八年级数学分式方程的应用1
- 格式:ppt
- 大小:229.50 KB
- 文档页数:11
人教版 八年级数学上册 第15章 分式方程及其应用(含答案) 例1. 解方程:x x x --+=1211 分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以,得()()x x +-11 x x x x x x x x x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。
例2. 解方程x x x x x x x x +++++=+++++12672356 解:原方程变形为:x x x x x x x x ++-++=++-++67562312 方程两边通分,得 167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即 经检验:原方程的根是x =-92。
例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+-- 解:由原方程得:3143428932874145--++-=--++-x x x x 即2892862810287x x x x ---=---于是,所以解得:经检验:是原方程的根。
1898618108789868108711()()()()()()()()x x x x x x x x x x --=----=--== 例4. 解方程:61244444402222y y y y y y y y +++---++-=2 解:原方程变形为:622222220222()()()()()()()y y y y y y y y ++-+--++-= 约分,得62222202y y y y y y +-+-++-=()()方程两边都乘以()()y y +-22,得 622022()()y y y --++= 整理,得经检验:是原方程的根。
21688y y y =∴==5、中考题解:例1.若解分式方程产生增根,则m 的值是( )2111x x m x x x x +-++=+A. B. --12或-12或C. D. 12或12或- 分析:分式方程产生的增根,是使分母为零的未知数的值。
北师大版数学八年级下册《分式方程的应用》教案一. 教材分析北师大版数学八年级下册《分式方程的应用》这一章节主要让学生掌握分式方程的解法及其应用。
在此之前,学生已经学习了分式的基本概念、性质和运算,为本节课的学习打下了基础。
本节课的内容分为两个部分:一是分式方程的解法,二是分式方程在实际问题中的应用。
通过学习,学生能够掌握解分式方程的方法,并能够将分式方程应用于解决实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对分式的概念和性质有一定的了解。
但是,学生在解分式方程方面可能还存在一定的困难,特别是对于如何正确地去分母、化简方程等方面。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和解答。
三. 教学目标1.理解分式方程的概念,掌握解分式方程的方法。
2.能够将分式方程应用于解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.掌握解分式方程的方法,特别是如何正确地去分母、化简方程。
2.将分式方程应用于实际问题,提高解决问题的能力。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究分式方程的解法。
2.通过小组合作,让学生在讨论中解决问题,提高团队合作能力。
3.利用多媒体辅助教学,直观地展示分式方程的解法过程。
六. 教学准备1.准备相关的教学课件和教案。
2.准备一些实际问题,用于引导学生应用分式方程解决问题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生思考如何用数学方法解决这些问题。
从而引出本节课的主题——分式方程的应用。
2.呈现(10分钟)教师通过讲解和示例,向学生介绍分式方程的概念和解法。
讲解过程中,重点强调如何去分母、化简方程。
同时,让学生跟随教师一起动手解题,加深对解题方法的理解。
3.操练(10分钟)学生分组讨论,共同解决一些分式方程问题。
教师在旁边进行指导,解答学生的疑问。
此环节旨在让学生在实际操作中掌握解分式方程的方法。
第13课 分式方程的应用(1)——工程问题一、知识储备工程问题:=.( )工作时间( )列分式方程解应用题的步骤:①设未知数;②列方程;③解方程;④______________;⑤作答.二、新课学习1.某化肥厂由于采取了新技术,每天比原计划多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,那么该化肥厂原计划每天生产化肥多少吨?2.小王做90个零件所需要的时间与小李做120个零件所用的时间相同,又知每小时小王与小李两个人共做35个机器零件.求小王、小李每小时各做多少个零件?3.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.4.某年,云南省发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务,间原计划每天修水渠多少米?5.张家界市为了治理城市污水污染,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量是原计划的1.2倍,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?6.某服装厂准备加工380套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高10%,结果共用了18天完成任务,问计划每天加工服装多少套?7.某中学组织学生去福利院慰问,在准备礼品时发现甲礼品的单价比乙礼品多40元,并且花费600元.购买甲礼品和花费360元购买乙礼品的数量相等,求甲、乙两种礼品的单价各为多少元?8.某工厂计划生产120件零件,由于采用新技术,每天比原计划多生产3件,因此提前2天完成计划,设原计划每天生产x件零件,则可列方程为()A.12012023x x-=-B.12012023x x-=-C.12012023x x-=+D.12012023x x-=+9.开学初,某文化用品商店减价促销,全场8折.用60元购买规格相同的签字笔,折价后买到的数量刚好比按原价买到的数量多3支原来每支签字笔的价格是多少元?10.一台收割机的工作效率相当于一个农民工作效率的150倍,用这台机器收割10hm2小麦比100个农民人工收割这些小麦要少用1h,这台收割机每小时收割多少公顷小麦?11.两个工程队共同参与一项筑路工程,甲队单独做需要3个月完成,当甲队单独施工1个月后,乙队加入共同施工,又工作了半个月,总工程全部完成,求乙队单独施工需要多少个月能完成全部工程?12.某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有A,B两个制衣车间,A车间每天加工的数量是B车间的1.2倍,A,B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20天完成A,B两车间每天分别能加工多少件?第13课 分式方程的应用(1)——工程问题1.解:设原计划每天生产化肥x 吨.依题意,得1801203x x=+,解得6x = 经检验,6x =是方程的解.所以原计划每天生产化肥6吨. 2.解:设小王每小时做零件x 个,小李每小时做零件()35x -个.依题意,列方程9012035x x=-,解得15x =. 经检验,15x =是方程的解.所以小王每小时做零件15个,小李每小时做零件20个.3.解:设原计划每天加工这种画图工具x 套.依题意,列方程3000300041.2x x -=,解得125x =.经检验,125x =是方程的解.所以原计划每天加工这种画图工具125套.4.解:设原计划每天修水渠x 米.依题意36003600201.8x x⋅=,解得80x =. 经检验,80x =是方程的解,所以原计划每天修水渠80米.5.解:设原计划每天铺设管道x 米.依题意,有120300120271.2x x-+=,解得10x =, 经检验,10x =是方程的解,所以原计划每天铺设管道10米.6.解:设计划每天加工服装x 套.依题意,有16038016018(110%)x x -+=+,解得20x =, 经检验,20x =是方程的解,所以计划每天加工服装20套.7.解:设甲礼品单价为x 元,则之礼品单价为()40x -元.依题意,有60036040x x =-,解得 100x =,经检验, 100x =是方程的解,所以甲礼品单价为100元,乙礼品单价为60元.8.C9.解:设原来每支签字笔的价格是x 元.依题意,有606030.8x x-=,解得5x =, 经检验,5x =是方程的解,所以原来每支签字笔的价格是5元.10.解:设这台收割机每小时收割x 公顷小麦,依题意有,10010101150x x÷-=,解得5x =, 经检验,5x =是方程的解,所以这台收割机每小时收割5公顷小麦.11.解:设乙队单独施工需要x 个月能完成全部工程.依题意,有111111332x ⎛⎫⨯++⨯= ⎪⎝⎭,解得1x =.经检验,1x =是方程的解,所以乙队单独施工需要1个月能完成全部工程.12.解:设B 车间每天能加工x 件,则A 车间每天加工的数量是1.2x 件.依题意,44004400201.2x x x+=+,解得320x =, 经检验,320x =是方程的解,所以A 车间每天能加工384件,B 车间每天能加工320件。
八年级上册数学分式方程应用题讲解
分式方程的应用题是数学中的一个重要部分,它涉及到现实生活中的各种问题。
下面是一个关于分式方程应用题的示例,以及详细的解题步骤和讲解。
题目:某工程甲单独做45天完成,乙单独做30天完成,若甲先单独做10天后,乙再加入合作,问乙加入后几天完成?
分析:
1. 甲单独完成工程需要45天,所以甲一天可以完成 1/45 的工程。
2. 乙单独完成工程需要30天,所以乙一天可以完成 1/30 的工程。
3. 甲先单独做了10天,完成了10 × (1/45) = 10/45 = 2/9 的工程。
4. 剩下的工程量是 1 - 2/9 = 7/9。
5. 现在,甲和乙一起工作。
我们要找出他们一起工作了多少天来完成剩下的7/9 的工程。
用数学方程表示这个问题:
1) 甲一天完成的工程量是 1/45
2) 乙一天完成的工程量是 1/30
3) 甲先单独做了10天,完成了10 × (1/45) = 2/9 的工程
4) 剩下的工程量是 1 - 2/9 = 7/9
5) 设甲和乙一起工作了 t 天,则t × (1/45 + 1/30) = 7/9解这个方程,我们就可以找出 t 的值。
计算结果为: [{t: 14}]
所以,甲和乙一起工作需要:14天来完成剩下的工程。
八年级上数学分式方程专项练习【1】1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?解:设乙单独整理需x 分钟完工,则120204020=++x 解,得x =80经检验:x =80是原方程的解。
答:乙单独整理需80分钟完工。
2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,则3001500900+=x x 解,得x =450经检验:x =450是原方程的解。
答:第一块试验田每亩收获蔬菜450千克。
3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
解:设步行速度是x 千米/时,则247197=-+x x 解,得x =5经检验:x =5是原方程的解。
进尔4x =20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。
4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x 瓶酸奶,则2.053140.185.12+⎪⎭⎫ ⎝⎛+=x x 解,得x =5经检验:x =5是原方程的解。
答:她第一次在供销大厦买了5瓶酸奶。
5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴ 求这种纪念品4月份的销售价格。
八年级数学分式方程应用题(一)1、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。
2、某客车从甲地到乙地走全长480Km的高速公路,从乙地到甲地走全长600Km的普通公路。
又知在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。
已知B的速度是A的速度的3倍,求两车的速度。
4、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?5、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。
求A、B每小时各做多少个零件。
6、某甲有25元,这些钱是甲、乙两人总数的20%。
乙有多少钱?7、某甲有钱400元,某乙有钱150元,若乙将一部分钱给甲,此时乙的钱是甲的钱的10%,问乙应把多少钱给甲?8、我部队到某桥头狙击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。
9、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
10、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。
求先遣队和大队的速度各是多少?11、某人现在平均每天比原计划多加工33个零件,已知现在加工3300个零件所需的时间和原计划加工2310个零件的时间相同,问现在平均每天加工多少个零件。
12、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。