酶和ATP
- 格式:ppt
- 大小:3.15 MB
- 文档页数:23
考点1 酶的本质 酶本质的探索过程巴斯德之前:发酵是纯化学反应,与生命活动无关 ↓争论⎩⎨⎧ 1857年提出:只有 参与才能进行发酵母细胞中的 引起发酵活酵母细胞某种物质↓毕希纳(德国):获得含有酶的提取液,但提取液中还含有许多其他物质,无法直接对酶进行鉴定↓ 萨姆纳(美国):1926年用丙酮作溶剂提取出了刀豆种子中的脲酶,并证明了脲酶是蛋白质↓切赫和奥特曼(美国):20世纪80年代,发现RNA 也具有催化功能酶的本质:酶是活细胞产生的具有催化作用的有机物,其中绝大多数是蛋白质,少数是RNA 。
1.酶的本质及生理功能2.酶化学本质的实验验证(1)证明某种酶是蛋白质对照组:已知蛋白液+双缩脲试剂―→出现紫色反应。
实验组:待测酶液+双缩脲试剂―→是否出现紫色反应。
拓展:证明酶是蛋白质的其他证据①酶经酸、碱水解后的最终产物是氨基酸。
②酶是具有一定空间结构的生物大分子,凡是能使蛋白质变性的因素都可使酶变性失活。
③酶和蛋白质一样,具有不能通过半透膜的胶体性④酶也有蛋白质所具有的化学呈色反应。
⑤与蛋白质的分子相对量相似、结构相似。
⑥在物理、化学因素的作用下,也可变性沉淀。
(2)证明某种酶是RNA对照组:已知RNA溶液+吡罗红染液―→出现红色。
实验组:待测酶液+吡罗红染液―→是否呈现红色。
拓展:证明酶是RNA的其他证据将某种酶液用核糖核酸酶处理,根据酶液是否被水解予以判断。
应用指南酶与激素的比较考点2 酶催化作用的特点与相关曲线 1.酶与无机催化剂相比的共性与特性 (1)酶与无机催化剂的共性①可降低分子的活化能,使化学反应更易进行。
②改变化学反应速度,本身不被消耗。
③只能催化热力学允许进行的反应。
④加快化学反应速度,缩短达到平衡时间,但不改变平衡点。
(2)酶的作用特性①高效性:催化效率很高,使反应速度明显加快。
②专一性:任何一种酶只作用于一种或几种相关的化合物,这就是酶对底物的专一性。
③反应条件的温和性:酶促反应在常温、常压、生理pH 条件下进行。
高二生物酶和atp的知识点高二生物:酶和ATP的知识点生物学中,酶和ATP是两个关键的概念和细胞过程中必不可少的组成部分。
酶是一种特殊的蛋白质,起到催化化学反应的作用。
而ATP则是细胞内能量的主要储存和转移形式。
本文将介绍酶和ATP的相关知识点。
1. 酶的定义和特性酶是一种生物催化剂,能够加速化学反应的进行,但自身并不参与反应过程。
酶可以在细胞内和体外环境中发挥作用,但其活性和效率受到一定条件的限制,如适宜的环境pH值和温度。
2. 酶的工作原理酶与底物之间通过亲和力和空间匹配来形成酶底物复合物,从而催化底物转化成产物。
酶能够降低反应所需的能量,使反应速率加快。
酶的活性与底物浓度、温度和pH值有关。
3. 酶的分类酶可根据催化反应的方式和底物的性质进行分类。
常见的酶分类包括氧化还原酶、转移酶、水解酶和合成酶等。
每类酶都有其特定的底物和催化机理。
4. 酶在生物体内的作用酶在生物体内扮演着重要的角色。
例如,消化道中的消化酶可以帮助分解食物中的大分子物质;呼吸链中的酶参与ATP的产生;DNA复制过程中的酶帮助复制基因等。
5. ATP的结构和功能ATP是三磷酸腺苷的缩写,是细胞内能量的储存和转移形式。
ATP由核苷酸腺苷和三个磷酸基团组成。
当ATP分子中的最后一个磷酸基团释放出来时,储存的能量会被释放出来,转化为细胞所需的能量。
6. ATP的合成和分解ATP在细胞内通过葡萄糖的降解过程中进行合成。
而在细胞内能量需求较高时,ATP会被水解成ADP和无机磷酸,释放出储存的能量。
7. ATP的功能ATP作为细胞内的能量源,参与了多种细胞活动。
比如,肌肉收缩时需要ATP提供能量;离子泵通过ATP驱动来维持细胞的膜电位;细胞内各种化学反应过程也需要ATP作为能量供应等。
8. 酶和ATP的关系酶在催化反应过程中需要能量,而细胞内的ATP则是酶活性和细胞代谢的能量来源。
ATP的水解释放出的能量可以被酶吸收和利用,以推动细胞内各种生化反应。
高一生物atp与酶知识点高一生物:ATP与酶知识点在高一生物学习中,ATP(三磷酸腺苷)和酶是非常重要的概念。
ATP被认为是能量的“通用媒介”,而酶则扮演着调控化学反应速度的角色。
本文将深入探讨ATP与酶的知识点,以帮助读者更好地理解这些关键概念。
一、ATP的结构与功能ATP是细胞中常见的一种能量分子,其结构由腺嘌呤、三磷酸和核糖组成。
ATP分子中的磷酸键是非常高能的化学键,当这些键被分解时,释放的能量可以用于细胞内的各种生物化学反应。
ATP的主要功能是储存和释放能量。
当细胞需要能量时,ATP 通过酶的作用被分解成ADP(二磷酸腺苷)和一个无机磷酸根,同时释放能量。
而当细胞中的能量需要储存时,ADP和一个无机磷酸根则会通过反应生成ATP,并吸收能量。
二、酶的作用原理酶是一类生物催化剂,它们能够加速生物体内的化学反应速率,而不会被反应消耗掉。
酶本身通常是蛋白质,通过特定的构象和催化位点来与底物结合,并催化底物转化为产物。
酶的催化作用可以通过“酶-底物复合物”模型来描述。
在这个模型中,底物与酶结合形成酶-底物复合物,然后酶通过改变底物的构象或提供反应所需的环境条件,加速底物转化为产物。
最后,产物从酶中释放出来,酶则可以继续参与其他反应。
三、ATP与酶的相互关系ATP和酶之间有着密切的相互作用。
首先,ATP作为细胞内的能量分子,可以提供酶催化反应所需的能量。
当酶需要能量时,它们可以通过将ATP分解为ADP和无机磷酸根来获得所需的能量。
其次,酶可以调节ATP的生成和分解。
酶可以催化将ADP和无机磷酸根合成ATP的反应,这个反应被称为磷酸化。
通过调整磷酸化反应速率,酶可以控制细胞中ATP的浓度,从而维持细胞内能量的平衡。
最后,ATP还可以调节酶的活性。
ATP可以与酶结合,改变酶的构象,从而影响酶的催化活性。
这种机制被称为反馈抑制,通过调节酶的活性,细胞可以更好地适应环境变化,并保持代谢平衡。
总结起来,ATP是生物体内能量的储存与传递者,而酶则是调控化学反应速度的关键催化剂。
酶的本质1、化学本质:有机物,绝大多数酶是蛋白质,少数酶是RNA 。
2、合成原料:蛋白质的基本单位是氨基酸,RNA 的基本单位是核糖核苷酸。
3、合成场所:蛋白质的合成场所是核糖体,RNA 主要在细胞核合成。
4、来源:一般来说,活细胞都能产生酶。
5、功能:具有催化作用。
6、作用原理:降低化学反应的活化能。
二、正确辨析有关酶的八种说法项目错误说法正确说法产生场所具有分泌功能的细胞才能产生活细胞(哺乳动物成熟的红细胞等除外)化学本质蛋白质有机物(大多数酶是蛋白质,少数酶是RNA )作用场所只在细胞内起催化作用可以在细胞内、细胞外、还可以在生物体外发挥作用温度影响低温和高温均使酶变性失活低温只抑制酶的活性,不会使酶变性失活作用酶具有调节、催化等多种功能酶只起催化作用来源有的可来源于食物等生物体内合成合成原料只有氨基酸氨基酸、核糖核苷酸合成场所只有核糖体核糖体、细胞核等酶具有高效性含义:酶的催化效率是无机催化剂的107~1013倍。
酶的高效性实验探究思路(1)对照组:反应物+无机催化剂→检测底物分解速率;(2)实验组:反应物+等量的酶溶液→检测底物分解速率;(3)实验中自变量是催化剂的种类(无机催化剂和酶),因变量是底物分解速率。
酶具有专一性1、无机催化剂催化的化学反应范围比较广。
如,酸既能催化蛋白质水解,也能催化脂肪水解,还能催化淀粉水解。
2、淀粉酶对淀粉和蔗糖的水解作用实验中,不能用碘液作为检测试剂,因为碘液无法鉴定蔗糖是否被淀粉酶催化分解。
3、酶具有专一性的含义:每一种酶只能催化一种或一类化学反应。
(1)酶催化一种化学反应的实例:H 2O 2酶只能催化H 2O 2分解,不能催化其他化学反应。
脲酶除了催化尿素分解,对其他化学反应也不起作用。
(2)酶催化一类化学反应的实例:蛋白酶能够催化多种蛋白质水解,而不能催化非蛋白质水解。
酶的作用条件比较温和1、酶活性:(1)酶催化特定化学反应的能力。
酶活性可用在一定条件下酶所催化的某一化学反应的速率表示。
高三复习atp和酶知识点归纳在生物学的学习中,ATP(腺苷三磷酸)和酶是我们必须了解和掌握的两个重要知识点。
本文将对这两个知识点进行归纳和总结。
一、ATP的概念和作用ATP是一种能量分子,在细胞内起着非常重要的作用。
它由由腺苷和三个磷酸基团组成,其中的高能磷酸键储存了能量,可在细胞需要时释放出来。
ATP是细胞中的主要能量供应物质,参与多种细胞活动,包括运输、合成、运动等。
1. ATP的生成ATP的合成主要通过细胞呼吸和光合作用进行。
细胞呼吸中的糖类分解过程产生的NADH和FADH2,将电子传递到线粒体内的电子传递链上,通过氧化磷酸化反应,将ADP磷酸化为ATP。
而光合作用中,通过在叶绿体内的光合电子传递链上进行,最终也可以合成ATP。
2. ATP的使用ATP在细胞内可以通过磷酸酶反应释放能量,转化为ADP和无机磷酸(Pi)。
这个过程称为ATP的水解。
当细胞需要能量时,ATP水解反应会释放出能量供细胞使用。
而当细胞需要合成物质时,如蛋白质、核酸等,ATP则可以通过磷酸化反应转化为ADP,提供合成物质所需的能量。
二、酶的概念和作用酶是生物体内的一类特殊蛋白质,作为生物催化剂,在细胞内起着促进化学反应、降低活化能的作用。
1. 酶的性质酶具有高度选择性和专一性,可以催化特定的化学反应。
此外,酶的活性受到温度、pH值等环境因素的影响。
2. 酶催化反应酶催化反应包括两个主要步骤:底物与酶结合形成酶底物复合物,然后在酶作用下发生化学反应生成产物。
酶在催化反应中起到降低活化能的作用,加速了反应速率。
3. 酶的特异性酶的特异性主要包括底物特异性和立体特异性。
底物特异性是指不同酶对应不同的底物,并且只能催化特定的底物反应。
而立体特异性是指酶的结构对应特定的立体构型的底物。
4. 调控酶活性酶的活性可以通过多种因素进行调控。
温度、pH值的改变都可以影响酶的活性,超过适宜范围则会导致酶变性。
此外,酶活性还受到底物浓度和抑制剂的影响。
高考生物知识点酶和atp酶和ATP:生命活力的关键生物学作为自然科学的一门学科,研究生命的起源、结构、功能以及演化等方面的知识。
而在生物学的学习过程中,酶和ATP常常作为重要的知识点被广泛讨论和研究。
本文将深入探讨酶和ATP在生物体内的作用及其重要性,为高考生物学学习提供一些参考。
酶,最早被认识为一种能够加速化学反应速率的蛋白质。
细胞是生命的基本单位,其中众多的生化反应决定着细胞的正常运作。
然而,在生物体内,这些化学反应本身所需的能量却十分有限。
而酶的作用正是解决了这一难题。
简单来说,酶通过降低活化能,加速了生物化学反应的进行,而且在反应过程中自身不发生改变。
酶是一种高度专一的催化剂,其催化效率可以达到惊人的程度。
正是因为酶的存在,许多在体温下本来需要数小时甚至数天才能完成的化学反应,在细胞内可以在瞬间完成。
例如,糖类的分解与合成都需要酶的存在,而在这些反应中,酶的作用不仅提高了反应速率,也控制了反应的方向。
这种专一性的催化是由酶的空间结构所决定的,也是酶能够发挥作用的重要基础。
另一个我们不得不提到的重要生物分子就是ATP(腺苷三磷酸)。
在生物学中,ATP被誉为“生命的能量货币”,其作用可远不止于此。
ATP是由腺嘌呤、核糖和三个磷酸残基组成,是一种高能化合物。
在细胞内,ATP的分解释放出大量的能量,供细胞各种生化反应所需。
同时,ATP能够通过磷酸化反应合成ADP(腺苷二磷酸)和磷酸盐,从而将能量储存在化学键中。
生物体内的几乎所有能量代谢过程都与ATP密切相关。
可见,ATP在维持生物体内能量平衡中起着非常重要的作用。
例如,在光合作用中,植物通过光能合成ATP,为其它生物过程提供能量。
再如,ATP在肌肉收缩过程中也发挥着至关重要的作用,其提供的能量为肌肉细胞的收缩提供动力。
可以说,ATP既是能量的储存者,又是传递者,是维持生命活动所必不可少的分子。
酶和ATP在生物体内的作用是息息相关的。
酶通过降低化学反应的活化能,加速生化反应的进行;而ATP则为这些反应提供所需的能量。
2021届高考生物一轮复习知识点专题12 酶和ATP一、基础知识必备1、酶的本质(1)酶的定义酶是由活细胞产生的具有催化作用的有机物。
(2)酶的作用机理酶能够降低化学反应的活化能。
与无机催化剂相比,酶降低活化能的作用更显著,两者的比较如图所示。
(3)酶的本质绝大多数酶是蛋白质,少数酶为RNA。
2、酶的特性(1).高效性酶的催化效率很高,大约是无机催化剂的107~1013倍。
(2)专一性:酶对底物具有严格的选择性,一种酶只能催化一种或一类化学反应。
(3)酶的作用条件较温和:在最适宜的温度、pH条件下,酶的活性最高。
过酸、过碱或温度过高,会使酶的空间结构遭到破坏,使酶永久失活。
一般在低温条件下,酶的活性降低,但不会失活。
由低温恢复到适宜温度时,酶活性可以恢复。
3、ATP的结构和形成(1)ATP的结构ATP的结构简式为A—P~P~P,其中A代表腺苷,P代表磷酸基团,~代表高能磷酸键。
ATP 分子中大量的能量就储存在高能磷酸键中。
(2)ATP去掉2个磷酸基团即是构成RNA的基本单位之一——腺嘌呤核糖核苷酸。
4、ATP与ADP的相互转化ATP的合成ATP的水解反应式ADP+Pi+能量A TP ATP ADP+Pi+能量所需酶ATP合成酶ATP水解酶能量来源光能(光合作用)、化学能(细胞呼吸) 储存在高能磷酸键中的能量能量去路储存于形成的高能磷酸键中用于各项生命活动生理过程呼吸作用、光合作用的光反应阶段肌肉收缩、细胞分裂、兴奋传导、物质吸收等反应场所细胞质基质、线粒体、叶绿体生物体内的需能部位,如细胞膜、叶绿体基质、细胞质基质、细胞核等关系ATP与ADP的相互转化过程中反应类型,反应所需的酶以及能量的来源、去路和反应场所都不完全相同,因此A TP的合成和水解不可逆3二、通关秘籍1、酶(1)酶只能催化热力学上允许进行的反应。
(2)酶可以缩短化学反应到达平衡的时间,但不改变反应的平衡点。
(3)酶通过降低活化能加快化学反应速率。
酶和atp高考知识点酶和ATP:化学反应的掌控者酶和ATP是高考生物科学中常见的重要知识点。
它们作为生物体内化学反应的重要调控因素,发挥着重要的生理功能。
本文将从酶和ATP的基本概念、作用机制、生理功能以及与高考相关的应用方面进行探讨。
一、酶的基本概念及作用机制酶是一类生物催化剂,由蛋白质组成,能够加速生物体内的化学反应速率,同时不参与反应本身,能够在较温和的条件下进行反应。
酶具有高度的专一性,只对特定的底物具有活性。
酶的作用机制主要是通过与底物结合形成酶底物复合物,使化学反应的活化能降低、反应速率增加。
酶底物复合物的形成主要通过亲和力和导向力驱动,使得反应原料更容易聚集并定向进行反应。
此外,酶还能通过调整反应物的构象,提供合适的反应环境等方式来促进反应的进行。
二、ATP的基本概念及作用机制ATP(腺苷三磷酸)是细胞内的一种重要能量分子。
它由腺苷、三个磷酸基团以及一个副磷酸酯键构成。
ATP的能量主要存在于磷酸键中。
在细胞内,ATP通过水解磷酸酯键释放出一个磷酸基团,并释放出可用于生物代谢的能量,形成ADP(腺苷二磷酸)。
ATP的作用机制主要体现在储能和传递能量两个方面。
首先,ATP作为细胞的储能分子,可以在细胞的代谢过程中通过释放磷酸基团提供能量。
其次,ATP还可以通过磷酸化反应将能量从一个化学反应转移到另一个化学反应中。
三、酶和ATP的生理功能1. 酶的生理功能酶是生物体内许多生理过程的关键因素。
例如,消化系统中的消化酶能够促进食物的消化吸收;呼吸过程中的细胞色素氧化酶催化三磷酸腺苷和氧气反应,提供能量供细胞使用;免疫系统中的酶可以降低细菌的生长速率等。
2. ATP的生理功能ATP作为细胞的能量供应者,在细胞代谢中发挥重要作用。
例如,细胞呼吸中的氧化磷酸化过程中,葡萄糖通过多个酶的催化转化为ATP,供给细胞能量需求;肌肉收缩时,ATP能够提供肌肉细胞的机械能;神经传递过程中,ATP能够通过磷酸化受体蛋白激活下游信号通路等。
酶和ATP的知识总结
【知识总结】
1、酶是一种具有催化功能的蛋白质分子,它可以将复杂的分子反应
分解为简单的反应,从而加速物理化学反应的进程。
它的作用有助于维持
细胞代谢过程中的酸碱平衡,并促进各种物质的合成、分解和代谢。
2、ATP是提供生物体充分能量的物质,是细胞正常、正常生理活动
和正常代谢的前提条件,是生物体“能量货币”。
在各类生物体中,ATP
通过不断的代谢周期,将其他形式的能量转化为自身所需的形式,从而为
生物体的功能和活动提供能量。
3、酶和ATP的关系:ATP可以作为酶的反应物而起作用,但ATP不
能作为催化剂,因为它不具有催化作用。
ATP和酶结合之后,酶识别ATP,将它转化为能量来驱动细胞代谢过程,从而促进物质的合成和分解。
ATP
的作用不仅仅是承载能量,而且它还可以参与细胞代谢的关键步骤,从而
控制和增强酶的效率。
最后,ATP和酶共同作用,以实现细胞的代谢调节,维持细胞的正常生长和发育。
4、ATP在代谢过程中的作用:ATP在细胞代谢过程中的作用是消耗ATP,将其转换为ADP,然后释放能量。
在细胞内,ATP和ADP通过不断的
代谢周期,将能量转化为ATP,以促进细胞内有序的能量利用率,从而实
现细胞的有效代谢。
第1节细胞的能量“货币”ATP一、ATP的结构腺苷=腺嘌呤+核糖腺苷+磷酸=腺嘌呤+核糖+磷酸=腺嘌呤核糖核苷酸,RNA基本单位之一=AMP1、ATP是三磷酸腺苷的英文名称缩写,是一种高能磷酸化合物,其结构式可以简写为A—P~P~P。
图中各部分名称:A代表腺嘌呤,P代表磷酸基团,①代表腺苷,②代表AMP,③代表ADP,④代表ATP,⑤代表高能磷酸键。
2、ATP与RNA的关系:ATP去掉两个磷酸基团后的剩余部分(腺嘌呤核糖核苷酸)是组成RNA 的基本单位之一。
3、ATP的结构特点:ATP分子中远离A的那个高能磷酸键容易断裂和重建。
①ATP分子中远离A的那个高能磷酸键容易水解断裂,释放出大量的能量,ATP就转化为ADP。
在有关酶的催化作用下,ADP也可以接受能量而重新形成ATP。
②高能磷酸键水解时释放的能量多达30.54 kJ/mol,所以说ATP是细胞内的一种高能磷酸化合物。
二、ATP和ADP的相互转化1、ATP与ADP的相互转化反应是不可逆反应(或物质上可逆,能量上不可逆)总结:ATP与ADP的相互转化反应是不可逆反应(或物质上可逆,能量上不可逆),其原因是:(1)反应条件不同:酶1是合成酶,酶2是水解酶;(2)反应场所不同:ATP的形成场所有:线粒体、叶绿体、细胞质基质,而ATP的水解发生在活细胞内;(3)能量的来源和去向不同:ATP的形成能量来自光能或化学能,去向是ATP中不稳定的化学能;ATP的水解能量来自A TP中不稳定的化学能,植物光合作用光反应阶段产生的ATP 只用于暗反应阶段C02的还原,不用于其他生命活动;植物或动物细胞呼吸产生的ATP才能用于多种生命活动。
2、能源与能源物质(1)能量的根本来源:光能或太阳能;(2)能源物质:糖类、脂肪、蛋白质,主要的能源物质是糖类;(3)储能物质:植物体的储能物质是脂肪和淀粉;动物的储能物质是脂肪和糖原。
(4)直接能源物质:ATP提醒①细胞中A TP含量很少,A TP与ADP转化非常迅速及时。
《细胞与能量、酶》知识点总结知识点1:ATP的分子结构与高能磷酸键1.A TP是腺苷三磷酸(或三磷酸腺苷)的英文名称缩写2.1分子的A TP是由一个核糖、1个腺嘌呤和3个磷酸基团组成;核糖与腺嘌呤结合成的基团叫腺苷,A代表的是腺苷。
3.A TP的结构简式:A—P~P~ P4.连接两个磷酸基团之间的磷酸键,水解时释放的能量多,称为高能磷酸键。
ATP被称为高能磷酸化合物。
知识点2:ATP与ADP相互转化1.ATP分子中远离腺苷的高能磷酸键很容易水解,水解时形成ADP,释放1个磷酸基团,同时释放能量。
这些能量会被利用,如用于肌肉收缩、神经细胞的活动以及细胞中的许多其他活动。
2.A TP在细胞中也易于再生。
ADP接受能量与一个Pi结合转化成ATP。
对于动物和人来说,ADP转化成ATP时所需要的能量,来自细胞内呼吸作用中分解有机物释放出的能量。
对于绿色植物来说,ADP转化成ATP时所需要的能量,除了来自呼吸作用中分解有机物释放出的能量外,还来自光合作用。
水解酶3.A TP ADP + Pi + 能量合成酶ATP与ADP可相互转化,但反应是不可逆的,反应式中物质可逆,能量不可逆,酶的类型也不同知识点3:ATP是直接能源物质1.A TP是细胞中放能反应和吸能反应的纽带,是细胞中的能量通货,是直接的能源物质。
知识点4:细胞代谢的概念细胞代谢是活细胞内所有生物化学反应的总和。
知识点6:酶的概念、来源、化学本质及在细胞物质代谢中的作用1.概念:酶是活细胞产生的一类具有生物催化作用的有机物。
2.来源:活细胞产生3.化学本质:有机物,其中,绝大多数酶都是蛋白质,少数为RNA4.作用:生物催化剂知识点7 :酶的特性1.高效性:一般地说,酶的催化效率是无机催化剂的107~1013倍2.专一性:每一种酶只能催化一种或少数几种相似底物的反应。
3、作用条件温和:温度、pH因素对酶活性的影响(1)在最适温度下,酶的活性最高。
(2)低温——酶的活性降低,但酶的空间结构没有被破坏,酶的活性在适宜的温度下可以恢复;高温——酶的活性降低,但酶的空间结构被破坏,酶的活性不可恢复(丧失)。