数据结构 第七章图
- 格式:ppt
- 大小:3.80 MB
- 文档页数:222
、单项选择题1.在一个无向图 G 中,所有顶点的度数之和等于所有边数之和的 _________ 倍A .l/2B .1D .42.在一个有向图中, 所有顶点的入度之和等于所有顶点的出度之和的 ________倍A .l/2 C .2D .43.一个具有 n 个顶点的无向图最多包含 _____ 条边。
A .nB .n +1C .n-1D .n(n-1)/24.一个具有 n 个顶点的无向完全图包含 _____ 条边。
A .n(n-l)B .n(n+l)C .n(n-l)/2D .n(n-l)/25.一个具有 n 个顶点的有向完全图包含 _____ 条边。
A .n(n-1)B .n(n+l)C .n(n-l)/2D .n(n+l)/2 6.对于具有 n 个顶点的图,若采用邻接矩阵表示,则该矩阵的大小为A. nB. n><h C .n-17 .无向图的邻接矩阵是一个 ______A .对称矩阵 C .上三角矩阵8.对于一个具有 n 个顶点和 e 条边的无 (有)向图,若采用邻接表表示,则表头 向量的大小为 。
A .n C . 2nD . 2e 9.对于一个具有 n 个顶点和 e 条边的无 (有)向图,若采用邻接表表示,则所有 顶C .2B .1 D . (n-I)也-I)B .零矩阵 D .对角矩阵 B .e点邻接表中的结点总数为_________ 。
B. eC. 2nD. 2e10.在有向图的邻接表中,每个顶点邻接表链接着该顶点所有邻接点。
A .入边B.出边C.入边和出边 D .不是入边也不是出边11.在有向图的逆邻接表中,每个顶点邻接表链接着该顶点所有邻接点。
A .入边B.出边C.入边和出边 D .不是人边也不是出边12.如果从无向图的任一顶点出发进行一次深度优先搜索即可访问所有顶点,则该图一定是A .完全图B.连通图C.有回路 D .一棵树13.采用邻接表存储的图的深度优先遍历算法类似于二叉树的算法。
习题7 图7.1 单项选择题1.在一个图中,所有顶点的度数之和等于所有边数的____倍。
A. 1/2B. 1C. 2D. 42.任何一个无向连通图的最小生成树。
A.只有一棵B.有一棵或多棵C.一定有多棵D.可能不存在3.在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的____倍。
A. 1/2B. 1C. 2D. 44.一个有n个顶点的无向图最多有____条边。
A. nB. n(n-1)C. n(n-1)/2D. 2n5.具有4个顶点的无向完全图有____条边。
A. 6B. 12C. 16D. 206.具有6个顶点的无向图至少应有____条边才能确保是一个连通图。
A. 5B. 6C. 7D. 87.在一个具有n个顶点的无向图中,要连通全部顶点至少需要____条边。
A. nB. n+1C. n-1D. n/28.对于一个具有n个顶点的无向图,若采用邻接矩阵表示,则该矩阵的大小是____。
A. nB. (n-1)2C. n-1D. n29.对于一个具有n个顶点和e条边的无向图,若采用邻接表表示,则表头向量的大小为_①___;所有邻接表中的接点总数是_②___。
①A. n B. n+1 C. n-1 D. n+e②A. e/2 B. e C.2e D. n+e10.已知一个图如图7.1所示,若从顶点a出发按深度搜索法进行遍历,则可能得到的一种顶点序列为__①__;按宽度搜索法进行遍历,则可能得到的一种顶点序列为__②__。
①A. a,b,e,c,d,f B. e,c,f,e,b,d C. a,e,b,c,f,d D. a,e,d,f,c,bC. a,e,b,c,f,dD. a,c,f,d,e,b图 7.1 一个无向图11.已知一有向图的邻接表存储结构如图7.2所示。
⑴根据有向图的深度优先遍历算法,从顶点v1出发,所得到的顶点序列是____。
A. v1,v2,v3,v5,v4B. v1,v2,v3,v4,v5C. v1,v3,v4,v5,v2D. v1,v4,v3,v5,v2⑵根据有向图的宽度优先遍历算法,从顶点v1出发,所得到的顶点序列是____。