八年级数学分式方程的应用1
- 格式:pdf
- 大小:1.16 MB
- 文档页数:8
分式方程应用题专题一、工程问题1.某水泵厂在一定天数内生产4000台水泵,工人为支援四化建设,每天比原计划增产%25,可提前10天完成任务,问原计划日产多少台?2.现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。
求原来每天装配的机器数.3.某车间需加工1500个螺丝,改进操作方法后工作效率是原计划的212倍,所以加工完比原计划少用9小时,求原计划和改进操作方法后每小时各加工多少个螺丝?4.打字员甲的工作效率比乙高%25,甲打2000字所用时间比乙打1800字的时间少5分钟,求甲乙二人每分钟各打多少字?二、路程问题1.某人骑自行车比步行每小时多走8千米,已知他步行12千米所用时间和骑自行车走36千米所用时间相等,求这个人步行每小时走多少千米?2.某校少先队员到离市区15千米的地方去参加活动,先遣队与大队同时出发,但行进的速度是大队的2.1倍,以便提前半小时到达目的地做准备工作,求先遣队和大队的速度各是多少.3.供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.三、水流问题1.轮船顺流航行66千米所需时间和逆流航行48千米所需时间相等,已知水流速度每小时3千米,求轮船在静水中的速度.分式方程应用题专题(拓展题)1.一个两位数,个位上的数比十位上的数大4,用个位上的数去除这个两位数商是3,求这个两位数.2.大小两部抽水机给一块地浇水,两部合浇2小时后,由小抽水机继续工作1小时完成.已知小抽水机独浇这块地所需时间等于大抽水机独浇这块地所需时间的211倍,求单独浇这块地各需多少时间?3.一船自甲地顺流航行至乙地,用5.2小时,再由乙地返航至距甲地尚差2千米处,已用了3小时,若水流速度每小时2千米,求船在静水中的速度.4.假日工人到离厂25千米的浏览区去旅游;一部分人骑自行车,出发1小时20分钟后,其余的人乘汽车出发,结果两部分人同时到达,已知汽车速度是自行车的3倍,求汽车和自行车速度.5.有三堆数量相同的煤,用小卡车独运一堆的天数是大卡车独运一堆天数的一半的3倍.第三堆大小卡车同时运6天,运了这堆煤的一半,求大小卡车单独运一堆煤各要多少天?6.有一工程需在规定日期内完成,如果甲单独工作,刚好能够按期完成;如果乙单独工作,就要超过规定日期3天.现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,求规定日期是几天?7.甲、乙两人同时从A 、B 两地相向而行,如果都走1小时,两人之间的距离等于A 、B 两地距离的81;如果甲走32小时,乙走半小时,这样两人之间的距离等于A 、B 间全程的一半,求甲、乙两人各需多少时间走完全程?练习题1.某校办工厂,将总价值为2000元的甲种原料与总价值为4800的乙种原料混合后,其平均价格比原甲种原料0.5kg 少3元,比乙种原料0.5kg 多1元,问混合后的单价0.5kg 是多少元?2.经销某种商品,由于进货价降低了6.4%,使得利润提高率8%,那么原来这种商品的利润率是多少?3.某工程由甲、乙两队合作6天完成,厂家需付两队共8700元,乙、丙两队合作10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合作5天完成全部工程的三分之二,厂家需付甲、丙两队共5500元,(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若工期要求不超过15天完成全部工程,问由那个对单独完成此项工程花钱最少?请说明理由。
人教版 八年级数学上册 第15章 分式方程及其应用(含答案) 例1. 解方程:x x x --+=1211 分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以,得()()x x +-11 x x x x x x x x x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。
例2. 解方程x x x x x x x x +++++=+++++12672356 解:原方程变形为:x x x x x x x x ++-++=++-++67562312 方程两边通分,得 167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即 经检验:原方程的根是x =-92。
例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+-- 解:由原方程得:3143428932874145--++-=--++-x x x x 即2892862810287x x x x ---=---于是,所以解得:经检验:是原方程的根。
1898618108789868108711()()()()()()()()x x x x x x x x x x --=----=--== 例4. 解方程:61244444402222y y y y y y y y +++---++-=2 解:原方程变形为:622222220222()()()()()()()y y y y y y y y ++-+--++-= 约分,得62222202y y y y y y +-+-++-=()()方程两边都乘以()()y y +-22,得 622022()()y y y --++= 整理,得经检验:是原方程的根。
21688y y y =∴==5、中考题解:例1.若解分式方程产生增根,则m 的值是( )2111x x m x x x x +-++=+A. B. --12或-12或C. D. 12或12或- 分析:分式方程产生的增根,是使分母为零的未知数的值。
北师大版数学八年级下册《分式方程的应用》教案一. 教材分析北师大版数学八年级下册《分式方程的应用》这一章节主要让学生掌握分式方程的解法及其应用。
在此之前,学生已经学习了分式的基本概念、性质和运算,为本节课的学习打下了基础。
本节课的内容分为两个部分:一是分式方程的解法,二是分式方程在实际问题中的应用。
通过学习,学生能够掌握解分式方程的方法,并能够将分式方程应用于解决实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对分式的概念和性质有一定的了解。
但是,学生在解分式方程方面可能还存在一定的困难,特别是对于如何正确地去分母、化简方程等方面。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和解答。
三. 教学目标1.理解分式方程的概念,掌握解分式方程的方法。
2.能够将分式方程应用于解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.掌握解分式方程的方法,特别是如何正确地去分母、化简方程。
2.将分式方程应用于实际问题,提高解决问题的能力。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究分式方程的解法。
2.通过小组合作,让学生在讨论中解决问题,提高团队合作能力。
3.利用多媒体辅助教学,直观地展示分式方程的解法过程。
六. 教学准备1.准备相关的教学课件和教案。
2.准备一些实际问题,用于引导学生应用分式方程解决问题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生思考如何用数学方法解决这些问题。
从而引出本节课的主题——分式方程的应用。
2.呈现(10分钟)教师通过讲解和示例,向学生介绍分式方程的概念和解法。
讲解过程中,重点强调如何去分母、化简方程。
同时,让学生跟随教师一起动手解题,加深对解题方法的理解。
3.操练(10分钟)学生分组讨论,共同解决一些分式方程问题。
教师在旁边进行指导,解答学生的疑问。
此环节旨在让学生在实际操作中掌握解分式方程的方法。
第13课 分式方程的应用(1)——工程问题一、知识储备工程问题:=.( )工作时间( )列分式方程解应用题的步骤:①设未知数;②列方程;③解方程;④______________;⑤作答.二、新课学习1.某化肥厂由于采取了新技术,每天比原计划多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,那么该化肥厂原计划每天生产化肥多少吨?2.小王做90个零件所需要的时间与小李做120个零件所用的时间相同,又知每小时小王与小李两个人共做35个机器零件.求小王、小李每小时各做多少个零件?3.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.4.某年,云南省发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务,间原计划每天修水渠多少米?5.张家界市为了治理城市污水污染,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量是原计划的1.2倍,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?6.某服装厂准备加工380套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高10%,结果共用了18天完成任务,问计划每天加工服装多少套?7.某中学组织学生去福利院慰问,在准备礼品时发现甲礼品的单价比乙礼品多40元,并且花费600元.购买甲礼品和花费360元购买乙礼品的数量相等,求甲、乙两种礼品的单价各为多少元?8.某工厂计划生产120件零件,由于采用新技术,每天比原计划多生产3件,因此提前2天完成计划,设原计划每天生产x件零件,则可列方程为()A.12012023x x-=-B.12012023x x-=-C.12012023x x-=+D.12012023x x-=+9.开学初,某文化用品商店减价促销,全场8折.用60元购买规格相同的签字笔,折价后买到的数量刚好比按原价买到的数量多3支原来每支签字笔的价格是多少元?10.一台收割机的工作效率相当于一个农民工作效率的150倍,用这台机器收割10hm2小麦比100个农民人工收割这些小麦要少用1h,这台收割机每小时收割多少公顷小麦?11.两个工程队共同参与一项筑路工程,甲队单独做需要3个月完成,当甲队单独施工1个月后,乙队加入共同施工,又工作了半个月,总工程全部完成,求乙队单独施工需要多少个月能完成全部工程?12.某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有A,B两个制衣车间,A车间每天加工的数量是B车间的1.2倍,A,B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20天完成A,B两车间每天分别能加工多少件?第13课 分式方程的应用(1)——工程问题1.解:设原计划每天生产化肥x 吨.依题意,得1801203x x=+,解得6x = 经检验,6x =是方程的解.所以原计划每天生产化肥6吨. 2.解:设小王每小时做零件x 个,小李每小时做零件()35x -个.依题意,列方程9012035x x=-,解得15x =. 经检验,15x =是方程的解.所以小王每小时做零件15个,小李每小时做零件20个.3.解:设原计划每天加工这种画图工具x 套.依题意,列方程3000300041.2x x -=,解得125x =.经检验,125x =是方程的解.所以原计划每天加工这种画图工具125套.4.解:设原计划每天修水渠x 米.依题意36003600201.8x x⋅=,解得80x =. 经检验,80x =是方程的解,所以原计划每天修水渠80米.5.解:设原计划每天铺设管道x 米.依题意,有120300120271.2x x-+=,解得10x =, 经检验,10x =是方程的解,所以原计划每天铺设管道10米.6.解:设计划每天加工服装x 套.依题意,有16038016018(110%)x x -+=+,解得20x =, 经检验,20x =是方程的解,所以计划每天加工服装20套.7.解:设甲礼品单价为x 元,则之礼品单价为()40x -元.依题意,有60036040x x =-,解得 100x =,经检验, 100x =是方程的解,所以甲礼品单价为100元,乙礼品单价为60元.8.C9.解:设原来每支签字笔的价格是x 元.依题意,有606030.8x x-=,解得5x =, 经检验,5x =是方程的解,所以原来每支签字笔的价格是5元.10.解:设这台收割机每小时收割x 公顷小麦,依题意有,10010101150x x÷-=,解得5x =, 经检验,5x =是方程的解,所以这台收割机每小时收割5公顷小麦.11.解:设乙队单独施工需要x 个月能完成全部工程.依题意,有111111332x ⎛⎫⨯++⨯= ⎪⎝⎭,解得1x =.经检验,1x =是方程的解,所以乙队单独施工需要1个月能完成全部工程.12.解:设B 车间每天能加工x 件,则A 车间每天加工的数量是1.2x 件.依题意,44004400201.2x x x+=+,解得320x =, 经检验,320x =是方程的解,所以A 车间每天能加工384件,B 车间每天能加工320件。
分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?通过这段对话,请你求出该地驻军原来每天加固的米数.10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.1、解:设通车后火车从福州直达温州所用的时间为x 小时. 1分 依题意,得29833122x x =⨯+. 5分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时.10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=350 4分 化简得x 2-10x -1200=0 5分解方程得x 1=40,x 2=-30(不合题意舍去) 6分答: 每盒粽子的进价为40元. 8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分341040%1.05x x-= 解得56x ≈ 5分 经检验,56x ≈是原方程的解 6分1.0559x ∴≈ 答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天约为1.05x 万吨) (2)解:59(120%)70.8⨯+= 8分70.870%49.⨯= 9分 49.563415.-= 答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+x x . 3分去分母,得 1200+4200=18x (或18x =5400) 5分解得 300x =.6分 9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天,根据题意,得 10x +1245x=1 解这个方程,得x =25 ………………6分10、22402240220x x-=- 11、解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分12、240024008(120)x x-=+% 13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 解80x =. 5分80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=.则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 解得 30x =. 经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ∴31=+x18、 20。
2023-2024学年人教版数学八年级上册分式方程应用题专题训练1.甲、乙两人加工同一种零件,乙每天加工的数量比甲每天加工数量多50%,两人各加工600个这种零件,甲比乙多用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)现有3000个这种零件的加工任务,由甲单独加工m天后剩余任务由乙单独完成,试用含m的代数式表示乙单独完成剩余任务的天数(结果要求化简);(3)已知甲、乙两人加工这种零件每天的加工费分别是120元和150元,在(2)的情况下,如果总加工费不超过7800元,那么甲最多加工多少天?2.“走,去永州,品道州脐橙”,道州脐橙果大形正,橙红鲜艳,肉质脆嫩化渣,风味浓甜芳香.2023年11月29日在“道州脐橙”品牌推介活动上,某水果批发商用40000元购进一批道州脐橙后,供不应求,该水果批发商又用90000元购进第二批这种道州脐橙,所购数量是第一批数量的2倍,但每箱贵了10元(1)有水果批发商购进的第一批道州脐橙每箱多少元?(2)若两次购进的道州脐橙按同一价格售出,两批脐橙全部销售完后,获利不低于17000元,则销售单价至少是多少元?3.元宵节是中国的传统节日之一,元宵节主要有赏花灯、吃汤圆、猜灯谜等习俗,某超市节前购进了甲、乙两种畅销口味的汤圆.已知购进甲种汤圆的金额是1200元,购进乙种汤圆的金额是800元,购进的甲种汤圆比乙种汤圆多20袋.甲种汤圆的单价是乙种汤圆单价的1.2倍.(1)求甲、乙两种汤圆的单价分别是多少元;(2)为满足消费者需求,该超市准备再次购进甲、乙两种汤圆共120袋,若总金额不超过1300元,最多购进______袋甲种汤圆.4.甲、乙两人分别从距目的地8km和12km的两地同时出发,甲、乙的速度比是4:5,结果甲比乙提前2h5到达目的地,求甲、乙的速度.5.某工程队承接了45万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前了15天完成了这一任务.(1)用含x的代数式填表(结果不需要化简);工作效率(万平方米/天)工作时间(天)总任务量(万平方米)原计划x______45实际____________45(2)求(1)的表格中的x的值.6.“阅读陪伴成长,书香润泽人生”.万年县某学校为了开展学生阅读活动,计划网购甲、乙两种图书.已知甲种图书每本的价格比乙种图书每本的价格多5元,且用1600元购买甲种图书比用900元购买乙种图书可多买20本.(1)甲种图书和乙种图书的价格各是多少?(2)根据学校实际情况,需一次性网购甲、乙两种图书共300本,购买时得知:一次性购买甲乙两种图书超过100本时,甲种图书可按九折优惠,乙种图书可按八折优惠.若该校此次用于购买甲、乙两种图书的总费用不超过4800元,那么学校最多可购进甲种图书多少本?7.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.长沙某汽车销售决定采购新能源A型和B型两款汽车,已知每辆A型汽车的进价是每辆B型汽车的进价的1.5倍,若用1500万元购进A型汽车的数量比1200万元购进B型汽车的数量少20辆.(1)A型和B型汽车的进价分别为每辆多少万元;(2)该公司决定用不多于1220万元购进A型和B型汽车共100辆,最多可以购买多少辆A 型汽车?8.为开展特色体育,致远中学上学期购买了甲、乙两种不同足球,购买甲种足球用了3000元,购买乙种足球用了2100元,购买甲种足球数量恰好是购买乙种足球数量的2倍,且购买一个甲种足球比购买一个乙种足球少花20元.(1)求购买一个甲种足球和一个乙种足球各需多少元;(2)为了加大开展力度,学校决定本学期再次购买甲、乙两种足球共50个,恰逢商场对两种足球售价进行调整,甲种足球售价比上学期购买时提高了10%,乙种足球售价比上学期购买时降低了10%,如果本学期购买甲、乙两种足球的总费用不超过2800元,并且乙种足球至少要购买5个,那么该校本学期有几种不同购买足球的方案?9.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.某茶店1月份第一周绿茶的销售总额为1500元,红茶的销售总额为900元,且红茶每克售价是绿茶每克售价的1.2倍,红茶的销售量比绿茶的销售量少3000克,设绿茶每克销售价格为x 元.(1)请用含x的代数式填表:售价(元/克)销售量(克)销售总额(元)绿茶x______1500红茶____________900(2)请列出方程,并求出绿茶、红茶每克的售价分别是多少元?10.期末考试在即,某学校准备购进A、B两种奖品对进步学生进行奖励,已知一盒A 种奖品的单价比一盒B种奖品的单价多1元,且花600元购买A种奖品和花500元购买B种奖品的盒数相同.(1)求A,B两种奖品一盒的单价各是多少元?(2)若计划用不超过1100元的资金购进A、B两种奖品共200盒,求A种奖品最多能购进多少盒?11.为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用12万元购买A型充电桩与用18万元购买B型充电桩的数量相等.(1)A,B两种型号充电桩的单价各是多少?(2)该停车场计划共购买20个A,B型充电桩,购买总费用不超过15万元,且A型充电桩购买数量不超过12个.问:共有哪几种购买方案?哪种方案所需购买总费用最少?12.长寿重百商场用50000元从外地购回一批T恤衫,由于销路好,商场又紧急调拨18.6万元采购回是第一次进货件数3倍的T恤衫,但第二次比第一次进价每件贵12元,商场在出售时统一按每件80元的标价出售,为了缩短库存时间,最后的400件按6.5折处理并很快售完.求:(1)商场第一次购买了多少件T恤衫?(2)商场在这两次生意中共盈利多少元?13.某商店购进篮球、足球两种商品,已知每个篮球的价格比每个足球的价格贵16元,用2400元购买篮球的个数恰好与用2000元购买足球的个数相同.求篮球,足球每个的价格各是多少元?14.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?(2)甲、乙两地的距离是多少千米?(3)若汽车从甲地到乙地采用油电混合动力行驶,要使行驶总费用不超过60元,求至少需要用电行驶多少千米?15.列方程(组)解应用题:綦江区某校为举行六十周年校庆活动,特定制了系列文创产品,其中花费了312000元购进纪念画册和保温杯若干.已知纪念画册总费用占保温杯总费用的3 10.(1)求纪念画册和保温杯的总费用各是多少元?(2)若每本纪念画册的进价比每个保温杯的进价多20%,而保温杯数量比纪念画册数量的3倍多1200个.求每本纪念画册和每个保温杯的进价各是多少元?。
分式方程与应用(一)学习目标:1、通过解分式方程的训练,进一步巩固解分式方程的一般步骤,会解可化为一元一次方程或一元二次方程的分式方程,体会转化的数学思想.2、会根据分式方程解的情况确定字母的值或取值范围。
学习重点:1、会解可化为一元一次方程或一元二次方程的分式方程。
2、会根据分式方程解的情况确定字母的值或取值范围。
学习难点:会根据分式方程解的情况确定字母的值或取值范围。
学习过程:一、诊断练习:1、指出下列关于x 的方程中,是分式方程的是(只填序号)①8121=+x ②24312xx -=+- ③15-=-x x ④629132x x +--=⑤1=+bxax2、解下列关于x 分式方程:(1)0112=--x x3111)2(=-+-xx x 212114)3(2-+=--x x xxx x -=--2221)4(3、细心找一找:小明解方程12111-=++--x x x 的过程如图.请指出他解答过程中的错误,并探究出正确的解答过程.解:方程两边同乘(x-1)(x+2) 得 (x+2)-(x+1)(x-1)=-1 ……① (x+2)-(x ²-1)= -1去括号得 x+2-x ²-1= -1 ……② 移项得 -x ²+x+2-1+1=0 ……③ 合并同类项得 x ²-x-2 =0 ……④ 解得1x = -1 2x =2 ……⑤∴原方程的解为 1x = -1 2x =2 ……⑥ 二、反思归纳1、(1)分式方程:分母中含有_______的方程,叫做分式方程. (2)解分式方程的基本思想:把分式方程转化为__________,即方程两边同乘以___________。
(3)解分式方程的步骤:①; ②; ③。
(4)构建体系:3、解分式方程时为什么要检验?4、解分式方程和解整式方程有什么区别?三、合作探究:1、分式方程为什么可能无解? 2、灵活应用:例1、若关于x 的方程x x x m 2132=--+ 无解,求m 的值。
八年级上册数学分式方程应用题讲解
分式方程的应用题是数学中的一个重要部分,它涉及到现实生活中的各种问题。
下面是一个关于分式方程应用题的示例,以及详细的解题步骤和讲解。
题目:某工程甲单独做45天完成,乙单独做30天完成,若甲先单独做10天后,乙再加入合作,问乙加入后几天完成?
分析:
1. 甲单独完成工程需要45天,所以甲一天可以完成 1/45 的工程。
2. 乙单独完成工程需要30天,所以乙一天可以完成 1/30 的工程。
3. 甲先单独做了10天,完成了10 × (1/45) = 10/45 = 2/9 的工程。
4. 剩下的工程量是 1 - 2/9 = 7/9。
5. 现在,甲和乙一起工作。
我们要找出他们一起工作了多少天来完成剩下的7/9 的工程。
用数学方程表示这个问题:
1) 甲一天完成的工程量是 1/45
2) 乙一天完成的工程量是 1/30
3) 甲先单独做了10天,完成了10 × (1/45) = 2/9 的工程
4) 剩下的工程量是 1 - 2/9 = 7/9
5) 设甲和乙一起工作了 t 天,则t × (1/45 + 1/30) = 7/9解这个方程,我们就可以找出 t 的值。
计算结果为: [{t: 14}]
所以,甲和乙一起工作需要:14天来完成剩下的工程。
八年级数学分式方程应用题(一)1、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。
2、某客车从甲地到乙地走全长480Km的高速公路,从乙地到甲地走全长600Km的普通公路。
又知在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。
已知B的速度是A的速度的3倍,求两车的速度。
4、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?5、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。
求A、B每小时各做多少个零件。
6、某甲有25元,这些钱是甲、乙两人总数的20%。
乙有多少钱?7、某甲有钱400元,某乙有钱150元,若乙将一部分钱给甲,此时乙的钱是甲的钱的10%,问乙应把多少钱给甲?8、我部队到某桥头狙击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。
9、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
10、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。
求先遣队和大队的速度各是多少?11、某人现在平均每天比原计划多加工33个零件,已知现在加工3300个零件所需的时间和原计划加工2310个零件的时间相同,问现在平均每天加工多少个零件。
12、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
教学设计2024秋季八年级数学上册第十五章分式方程《分式方程的应用》教学目标(核心素养)1.知识与技能:学生能够理解分式方程在解决实际问题中的应用,掌握建立分式方程模型的方法,并能准确求解。
2.数学建模:通过实际问题抽象出分式方程,培养学生的数学建模能力和问题解决能力。
3.逻辑思维:在分析和解决问题的过程中,锻炼学生的逻辑推理能力和代数运算能力。
4.情感态度:激发学生对数学的兴趣,培养应用数学知识解决实际问题的意识。
教学重点•分式方程在解决实际问题中的应用。
•建立分式方程模型的方法。
教学难点•如何根据实际问题抽象出合适的分式方程。
•求解分式方程并验证解的合理性。
教学资源•多媒体课件(包含实际问题案例、分式方程建模过程)•教材及配套习题册•黑板与粉笔•学生分组讨论用的学习材料教学方法•案例教学法:通过实际问题案例引入,引导学生思考如何建立分式方程模型。
•讨论法:组织学生分组讨论,共同探索解决方案。
•讲授法:在关键环节进行必要的讲授,帮助学生理解难点。
•练习法:通过习题练习,巩固所学知识。
教学过程导入新课•生活实例引入:展示一个与分式方程紧密相关的生活实例(如速度、时间、距离问题,工程问题,经济问题等),引导学生思考如何用数学方法解决。
•提出问题:如何将这些实际问题转化为分式方程并求解?引出本节课的学习内容。
新课教学1.案例分析•选取一个典型的实际问题案例,详细分析其中的数量关系,引导学生识别出未知数和已知量。
•逐步引导学生建立分式方程模型,讲解建模过程中的思路和方法。
2.建模过程•强调建模步骤:理解问题、设定变量、建立方程、求解验证。
•通过多媒体演示或板书,清晰展示建模的每一步骤和注意事项。
3.求解验证•教授学生如何求解分式方程,并强调验根的重要性。
•引导学生将求得的解代入原问题中验证其合理性。
4.小组讨论•组织学生分组讨论其他类似的实际问题,尝试建立分式方程模型并求解。
•教师巡视指导,鼓励学生之间的交流与合作。
八上数学分式方程应用题嘿,同学们!咱们今天来好好聊聊八年级上册数学里的分式方程应用题。
先跟大家讲一件我自己碰到的事儿。
有一次我去超市买水果,苹果5 元一斤,香蕉 8 元一斤。
我兜里就带了 50 块钱,想着买点儿苹果和香蕉回家。
我心里就琢磨了,如果买 5 斤苹果和 3 斤香蕉,钱够不够呢?这其实就是一个简单的分式方程应用题的雏形。
咱们来正式看看分式方程应用题。
比如说,工程问题,一项工程,甲单独做需要 x 天完成,乙单独做需要 y 天完成,两人合作需要几天完成?这时候咱们就可以设两人合作需要 z 天完成,然后根据工作总量=工作效率×工作时间,列出分式方程。
再比如说行程问题,小明从家到学校,如果步行速度是每小时 x 千米,需要走 y 小时,如果骑自行车速度是每小时 z 千米,需要多长时间?这里咱们设骑自行车需要 t 小时,同样根据路程=速度×时间来列式。
还有销售问题,一件商品进价是 x 元,标价是 y 元,打八折出售,利润是多少?这就得先算出售价,再用售价减去进价得出利润。
分式方程应用题其实就在咱们的生活里到处都是。
像我之前去买水果,不就是在计算怎么用有限的钱买到想要的东西嘛。
还有啊,比如说学校组织活动,要租车。
一辆大巴车能坐 x 人,一共 y 个同学,需要租几辆大巴车?这也是分式方程能解决的。
同学们,想想看,咱们去买文具,一支笔 x 元,一个本子 y 元,给了 20 块钱,买了几支笔和几个本子,这是不是也能变成分式方程应用题?总之,分式方程应用题并不可怕,它就是帮助咱们解决生活中各种计算和规划的好工具。
只要咱们认真分析题目中的数量关系,找到等量关系,列出方程,就能轻松解决问题。
就像我买水果那次,如果能熟练运用分式方程,就能一下子算清楚怎么买最划算,不会出现钱不够或者买多了浪费的情况。
所以,大家别害怕分式方程应用题,多练习,多思考,以后在生活中遇到类似的问题,就能轻松应对啦!。
1、甲、乙两人打算整理一批新到的试验器材,甲单独整理须要40分完工;若甲、乙共同整理20分钟后,乙须要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?解:设乙单独整理需x 分钟完工,则120204020=++x解,得x =80 经检验:x =80是原方程的解。
答:乙单独整理需80分钟完工。
2、有两块面积一样的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,则3001500900+=x x 解,得x =450 经检验:x =450是原方程的解。
答:第一块试验田每亩收获蔬菜450千克。
3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
解:设步行速度是x 千米/时,则247197=-+xx 解,得x =5 经检验:x =5是原方程的解。
进尔4x =20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。
4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发觉,同样的酸奶,这里要比供销大厦每瓶廉价0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x 瓶酸奶,则2.053140.185.12+⎪⎭⎫ ⎝⎛+=x x 解,得x =5 经检验:x =5是原方程的解。
答:她第一次在供销大厦买了5瓶酸奶。
5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴ 求这种纪念品4月份的销售价格。
⑵ 若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?解:⑴设4月份销售价为每件x 元,则xx 9.07002000202000+=+ 解,得x =50 经检验:x =50是原方程的解。