3
sin (2x ),x∈[0,]的值域.
3
2
(2)配方⇒确定sinx的取值范围⇒求二次函数的值域.
【解析】(1)因为0≤x≤ ,所以0≤2x≤π,- ≤
2
3
2x- ≤ ,2令 2x- =t,则原式转化为y=sint,t∈ [ ,2].
33
3
33
由y=sint的图像知- 3≤y≤1,
2
所以原函数的值域为[ 3,1].
【解析】选D.由题意可知:当sinx=-1时,
函数y=asinx+b(a<0)取到最大值-a+b.
【核心素养培优区】 【易错案例】求单调区间时忽视x前系数正负致误 【典例】求函数y= sin( 1 x ) 的单调递减区间.
23
【失误案例】设v= 1 x .
23
因为y=sinv在[2k ,2k 3 ],
A.均正确
B.①正确、②不正确
C.②正确、①不正确
D.都不正确
【解析】选B.单调性是针对某个取值区间而言的,所以 ①正确;②不正确,因为在第一象限,即使是终边相同的 角,它们也相差2π的整数倍.
3.y=sinx,x∈[ ,2 ]的值域为 ( )
63
A.[-1,1]
B.[ 1 ,1]
2
C. [1, 3 ]
2.正弦函数的性质
性质
函数
图像
定义域 值域
奇偶性
y=sinx
R _[_-_1_,_1_]_ _奇__函__数__
函数 性质
y=sinx
周期性 单调性
周期函数,最小正周期为_2_π__ 在每一个区间_[_2k____2_,_2_k___2_]_(k___Z_)_ 上是增加的; 在每一个区间_[2_k____2_,_2k____32__](_k___Z_) _ 上是减少的