正弦型函数图像变换
- 格式:ppt
- 大小:1.08 MB
- 文档页数:27
三角函数图像变换方法是数学和工程领域中非常重要的概念,其应用范围广泛,包括但不限于信号处理、图像处理、机械振动分析等领域。
下面将详细介绍三角函数图像变换的原理、方法和应用。
一、三角函数图像变换的基本原理三角函数图像变换的核心是通过调整三角函数的参数(如振幅、频率、相位等),从而改变其图像的形状和位置。
具体来说,可以通过以下几种方式来实现三角函数图像的变换:1. 振幅变换:通过改变三角函数的振幅参数,可以改变图像在垂直方向上的大小。
振幅增加时,图像的高度增加;振幅减小时,图像的高度减小。
2. 频率变换:通过改变三角函数的频率参数,可以改变图像在水平方向上的周期性。
频率增加时,图像的周期减小,图像变得更密集;频率减小时,图像的周期增加,图像变得更稀疏。
3. 相位变换:通过改变三角函数的相位参数,可以改变图像在水平方向上的平移。
相位增加时,图像向右平移;相位减小时,图像向左平移。
二、三角函数图像变换的常见方法1. 振幅变换法:通过直接调整三角函数的振幅参数,实现图像在垂直方向上的大小变化。
例如,将正弦函数y=sin(x)的振幅扩大2倍,得到y=2sin(x)的图像,其高度变为原来的2倍。
2. 频率变换法:通过调整三角函数的频率参数,实现图像在水平方向上的周期性变化。
例如,将正弦函数y=sin(x)的频率增加2倍,得到y=sin(2x)的图像,其周期变为原来的1/2。
3. 相位变换法:通过调整三角函数的相位参数,实现图像在水平方向上的平移。
例如,将正弦函数y=sin(x)的相位增加π/2,得到y=sin(x+π/2)的图像,其向右平移π/2个单位。
此外,还可以结合使用上述方法,实现更复杂的图像变换。
例如,可以同时调整振幅、频率和相位参数,得到不同形状和位置的三角函数图像。
三、三角函数图像变换的应用三角函数图像变换在各个领域有着广泛的应用。
以下是一些典型的应用示例:1. 信号处理:在信号处理中,三角函数图像变换常用于分析信号的频率成分和相位关系。
三角函数图形的变换1、正弦与余弦函数图象的变换2、由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。
途径一:先平移变换再周期变换(伸缩变换):先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。
途径二:先周期变换(伸缩变换)再平移变换:先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。
作y =sin x (长度为2π的某闭区间)的图象 得y =sin(x +φ) 的图象得y =sin ωx 的图象 得y =sin(ωx +φ) 的图象 得y =sin(ωx +φ) 的图象 得y =Asin(ωx +φ)的图象,先在一个周期闭区间上再扩充到R 上沿x 轴平 移|φ|个单位 横坐标 伸长或缩短 横坐标伸 长或缩短沿x 轴平 移|ωϕ|个单位 纵坐标伸 长或缩短纵坐标伸 长或缩短【经典例题】图像变换一:左右平移1、把函数R x x y ∈=,sin 图像上所有的点向左平移4π个单位,所得函数的解析式为 _________2、把函数R x x y ∈=,cos 图像上所有的点向右平移5π个单位,所得函数的解析式为 _________图像变换二:纵向伸缩3、对于函数R x x y ∈=,s i n 3的图像是将R x x y ∈=,sin 的图像上所有点的______(“横”或”纵”)坐标______(伸长或缩短)为原来的______而得到的图像。
【课题】 函数)sin(ϕω+=x A y 的图像【教材】 高中数学人教版必修4第49页至55页. 【课时安排】 1个课时. 【教学对象】 高一(上)学生.【授课教师】 【教学目标】 知识与技能(1)理解A 、ω、ϕ的变化对函数图像的形状及位置的影响; (2)掌握由x y sin =的图像到)sin(ϕω+=x A y 的图像的变换规律. 过程与方法(1)使学生经历图像变换的过程,培养学生的实践能力和分析问题、解决问题的能力; (2)锻炼学生归纳总结和逻辑思维的能力. 情感态度价值观经历图像变换的实际操作过程,培养学生“由简单到复杂、由特殊到一般”的化归思想和辩证思想.【教学重点】 1.考查参数A 、ω、ϕ对函数图像变换的综合影响;2.理解如何由x y sin =图像变换到)sin(ϕω+=x A y 图像的过程. 【教学难点】 ω对)sin(ϕω+=x A y 的图像的影响规律的概括.【教学方法】 讲练结合、讨论交流、合作探究。
【教学手段】计算机、flash 。
【教学过程设计】 教学流程设计问题情境探究一 参数ϕ对)sin(ϕ+=x y的图像的影响探究二 x y 2sin =如何平移得到)(32sin π+=x y 图像探究三 参数()0>ωω对()ϕω+=x y sin 图像探究四 参数()0>A A 对()ϕω+=x A y sin 图像的影响.完成例题 解答提出问题的解决方法学生思考讨论 并归纳规律 学生思考讨论 并归纳规律 学生思考讨论 并归纳规律 学生思考讨论 并归纳规律 寻找解题方法总结规律函数)sin(ϕω+=x A y 的图像二、教学过程设计【板书设计】函数)sin(ϕω+=x A y 的图像一、引入 三、总结 五、练习二、探究 四、例题 六、小结与作业附录1: 本教学设计的创新之处1. 目标创新培养学生动手实践能力以及问题解决能力和数学探究能力;2. 教法创新亚里士多德说:“思维从问题惊讶开始”.这些惊讶不会直接从抽象的符号或晦涩难懂的说教中来,它可以来源于直观感知,也可以总结自磨砺探索.通过问题驱动,师生共同发现问题并进而分析、解决问题.3. 数学创新在坚持课程标准总原则上,应立足于本质,抓住教学过程中出现的主要矛盾,合理调整教学环节,选择合理的设计方案,以体现现代数学教育的价值取向.。
正弦型函数的性质与图像特点
正弦型函数是一种常见的周期函数,其性质主要如下:
1. 该函数在定义域内是连续可微的。
2. 正弦型函数的定义域内的值都是介于-1和1之间的,且无论输入多少都不会超过这两个值。
3. 正弦型函数的图像是一条斜线,其中点(0,0)为极坐标系的原点。
4. 正弦型函数的曲线以y=0的水平线为中心,向上下波动。
5. 正弦型函数的周期性是经典的S型曲线,它的曲线图形可以完美地描述一个正弦波。
6. 正弦型函数的起伏是由旋转的半圆形组成,且每次旋转都是360°(2π)。
7.3.2正弦型函数的性质与图像(一)学习目标1.理解y=A sin (ωx+φ)中ω,φ,A对图像的影响.掌握y=sin x与y=A sin(ωx+φ)图像间的变换关系.2.理解用五点法作图作y=A sin(ωx+φ)的图像.3.了解y=A sin(ωx+φ)图像的物理意义,能指出振幅、周期、频率、初相.4.会求正弦型函数y=A sin(ωx+φ)的周期、单调性、最值、值域.知识梳理知识点一正弦型函数一般地,形如y=A sin(ωx+φ)的函数,称为正弦型函数,其中A,ω,φ都为常数,且A≠0,ω≠0.正弦型函数的性质1.φ对y=sin(x+φ),x∈R的图像的影响函数y=sin(x+φ)(φ≠0)的图像可以看作是把正弦曲线y=sin x图像上所有的点向(当φ>0时)或向(当φ<0时)平行移动个单位而得到的.2.ω(ω>0)对y=sin(ωx+φ)的图像的影响函数y=sin(ωx+φ)的图像,可以看作是把y=sin(x+φ)图像上所有点的横坐标(当ω>1时)或伸长(当0<ω<1时)到原来的1ω倍(纵坐标)而得到的.3.A(A>0)对y=A sin(ωx+φ)的图像的影响函数y=A sin(ωx+φ)的图像,可以看作是把y=sin(ωx+φ)图像上所有点的纵坐标(当A >1时)或(当0<A<1时)到原来的倍(横坐标不变)而得到的.知识点三正弦型函数y=A sin(ωx+φ)中,A,ω,φ的物理意义1.振幅:.2.初相:.3.周期:T=2π|ω|.4.频率:f =1T =|ω|2π.题型探究探究一 三角函数的图像变换例1.说明y =2sin ⎝⎛⎭⎫2x -π6+1的图像是由y =sin x 的图像怎样变换的?反思感悟 对平移变换应先观察函数名是否相同,若函数名不同则先化为同名函数.再观察x 前系数,当x 前系数不为1时,应提取系数确定平移的单位和方向,方向遵循左加右减,且从ωx →ωx +φ的平移量为⎪⎪⎪⎪φω个单位.先平移后伸缩和先伸缩后平移中,平移的量是不同的,在应用中一定要区分清楚,以免混乱而导致错误.弄清平移对像是减少错误的好方法.跟踪训练1.把函数y =cos 2x +1的图像上所有点的横坐标伸长到原 的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是( )二、用“五点法”画y =A sin(ωx +φ)的图像 例2.作出y =3sin ⎝⎛⎭⎫12x -π4一个周期上的图像.反思感悟 (1)用“五点法”作图时,五点的确定,应先令ωx +φ分别为0,π2,π,3π2,2π,解出x ,从而确定这五点.(2)作给定区间上y =A sin(ωx +φ)的图像时,若x ∈[m ,n ],则应先求出ωx +φ的相应范围,在求出的范围内确定关键点,再确定x ,y 的值,描点、连线并作出函数的图像. 跟踪训练2.作出y =2.5sin ⎝⎛⎭⎫2x +π4的图像.三、正弦型函数的周期例3.求下列函数的周期 (1)y =12sin π3x ;(2)y =3sin ⎝⎛⎭⎫2x +π6.反思感悟 对于形如y =A sin(ωx +φ)(A ≠0,ω≠0)的函数的最小正周期的求法,常直接利用T =2π|ω|来求解,对于形如y =|A sin ωx |的函数的周期情况常结合图像法来求解. 跟踪训练3.函数f (x )=3sin ⎝⎛⎭⎫2x -π6-1的最小值和最小正周期是( ) A .-3-1,π B .-3+1,π C .-3,π D .-3-1,2π 四、正弦型函数的单调性例4.求函数y =3sin(π3-x2)的单调增区间.反思感悟 求正弦型函数的单调区间的策略 (1)结合正弦函数的图像,熟记它的单调区间.(2)在求形如y =A sin(ωx +φ)(A ≠0,ω>0)的函数的单调区间时,应采用“换元法”整体代换,将“ωx +φ”看作一个整体“z ”,即通过求y =A sin z 的单调区间而求出原函数的单调区间.当A >0时y =A sin z 与y =sin x 的单调性相同,当A <0时,y =A sin z 与y =sin x 的单调性相反. (3)求形如y =A sin(ωx +φ),x ∈D 的单调区间时,先求y =A sin(ωx +φ),x ∈R 的单调区间,再把所求的单调区间和区间D 取交集即得y =A sin(ωx +φ),x ∈D 上的单调区间. 跟踪训练4.函数y =sin ⎝⎛⎭⎫2x -π6,x ∈[0,π]的单调递增区间为______________________. 五、正弦型函数的最值、值域例5.求下列函数的最大值和最小值,并写出取得最值时的x 的取值集合. (1)y =3sin(2x -2π3);(2)y =3-2sin(3x +π6).反思感悟 形如y =A sin(ωx +φ)的三角函数,令t =ωx +φ,根据题中x 的取值范围,求出t 的取值范围,再利用正弦函数的图像、有界性求出y =A sin t 的最值(值域). 跟踪训练5.已知函数f (x )=2cos(π3-x2),若x ∈[-π,π],求f (x )的最大值、最小值.课堂小结 1.知识清单: (1)平移变换. (2)伸缩变换. (3)五点法作图.(4)正弦型函数的周期公式. (5)正弦型函数的单调性. (6)正弦型函数的最值、值域.2.方法归纳:整体代换思想,换元思想,数形结合. 3.常见误区:(1)先平移和先伸缩时平移的量不一样.(2)单调区间漏写k ∈Z ,用集合表示,以及用并集符号连接. 当堂检测1.函数y =2sin(2x +π3)+1的最小正周期为( )A.π2B .πC .2πD .4π2.最大值是12,周期是6π,初相是π6的三角函数的表达式可能是( )A .y =12sin ⎝⎛⎭⎫x 3+π6 B .y =12sin ⎝⎛⎭⎫3x +π6 C .y =2sin ⎝⎛⎭⎫x 3-π6 D .y =12sin ⎝⎛⎭⎫x +π6 3.为了得到函数y =sin ⎝⎛⎭⎫2x -π3的图像,只需把函数y =sin 2x 的图像上所有的点( ) A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度4.把y =sin x 的图像上所有点的横坐标和纵坐标都缩短到原 的13倍,得________的图像.5.函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y =sin ⎝⎛⎭⎫2x +π3的图像重合,则φ=________.6.已知f (x )=1+2sin(2x -π4),画出f (x )在x ∈⎣⎡⎦⎤-π2,π2上的图像.参考答案知识梳理知识点一 正弦型函数 正弦型函数的性质1.φ对y =sin(x +φ),x ∈R 的图像的影响 左 右 |φ|2.ω(ω>0)对y =sin(ωx +φ)的图像的影响 缩短 不变3.A (A >0)对y =A sin(ωx +φ)的图像的影响 伸长 A知识点三 正弦型函数y =A sin(ωx +φ)中,A ,ω,φ的物理意义 1.|A | 2.φ例1.解:法一 (先伸缩后平移)y =sin 的图像――→各点的纵坐标伸长到原 的2倍横坐标不变y =2sin 的图像y =2sin(2x )的图像y =2sin ⎝⎛⎭⎫2x -π6的图像向上平移1个单位长度,y =2sin ⎝⎛⎭⎫2x -π6+1的图像. 法二 (先平移后伸缩)y =sin 的图像――→各点的纵坐标伸长到原 的2倍横坐标不变y =2sin y =2sin ⎝⎛⎭⎫x -π6的图像y =2sin ⎝⎛⎭⎫2x -π6的图像――→向上平移1个单位y =2sin ⎝⎛⎭⎫2x -π6+1的图像. 跟踪训练1.【答案】A【解析】变换后的三角函数为y =cos(x +1),结合四个选项可得A 选项正确.例2.解:(1)列表:x π2 32π 52π 72π 92π 12x -π4 0 π2 π 32π 2π 3sin ⎝⎛⎭⎫12x -π43-3描点、连线如图所示:跟踪训练2.解:令X =2x +π4,则x =12⎝⎛⎭⎫X -π4.列表: X 0 π2π 3π2 2π x -π8 π8 3π8 5π8 7π8 y2.5-2.5描点连线,如图所示.例3.解:法一 (1)y =12sin π3x=12sin(π3x +2π) =12sin ⎣⎡⎦⎤π3(x +6), ∴此函数的周期为6. (2)y =3sin(2x +π6)=3sin(2x +π6+2π)=3sin ⎣⎡⎦⎤2(x +π)+π6, ∴此函数的周期为π法二 (1)T =2ππ3=6.(2)T =2π2=π.跟踪训练3.【答案】A【解析】∵3sin ⎝⎛⎭⎫2x -π6的最小值是- 3. ∴f (x )的最小值是-3-1. f (x )的周期T =2π2=π.例4.解:y =3sin ⎝⎛⎭⎫π3-x 2=3sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-x 3=3sin(x 2+2π3), 由-π2+2k π≤x 2+2π3≤π2+2k π,k ∈Z ,得-7π3+4k π≤x ≤-π3+4k π,k ∈Z .∴y =3sin ⎝⎛⎭⎫π3-x 2的单调递增区间为⎣⎡⎦⎤4k π-7π3,4k π-π3( k ∈Z ). 跟踪训练4.【答案】⎣⎡⎦⎤0,π3,⎣⎡⎦⎤5π6,π 【解析】令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,解得-π6+k π≤x ≤π3+k π,k ∈Z ,又因为0≤x ≤π,∴0≤x ≤π3或5π6≤x ≤π,∴原函数的单调递增区间为⎣⎡⎦⎤0,π3,⎣⎡⎦⎤5π6,π. 例5.解:(1)当2x -2π3=2k π+π2,k ∈Z ,即x =k π+7π12(k ∈Z )时,y max =3,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+7π12,k ∈Z . 当2x -2π3=2k π-π2,k ∈Z ,即x =k π+π12(k ∈Z )时,y min =-3,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+π12,k ∈Z . (2)当3x +π3=2k π-π2(k ∈Z ),即x =2k π3-5π18(k ∈Z )时,y max =5,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =2k π3-5π18,k ∈Z . 当3x +π3=2k π+π2,k ∈Z ,即x =2k π3+π18,k ∈Z 时,y min =1,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =2k π3+π18,k ∈Z . 跟踪训练5. 解:f (x )=2cos(π3-x 2)=2cos(x 2-π3).由-π≤x ≤π,得-5π6≤x 2-π3≤π6.当x 2-π3=0,即x =2π3时,[f (x )]max =2. 当x 2-π3=-5π6,即x =-π时,[f (x )]min =- 3. 当堂检测 1.【答案】B 【解析】 T =2π2=π.2.【答案】A【解析】由T =2πω,∴ω=2π6π=13,∴y =12sin ⎝⎛⎭⎫13x +π6. 3.【答案】D【解析】∵y =sin ⎝⎛⎭⎫2x -π3=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6, ∴将函数y =sin 2x 的图像向右平行移动π6个单位长度,可得y =sin ⎝⎛⎭⎫2x -π3的图像. 4.【答案】y =13sin 3x【解析】 将y =sin x 的图像横坐标缩短到原 的13倍得y =sin 3x 的图像,纵坐标再缩短为原的13倍得y =13sin 3x 的图像. 5.【答案】5π6【解析】本题主要考查三角函数图像的平移、三角函数的性质、三角运算等知识,意在考查考生的运算求解能力及转化与化归思想的应用.将y =cos(2x +φ)的图像向右平移π2个单位后得到y =cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π2+φ的图像,化简得y =-cos(2x +φ),又可变形为y =sin ⎝⎛⎭⎫2x +φ-π2.由题意可知φ-π2=π3+2k π(k ∈Z ),所以φ=5π6+2k π(k ∈Z ),结合-π≤φ<π知φ=5π6.6.解:∵-π2≤x ≤π2,∴-π≤2x ≤π,-54π≤2x -π4≤34π.(1)列表如下x -π2 -3π8 -π8 π8 3π8 π2 2x -π4-54π -π -π2 0 π2 34π f (x )211-211+22(2)描点连线成图,如图所示:。
1、(安徽卷文8)函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=2、(广东卷文5)已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数 3、(全国Ⅰ卷文6)2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数4、(湖南卷理6)函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A.1C. 325、(天津卷文6)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( )A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R ,B .sin 26x y x π⎛⎫=+∈ ⎪⎝⎭R ,C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R ,D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R ,6、(全国Ⅰ卷文9)为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( )A .向左平移π6个长度单位B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位7、(全国Ⅰ卷理8)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位1.(安徽卷文8)函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=解:sin(2)3y x π=+的对称轴方程为232x k πππ+=+,即212k x ππ=+,0,12k x π==2.(广东卷文5)已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数 【解析】222211cos 4()(1cos 2)sin 2cos sin sin 224xf x x x x x x -=+===,选D.9.(全国Ⅰ卷文6)2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数sinx cosx,2sinxcosx 2y=1sin 2x 1=sin 2x T D2ππ±解析:本题主要考查了三角函数的化简,主要应用了与的关系,同时还考查了二倍角公式和函数的奇偶性和利用公式法求周期。