2 在Rt△ABC中,∠ACB=90°,CD为斜边AB上的 高,若BC=4,sinA= ,则2 BD的长为______. 3
3 如图,∠α的顶点为O,它的一边在x轴的正半轴上,
另一边OA上有一点P b,4 ,若sin α= ________.
,则4 b=
5
4 如图,在Rt△ABC中,∠C=90°,AB=6,
2. 作一个50°的∠A 图1-3 ,在角的边上任意取一点B,作 BC丄AC于点C.量出AB , AC,BC的长 精确到1mm ,计 算 BC , AC , BC 的值 精确到0.01 , AB AB AC 并将所得的结果与你的同
伴所得的结果作比较. 通过上面两个实践操作,
你发现了什么
3.如图l-4,B,B1是∠α一边上的任意两点,作BC丄AC于 点C, B1C1丄AC1于点C1判断比值 B C与 B 1C 1,A C与 A C 1,B C与 B 1C 1 A B A B 1 A B A B 1 A C A C 1 是否相等,并说明理由.
A. 3
B. 4
C. 3
D. 5
解析:在R5 t△ABC中,∠5 C=90°,则4 ∠A+∠B=5 90°,
则cos
B=sin
A=
4 5
.故选B.
总结
本题考查了互余两角的正弦值、余弦值之间的关 系.或者利用设参数法,也就是设三角形的斜边长是 5k,一条直角边长是4k,利用勾股定理求出另一条直 角边的长度,从而得出结果.
正弦余弦正切函数
Add the author and the accompanying title
1 课堂讲解 2 课时流程
正弦、余弦、正切函数的定义 正弦、余弦、正切函数的应用 同角三角函数间的关系