83226.13=⨯- W 3作用点至O 点的力臂为:m 6.58.0)10905.1094(3126.13=⨯-⨯- 竖向力对O 点的弯矩(顺时针为“-”,逆时针为“+”): M OW1 = 2040×4.3 = 8772 KN ·mM OW2 = -1109.4×1.067 = -1183.7 KN ·mM OW3 = -79.46×5.6 = -445 KN·m∑M OW = 7143.3 KN·m②静水压力(水平力)P1 = γH12 /2 = 9.81×(1105.5-1090)2 /2= -1178.4 KN P2 =γH22 /2 =9.81×(1094.89-1090)2 /2 = 117.3KN∑P = -1061.1 KNP1作用点至O点的力臂为:(1105.5-1090)/3 = 5.167m P2作用点至O点的力臂为:(1094.89-1090)/3 = 1.63m 静水压力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OP1 = 1178.4×5.167 = -6089 KN·mM OP2 = 117.3×1.63 = 191.2 KN·m∑M OP = -5897.8 KN·m③扬压力扬压力示意图请见下页附图:H1 = 1105.5-1090 = 15.5 mH2 = 1094.89-1090 = 4.89 m(H1 -H1) = 15.5-4.89 = 10.61 m计算扬压力如下:U1 = 9.81×13.6×4.89 = 652.4 KNU2 = 9.81 ×13.6×10.61 /2 = 707.8 KN∑U = 1360.2 KNU1作用点至O点的力臂为:0 mU2作用点至O点的力臂为:13.6 / 2-13.6 / 3 = 2.267m 竖向力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OU1 = 0 KN·mM OU2 = -707.8×2.267 = -1604.6 KN·m∑M OU = -1604.6 KN·m④浪压力(直墙式)浪压力计算简图如下:由确定坝顶超高计算时已知如下数据:单位:m使波浪破碎的临界水深计算如下:将数据代入上式中得到:由判定条件可知,本计算符合⑴H≥H cr和H≥L m/2,单位长度上的浪压力标准值按下式计算:式中:γw ──水的重度= 9.81 KN/m3其余计算参数已有计算结果。
浪压力标准值计算得:对坝底中点O取矩为(顺时针为“-”,逆时针为“+”):M OPWK = (9.81×1.113×0.862/2)×(15.5+1.113/3)+(9.81×3.822×0.862/2)×(15.5-3.822/3) = -(74.687+229.89) = -304.577 KN ·m⑤ 淤沙压力 淤沙水平作用力:式中:γSb ── 淤沙浮容重 = 5 KN/m 3h S ── 挡水建筑物前泥沙淤积厚度 = 8.3m ψSB ── 淤沙内摩擦角 =18° 代入上式得到淤沙压力标准值P SK = -90.911 KN对O 点的力臂为(1098.3-1090)/3 = 2.767m对O 点取矩 M OPSK = -90.911×2.767 = -251.552 KN ·m 将计算的各荷载进行汇总整理。
结论请见附表1。
B 、校核洪水位情况(上游水位1105.67m ,下游水位1095.18m ) ① 竖向力(自重)W 1 = 24×5×17 = 2040 KNW 2 = 24×10.75×8.6 /2 = 1109.4 KNW 3 = 9.81×(1095.34-1090)2×0.8 /2 = 111.9 KN ∑W = 3261.3 KNW 1作用点至O 点的力臂为: (13.6-5) /2 = 4.3 m W 2作用点至O 点的力臂为:m 067.16.83226.13=⨯- W 3作用点至O 点的力臂为:m 376.58.0)109034.1095(3126.13=⨯-⨯- 竖向力对O 点的弯矩(顺时针为“-”,逆时针为“+”):M OW1 = 2040×4.3 = 8772 KN·mM OW2 = -1109.4×1.067 = -1183.7 KN·mM OW3 = -111.9×5.376 = -601.6 KN·m∑M OW = 6986.7 KN·m②静水压力(水平力)P1 = γH12 /2 = 9.81×(1105.67-1090)2 /2 = -1204.4 KN (→)P2 =γH22 /2 =9.81×(1095.18-1090)2 /2 = 131.6 KN (←)∑P = -1072.8 KN (→)P1作用点至O点的力臂为:(1105.67-1090)/3 = 5.223mP2作用点至O点的力臂为:(1095.18-1090)/3 = 1.727 m静水压力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OP1 = 1204.4×5.223 = -6290.6 KN·mM OP2 = 131.6×1.727 = 227.3 KN·m∑M OP = -6063.3 KN·m③扬压力扬压力示意图请见下图:H1= 1105.67-1090 = 15.67 mH2 = 1095.18-1090 = 5.18 m(H1 -H1) = 15.67-5.18 = 10.49 m计算扬压力如下:U1 = 9.81×13.6×5.18 = 691.1 KNU2 = 9.81×13.6×10.49 / 2 = 699.8 KN∑U = 1390.9 KNU1作用点至O点的力臂为:0 mU2作用点至O点的力臂为:13.6 / 2 -13.6 / 3 = 2.267m竖向力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OU1 = 0 KN·mM OU2 = 699.8×2.267 = -1586.4 KN·m∑M OU = -1586.4 KN·m④浪压力(直墙式)浪压力计算简图如下:由确定坝顶超高计算时已知如下数据:单位:m使波浪破碎的临界水深计算如下:将数据代入上式中得到:由判定条件可知,本计算符合⑴H≥H cr和H≥L m/2,单位长度上的浪压力标准值按下式计算:式中:γw ──水的重度= 9.81 KN/m3其余计算参数已有计算结果。
浪压力标准值计算得:对坝底中点O取矩为(顺时针为“-”,逆时针为“+”):M OPWK = (9.81×0.655×0.521/2)×(15.98+0.655/3)+(9.81×2.535×0.521/2)×(15.98-2.535/3)= -(27.114+98.048)= -125.162 KN·m⑤淤沙压力淤沙压力标准值P SK = -90.911 KN对O点的力臂为(1098.3-1090)/3 = 2.767m对O点取矩M OPSK = -90.911×2.767 = -251.552 KN·m 将计算的各荷载进行汇总整理。
结论请见附表2。
附表1正常蓄水位情况各项作用力统计表单位:KN、KN·m附表2校核洪水位情况各项作用力统计表单位:KN、KN·m按规范规定作用组合进行作用力的汇总如附表3:附表3 各种工况下的∑↓、∑←、∑M统计表单位:KN、KN·m⑵.由规范8.结构计算基本规定中可知大坝坝体抗滑稳定和坝基岩体进行强度和抗滑稳定计算属于1)承载能力极限状态,在计算时,其作用和材料性能均应以设计值代入。
基本组合,以正常蓄水位对应的上、下游水位代入,偶然组合以校核洪水位时上、下游水位代入。
而坝体上、下游面混凝土拉应力验算属于2)正常使用极限状态,其各设计状态及各分项系数 = 1.0,即采用标准值输入计算。
此时结构功能限值C = 0。
荷载各项标准值和设计值请见附表1。
① 坝体混凝土与基岩接触面抗滑稳定极限状态a 、基本组合时,取持久状态对应的设计状况系数ψ=1.0,结构系数γd1=1.2,结构重要性系数γ0 =0.9。
基本组合的极限状态设计表达式式中左边=γ0ψS(·) =0.9×1.0×1195.23 = 1075.7 KN 对于抗滑稳定的作用效应函数S(·) = ∑P右边=)16.13320062.15963.15.0(2.11)`1`(2.11⨯⨯+⨯⨯=+∑⨯A C W f W W γγ = 1267.3 KN对于抗滑稳定的抗力函数R(·) = f R `∑W R + C R `A R 经计算:左边= 1075.7 KN < 右边= 1267.3 KN 满足规范要求。