成都市石室中学2020届高三上学期10月月考数学(理)试题(Word版含解析)
- 格式:doc
- 大小:2.05 MB
- 文档页数:13
成都石室中学2020~2021学年度高2022届十月考试数学试题(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 直线y =+的倾斜角是( ) A. 30 B. 60︒ C. 120︒ D. 150︒2. 若直线220++=ax y 与直线840x ay ++=平行,则a 的值为( )A. 4B. 4-C. 4-或4D. 2-3. 已知椭圆方程为225x ky +=的一个焦点是(0,2),那么k =( ) A. 59 B. 57 C. 1 D. 534. 若(2,1)P -为圆22(1)25-+=x y 的弦AB 的中点,则直线AB 的方程是( )A. 250x y --=B. 230x y +-=C. 10x y +-=D. 30x y --= 5. 平移直线10x y -+=使其与圆22(2)(1)1x y -+-=相切,则平移的最短距离为( )A. B. 2- C. 1 D. 16. 已知α,β,γ,δ表示不同的平面,l 为直线,下列命题中正确的是( )A. ,αγβγαβ⊥⊥⇒//B. ,αββγαγ⊥⊥⇒⊥C. ,,αγβδαβγδ⊥⇒//////D. ,,l l αγβγαβγ⊥⊥=⇒⊥ 7. (2017新课标全国Ⅲ理科)已知圆柱高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A. πB. 3π4C. π2D. π48. 已知椭圆2222:1(0)x y C a b a b +=>>离心率为2,直线l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( )A. 13B. 32C. 12D. 19. 已知圆(x -3)2+(y +5)2=36和点A (2,2),B (-1,-2),若点C 在圆上且△ABC 的面积为52,则满足条件的点C 的个数是( )A. 1B. 2C. 3D. 4 10. 已知F 是椭圆E :()222210x y a b a b+=>>的左焦点,经过原点O 的直线l 与椭圆E 交于P ,Q 两点,若3PF QF =,且120PFQ ∠=︒,则椭圆E 的离心率为( )A. B. 12C.D. 11. 已知圆()22:22C x y -+=,直线:2l y kx =-,若直线l 上存在点P ,过点P 引圆两条切线12,l l ,使得12l l ⊥,则实数k 的取值范围是( )A. ()0,223,⎡++∞⎣B. [2,2+]C. (),0-∞D. [0∞+,) 12. 已知椭圆()2222:10x y C a b a b+=>>的两个焦点1F ,2F 与短轴的两个端点1B ,2B 都在圆221x y +=上,P 是C 上除长轴端点外的任意一点,12F PF ∠的平分线交C 的长轴于点M ,则12MB MB +的取值范围是( )A. ⎡⎣B. ⎡⎣ C. ⎡⎣ D. 2,⎡⎣二、填空题:本大题共4小题,每小题5分,请将答案写在答题卡上.13. 己知12F F 、是椭圆22+12516x y =的两个焦点,过点1F 的直线与椭圆交于A B ,两点,则2ABF ∆的周长为_________. 14. 圆心在直线270x y -+=上的圆C 与x 轴交于两点(2,0),(4,0)A B --,则圆C 的方程为___.15. 已知P 是椭圆2214x y +=上的一点,F为右焦点,点A 的坐标为,则AFP 周长的最大值为_______.的16. 已知点P 在圆22:(4)4C x y -+=上,点(6,0)A ,M 为AP 的中点,O 为坐标原点,则tan MOA ∠的最大值为________.三、解答题(本题共6个小题,共70分)17. 如图所示,在平面直角坐标系中,已知矩形ABCD 的长为3,宽为2,边,AB AD 分别在x 轴、y 轴的正半轴上,点A 与坐标原点重合.将矩形折叠,使点A 落在线段DC 上,已知折痕所在直线的斜率为12-.(1)求折痕所在的直线方程;(2)若点P 为BC 的中点,求PEF 的面积.18. 已知坐标平面上两个定点()0,4A ,()0,0O ,动点(),M x y 满足:3MA OM =.(1)求点M 轨迹方程,并说明轨迹是什么图形;(2)记(1)中的轨迹为C ,过点1,12N ⎛⎫-⎪⎝⎭的直线l 被C所截得的线段的长为l 的方程. 19. 如图,在四棱锥P ABCD -中,底面ABCD平行四边形,PCD 为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH 平面PAD ;(Ⅱ)求证:PA ⊥平面PCD ;的(Ⅲ)求直线AD 与平面PAC 所成角的正弦值.20. 已知椭圆C :2222x y a b+=1(a >b >0)的左、右焦点分别为F 1、F 2,点A 为椭圆的左顶点,点B 为上顶点,|AB |且|AF 1|+|AF 2|=4.(1)求椭圆C 的方程;(2)过点F 2作直线l 交椭圆C 于M 、N 两点,记AM 、AN 的斜率分别为k 1、k 2,若k 1+k 2=3,求直线l 的方程.21. 如图,圆22():21M x y -+=,点(1,)P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为,A B .(1)若1t =,求两条切线所在的直线方程;(2)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(3)若两条切线,PA PB 与y 轴分别交于S T 、两点,求ST 的最小值.22. 已知椭圆()2222:10x y M a b a b+=>>的一个焦点与短轴的两端点组成一个正三角形的三个顶点,且椭圆经过点2N ⎭.(1)求椭圆M 的方程;(2)若直线()0y kx m k =+≠与圆223:4E x y +=相切于点P ,且交椭圆M 于,A B 两点,射线OP 于椭圆M 交于点Q ,设OAB ∆的面积与QAB ∆的面积分别为12,S S .①求1S 的最大值;②当1S 取得最大值时,求12S S 的值.。
石室中学高2021届2019~2020学年度上期十月考试数学试卷参考答案二、填空题:共4题,每小题5分,合计20分.13.22116925+=y x;14.40x y+-=;15.4-;16.2.三、解答题:共6题,合计70分.17.解:(Ⅰ)22154+=x y…………5分(Ⅱ)点P的坐标(1)2±±.…………10分18.解:(Ⅰ)显然直线l斜率存在.设:l y kx=2=,解得k=l 的方程为y x=.…………6分(Ⅱ)由于CM AB⊥可知M的轨迹为以OC为直径的圆在圆C内部的部分,其方程为2230x x y-+=(533x<≤).…………12分19. 解:(Ⅰ)设(,)P x y,(,0)A m,(0,)B n,由于3=BP PA,所以(,)3(,)-=--x y n m x y(33,3)=--m xy,即333=-⎧⎨-=-⎩x m xy n y,所以434⎧=⎪⎨⎪=⎩m xn y,…………3分又2216+=m n,从而221616169+=xy. …………4分即曲线C的方程为:2219+=xy. …………5分(Ⅱ)联立22219=+⎧⎪⎨+=⎪⎩y x txy,得2237369(1)0++-=x tx t,由22(36)4379(1)0∆=-⨯⨯->t t,可得<t,又直线2=+y x t不过(0,1)H点,且直线HM与HN的斜率存在∴1≠±t,∴<t ,且1≠±t212123699,3737-∴+=-=t t x x x x , …………8分 1212121212114(1)()----++=+=HM HN y y x x t x x k k x x x x …………10分1212124(1)()4411--+∴=-=+x x t x x t x x t3∴=t所以t 的值为3 …………12分 20.解:(I )曲线162+-=x x y 与y 轴的交点为(0,1),与x 轴的交点为().0,223(),0,223-+故可设C 的圆心为(3,)t ,则有,)22()1(32222t t +=-+解得1t =.则圆C 的半径为.3)1(322=-+t所以圆C 的方程为.9)1()3(22=-+-y x …………5分(II )设11(,)A x y ,22(,)B x y ,其坐标满足方程组:⎪⎩⎪⎨⎧=-+-=+-.9)1()3(,022y x a y x 消去y ,得到方程.012)82(222=+-+-+a a x a x由已知可得,判别式.0416562>--=∆a a …………7分 因此,21212214,2a a x x a x x -++=-=①由于⊥OA OB ,可得,02121=+y y x x …………10分 又,,2211a x y a x y +=+=所以.0)(222121=+++a x x a x x②由①,②得1-=a ,满足,0>∆故.1-=a …………12分21. 解:(Ⅰ)由椭圆的定义知,动点M 的轨迹为椭圆22:143x y C +=.……………3分(Ⅱ)∵:l 2y kx =+,联立2223412y kx x y =+⎧⎨+=⎩,消去y ,得22(43)1640k x kx +++=. ……………4分∵ 216(123)0Δ=->k ,∴241k >. ……………5分设1122(,),(,)P x y Q x y .则1221221643443k x x k x x k ⎧+=-⎪⎪+⎨⎪=⎪+⎩. ……………7分∴22212122221616161212()44434343k k k y y k x x k k k -+++=++=-+==+++. ……8分 ∵OP OQ ON λ+=,易知0λ≠,∴122122116()(43)112()(43)N N k x x x k y y y k λλλλ⎧=+=-⎪+⎪⎨⎪=+=⎪+⎩. ……………9分又点N 在椭圆C 上, ∴22222222211611214(43)3(43)k k k λλ⨯+⨯=++. 化简,得22222644816(43)43k k k λ+==++. ……………10分∵241k >,∴2434k +>.∴2110434k <<+. ∴2160443k <<+,即204λ<<. ∴(2,0)(0,2)λ∈-. ……………12分22. 解:(Ⅰ)由题意,得123c b a==, ……………………2分222,a c b -=又3,1a b c ∴===, ……………………3分所以,椭圆C 的标准方程为22198x y +=. ……………………4分(Ⅱ)由(Ⅰ)可知,1(3,0),(3,0),(1,0)A B F --,设直线1F M 的方程为1x my =-,由题意知,0m >, …………………5分 设()11,M x y ,直线1F M 与椭圆的另一交点()22,M x y ¢, 12F MF N ,根据对称性,得()22,N x y --, ……………………6分联立228972,1,x y x my ì+=ïí=-ïî得()228916640m y my +--=,其判别式△0>,1221689my y m \+=+,1226489y y m =-+, ……………………7分 由题可知120y y >>,所以12y y -,()121240y y my y ++=, ① ……………………8分1111132y y k x my ==++,2222232y y k x my -==--+, 由12320k k +=,得1132y my ++22202y my =+,即12125640my y y y ++=,……………………9分将①式代入,得()121220640y y y y -+++=,即12780y y +=, ……………………10分 ∴()()1212150y y y y+--=,∴21615089mm?=+,解得m (11)分 ∴直线1F M 的方程为1xy -,即0y -+. ……………………12分。
成都石室中学2019~2020学年度上期高2020届10月月考数学试卷(理科)答案一、选择题:B D B C A D C C D B C A二、填空题:13. __100____.14. ___36___.15.____ 254π__.16. ___67___. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)解:(Ⅰ)由正弦定理可得在ABD ∆中,sin sin AD BD B BAD =∠, 在ACD ∆中,sin sin AD CD C CAD=∠,…………………………3分 又因为BAD CAD ∠=∠,sin 2sin BD C CD B==.…………………………6分 (Ⅱ)sin 2sin C B =,由正弦定理得22AB AC ==,设DC x =,则2BD x =,则222254cos cos 24AB AD BD x BAD CAD AB AD +--∠==∠⋅,2222222AC AD CD x AC AD +--==⋅.…………………………9分 因为BAD CAD ∠=∠,所以2254242x x --=,解得2x =.32BC x ==.…………………………12分 18.(本小题满分12分)∴()14555515654075758545952075200x =⨯+⨯+⨯+⨯+⨯+⨯⨯=,…………………3分 ()()()()2222251540454575557565758575200200200200s =-⨯+-⨯+-⨯+-⨯ ()2209575135200+-⨯=.………………………6分 (Ⅱ)①由(Ⅰ)知X 服从正态分布()75,135N ,且11.6σ≈,∴11(63.498.2)(-+2)=0.9550.6830.81922P X P X μσμσ<<=<<⨯+⨯=.………………9分 ②依题意,ξ服从二项分布,即()410,0.819B ξ,则8190E np ξ==.………………12分19.(本小题满分12分)解:(Ⅰ)取AD 的中点为O ,连结OP ,OC ,OB ,设OB 交AC 于H ,连结GH .//AD BC ,12AB BC CD AD === 四边形ABCO 与四边形OBCD 均为菱形OB AC ∴⊥,//OB CD CD AC ⊥PAD ∆为等边三角形,O 为AD 中点PO AD ∴⊥…………………………2分平面PAD ⊥平面ABCD 且平面PAD 平面ABCD AD =.PO ⊂平面PAD 且PO AD ⊥PO ∴⊥平面ABCDCD ⊂平面ABCDPO CD ∴⊥ H ,G 分别为OB , PB 的中点 //GH PO ∴GH CD ∴⊥…………………………5分又GH AC H ⋂=,AC GH 平面GAC CD 平面GAC …………………………6分(Ⅱ)取BC 的中点为E ,以O 为空间坐标原点,分别以OE ,OD ,OP 的方向为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系O xyz -.…………………………7分设4=AD,则(P ,()0,2,0A -,)C ,()0,2,0D,122G - ⎝(AP =,3322AG ⎛= ⎝.设平面PAG 的一法向量(),,n x y z →=. 由00n APn AG⎧⋅=⎨⋅=⎩ 20302y x y ⎧+=⇒++=y x z ⎧=⎪⇒⎨=⎪⎩. 令1z =,则()1,3,1n =-.…………………………10分由(Ⅰ)可知,平面AGC 的一个法向量()CD =-..∴二面角P AG C --的平面角θ的余弦值2cos 2n CD n CD θ⋅=-=-=. 二面角P AG C --…………………………12分 20.(本小题满分12分) 解:(Ⅰ)由题意得2221,.b c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩…………………………………………3分 解得23a =.所以椭圆C 的方程为. …………………………………………4分 (Ⅱ)设直线l 的方程为y x m =+,(3,)P P y ,由2213x y y x m⎧+=⎪⎨⎪=+⎩,得2246330x mx m ++-=. …………………………6分令223648480m m ∆=-+>,得22m -<<.1232x x m +=-,2123(1)4x x m =-. ……………………………………7分 因为是以为顶角的等腰直角三角形,所以NP 平行于x 轴. ………………………………8分过M 做NP 的垂线,则垂足Q 为线段NP 的中点.设点Q 的坐标为(),Q Q x y ,则2132Q M x x x x +===. 由方程组1221221323(1)432x x m x x m x x ⎧+=-⎪⎪⎪=-⎨⎪+⎪=⎪⎩,,,解得2210m m ++=,即1m =-. 而()122m =-∈-,, 所以直线的方程为. …………………………………………12分21.(本小题满分12分) 解:(Ⅰ)设切点为()00,P x y ,()'x f x e x =-,∴()000'1x f x e x =-=,……………………2分令()x h x e x =-,则()'1x h x e =-,当0x >时,()'0h x >,()h x 在()0,∞+上为增函数;当0x <时,()'0h x <,()h x 在(),0-∞上为减函数;所以()()min 01h x h ==,所以00x =,2213x y +=PMN ∆PMN ∠l又0200112x e x x a --=+,所以0a =.……………………4分 (Ⅱ)[)0,x ∀∈+∞,()f x bx ≥恒成立2102x x e bx ⇔---≥,[)0,x ∈+∞. 令2()12x x g x e bx =---,[)0,x ∈+∞. ()()'x g x e x b h x =--=,()'1x h x e =-,当0x >时,()'10x h x e =->,所以()h x 在[)0,+∞上为增函数,()min 1h x b =-,①若1b ≤,则当0x >时'()0g x >,故()g x 在[)0,+∞上为增函数,故[)0,x ∈+∞时,有()()00g x g ≥=即2102x x e bx ---≥恒成立,满足题意.…………8分 ②若1b >,因为()'g x 为()0,∞+上的增函数且()'010g b =-<,()()'ln 2ln ln 21ln 21ln 20g b b b b b =-->---=->⎡⎤⎣⎦, 故存在()()00,ln 2x b ∈,使得0'0g x .当()00,x x ∈时,()'0g x <,()g x 在()00,x 为减函数,()()00g x g <=,矛盾,舍去. 综上1b ≤.………………………12分22. (本小题满分10分) 解:(Ⅰ)4,2π⎛⎫ ⎪⎝⎭…………………………3分 (Ⅱ)4sin ρθ=………………………7分233ππθ⎛⎫<< ⎪⎝⎭……………………10分。
成都石室中学2019~2020学年度上期高2020届10月月考 数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{|(1)(2)0},{|0}=--≤=>M x x x N x x ,则( ) A. N M ⊆ B. M N ⊆ C. M N ⋂=∅ D. M N =R 2.已知i 为虚数单位,则232019i i i i ++++等于( ) A. i B. 1 C. i - D. 1- 3.已知命题p :2(,0),2310x x x ∀∈-∞-+>,命题q :若0x ≥,则22310x x -+≤,则以下命题正确的为( )A.p 的否定为“2[0,),2310x x x ∃∈+∞-+≤”,q 的否命题为“若0x <,则22310x x -+>”B.p 的否定为“2(,0),2310x x x ∃∈-∞-+≤”,q 的否命题为“若0x <,则22310x x -+>”C.p 的否定为“2[0,),2310x x x ∃∈+∞-+≤”,q 的否命题为“若0x ≥,则22310x x -+>”D.p 的否定为“2(,0),2310x x x ∃∈-∞-+≤”,q 的否命题为“若0x ≥,则22310x x -+>” 4.已知{}n a 是公差为12的等差数列,n S 为{}n a 的前n 项和.若2614,,a a a 成等比数列,则5S =( ) A.352B.35C. 252D. 255.中国古代数学著作《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.意思是现有松树高5尺,竹子高2尺,松树每天长自己高度的一半,竹子每天长自己高度的一倍,问在第几天会出现松树和竹子一般高?如图所示是源于其思想的一个程序框图,若输入的5x =,2y =,输出的4n =,则程序框图中的中应填( ) A. x y ≤B.y x ≤C. y x <D.x y =6.设函数2,1(),12x x f x x x -⎧<⎪=⎨≥⎪⎩,则满足()()12f f a f a =⎡⎤⎣⎦的a 的取值范围是( )A. (],0-∞B. []0,2C. [)2,+∞D. (][),02,-∞⋃+∞7. 若直线()42y k x -=-与曲线y =有两个交点,则k 的取值范围是( )A.[)1,+∞B.31,4⎡⎫--⎪⎢⎣⎭C. 3,14⎛⎤⎥⎝⎦D. (],1-∞-8.已知2ln3a =,3ln 2b =,6c e=,其中e 是自然对数的底数.则,,a b c 的大小关系为( ) A. a c b >> B. b c a >> C. c a b >> D. c b a >>9.2021年广东新高考将实行312++模式,即语文、数学、英语必选,物理、历史二选一,政治、地理、化学生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则他们选课相同的概率( )A.136B.116C.18D.1610.高斯函数[]()f x x =([]x 表示不超过实数x 的最大整数),若函数()2x xg x e e -=--的零点为0x ,则[]0()g f x =( )A.12e e --B.2-C. 12e e --D.2212e e-- 11.已知双曲线2222:1x y C a b -=(0,0a b >>)的焦距为4,其与抛物线2:3E y x =交于,A B 两点,O为坐标原点,若OAB ∆为正三角形,则C 的离心率为( )A. 2B. 2C.D. 12.已知函数31()21xx f x x x e e=-++-,其中e 是自然对数的底数.若()2(1)22f a f a -+≤,则实数a的取值范围是( )A. 11,2⎡⎤-⎢⎥⎣⎦B. 3,12⎡⎤-⎢⎥⎣⎦C. ⎥⎦⎤⎢⎣⎡-23,1D.1,12⎡⎤-⎢⎥⎣⎦二、填空题:本大题共4小题,每小题5分,共20分. 13.已知数列{}n a 满足11a =,11lg lg 2n n a a +=+,则5a =______. 14.现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有______种.(用数字作答)15.已知球O 的内接圆锥体积为23π,其底面半径为1,则球O 的表面积为______.16.已知抛物线C :20)2(y px p =>的焦点为F ,且F 到准线l 的距离为2,直线1:0l x my -=与抛物线C 交于,P Q 两点(点P 在x 轴上方),与准线l 交于点R ,若3QF =,则QRF PRFS S ∆∆=______三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,sin 2sin C B =.(Ⅰ)求BDCD; (Ⅱ)若1AD AC ==,求BC 的长.18.(本小题满分12分)为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学年开展覆盖本校各年级学生的《标准》测试工作.为做好全省的迎检工作,某市在高三年级开展了一次体质健康模拟测试(健康指数满分100分),并从中随机抽取了200名学生的数据,根据他们的健康指数绘制了如图所示的频率分布直方图.(Ⅰ)估计这200名学生健康指数的平均数x 和样本方差2s (同一组数据用该组区间的中点值作代表); (Ⅱ)由频率分布直方图知,该市学生的健康指数X 近似服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s . ①求(63.498.2)P X <<;②已知该市高三学生约有10000名,记体质健康指数在区间()63.4,98.2的人数为ξ,试求E ξ.1.16≈, 若随机变量X 服从正态分布()2,N μσ,则()0.683P X μσμσ-<<+≈,(22)0.955P X μσμσ-<<+≈,(33)0.997P X μσμσ-<<+≈.19.(本小题满分12分)在四棱锥P ABCD -中,//AD BC ,12AB BC CD AD ===,G 是PB 的中点,PAD ∆是等边三角形,平面PAD ⊥平面ABCD .(Ⅰ)求证:CD ⊥平面GAC ;(Ⅱ)求二面角P AG C --大小的正弦值.20.(本小题满分12分)已知椭圆()2222:10x y C a b a b +=>>过点()0,1A ,且椭圆的离心率为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)斜率为1的直线l 交椭圆C 于()()1122,,,M x y N x y 两点,且12x x >.若直线3x =上存在点P ,使得PMN ∆是以M 为直角顶点的等腰直角三角形,求直线l 的方程.21.(本小题满分12分)已知函数2()12xx f x e =--.(Ⅰ)若直线y x a =+为()f x 的切线,求a 的值;(Ⅱ)若[)0,x ∀∈+∞,()f x bx ≥恒成立,求b 的取值范围22(本小题满分10分)在平面直角坐标系xOy 中,圆C :()2244x y +-=.以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.(Ⅰ)求圆心C 的极坐标;(Ⅱ)从原点O 作圆C 的弦,求弦的中点轨迹的极坐标方程.成都石室中学2019~2020学年度上期高2020届10月月考 数学试卷(理科)答案一、选择题:B D B C A D C C D B C A 二、填空题:13. __100____.14. ___36___.15.____ 254π__.16. ___67___.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)解:(Ⅰ)由正弦定理可得在ABD ∆中,sin sin AD BDB BAD=∠, 在ACD ∆中,sin sin AD CDC CAD=∠,…………………………3分 又因为BAD CAD ∠=∠,sin 2sin BD CCD B==.…………………………6分 (Ⅱ)sin 2sin C B =,由正弦定理得22AB AC ==,设DC x =,则2BD x =,则222254cos cos 24AB AD BD x BAD CADAB AD +--∠==∠⋅,2222222AC AD CD x AC AD +--==⋅.…………………………9分 因为BAD CAD ∠=∠,所以2254242x x --=,解得x =32BC x ==.…………………………12分 18.(本小题满分12分)∴()14555515654075758545952075200x =⨯+⨯+⨯+⨯+⨯+⨯⨯=,…………………3分 ()()()()2222251540454575557565758575200200200200s =-⨯+-⨯+-⨯+-⨯()2209575135200+-⨯=.………………………6分(Ⅱ)①由(Ⅰ)知X 服从正态分布()75,135N ,且11.6σ≈,∴11(63.498.2)(-+2)=0.9550.6830.81922P X P X μσμσ<<=<<⨯+⨯=.………………9分②依题意,ξ服从二项分布,即()410,0.819B ξ,则8190E np ξ==.………………12分19.(本小题满分12分)解:(Ⅰ)取AD 的中点为O ,连结OP ,OC ,OB ,设OB 交AC 于H ,连结GH .//AD BC ,12AB BC CD AD ===四边形ABCO 与四边形OBCD 均为菱形 OB AC ∴⊥,//OB CD CD AC ⊥ PAD ∆为等边三角形,O 为AD 中点 PO AD ∴⊥…………………………2分平面PAD ⊥平面ABCD 且平面PAD 平面ABCD AD =. PO ⊂平面PAD 且PO AD ⊥ PO ∴⊥平面ABCD CD ⊂平面ABCD PO CD ∴⊥H ,G 分别为OB , PB 的中点 //GH PO ∴ GH CD ∴⊥…………………………5分 又GH AC H ⋂= ,AC GH Ì平面GACCD \^平面GAC …………………………6分(Ⅱ)取BC 的中点为E ,以O 为空间坐标原点,分别以OE ,OD ,OP 的方向为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系O xyz -.…………………………7分 设4=AD,则(P ,()0,2,0A -,)C,()0,2,0D,31,2G ⎛- ⎝(0,2,AP =,3322AG ⎛= ⎝. 设平面PAG 的一法向量(),,n x y z →=.由00n AP nAG⎧⋅=⎨⋅=⎩203022y x y⎧+=⇒+=⎪⎩ y x z ⎧=⎪⇒⎨=⎪⎩. 令1z =,则()1,3,1n =-.…………………………10分.由(Ⅰ)可知,平面AGC的一个法向量()CD =.∴二面角P AG C --的平面角θ的余弦值2cos 2n CD n CDθ⋅=-=-=.二面角P AG C --…………………………12分 20.(本小题满分12分)解:(Ⅰ)由题意得2221,.b ca abc =⎧⎪⎪=⎨⎪=+⎪⎩…………………………………………3分解得23a =. 所以椭圆C 的方程为. …………………………………………4分(Ⅱ)设直线l 的方程为y x m =+,(3,)P P y ,由2213x y y x m ⎧+=⎪⎨⎪=+⎩,得2246330x mx m ++-=. …………………………6分 令223648480m m ∆=-+>,得22m -<<.1232x x m +=-,2123(1)4x x m =-. ……………………………………7分因为是以为顶角的等腰直角三角形,所以NP 平行于x 轴. ………………………………8分 过M 做NP 的垂线,则垂足Q 为线段NP 的中点.设点Q 的坐标为(),Q Q x y ,则2132Q M x x x x +===.由方程组1221221323(1)432x x m x x m x x ⎧+=-⎪⎪⎪=-⎨⎪+⎪=⎪⎩,,,解得2210m m ++=,即1m =-.而()122m =-∈-,, 所以直线的方程为. …………………………………………12分21.(本小题满分12分)解:(Ⅰ)设切点为()00,P x y ,()'xf x e x =-, ∴()000'1xf x e x =-=,……………………2分 令()xh x e x =-,则()'1xh x e =-,当0x >时,()'0h x >,()h x 在()0,∞+上为增函数; 当0x <时,()'0h x <,()h x 在(),0-∞上为减函数;2213x y +=PMN ∆PMN ∠l所以()()min 01h x h ==,所以00x =,又0200112xe x x a --=+,所以0a =.……………………4分 (Ⅱ)[)0,x ∀∈+∞,()f x bx ≥恒成立2102xx e bx ⇔---≥,[)0,x ∈+∞.令2()12xx g x e bx =---,[)0,x ∈+∞.()()'x g x e x b h x =--=,()'1x h x e =-,当0x >时,()'10xh x e =->,所以()h x 在[)0,+∞上为增函数,()min 1h x b =-,①若1b ≤,则当0x >时'()0g x >,故()g x 在[)0,+∞上为增函数,故[)0,x ∈+∞时,有()()00g x g ≥=即2102xx e bx ---≥恒成立,满足题意.…………8分②若1b >,因为()'g x 为()0,∞+上的增函数且()'010g b =-<,()()'ln 2ln ln 21ln 21ln 20g b b b b b =-->---=->⎡⎤⎣⎦,故存在()()00,ln 2x b ∈,使得()0'0g x =.当()00,x x ∈时,()'0g x <,()g x 在()00,x 为减函数,()()00g x g <=,矛盾,舍去. 综上1b ≤.………………………12分22. (本小题满分10分)解:(Ⅰ)4,2π⎛⎫⎪⎝⎭…………………………3分 (Ⅱ)4sin ρθ=………………………7分233ππθ⎛⎫<< ⎪⎝⎭……………………10分。
四川省成都石室中学2020-2021学年高二上学期10月月考数学理科试题成都石室中学2020~2021学年度高2022届十月考试数学试题(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线y =+的倾斜角是()A .30?B .60?C .120?D .150?2. 若直线022=++y ax 与直线840x ay ++=平行,则a 的值为()A.4B.4-C.4-或4D.2-3.已知椭圆方程为225x ky +=的一个焦点是(0,2),那么k =()A.59 B.57 C.1 D.534.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是()A .03=--y xB .032=-+y xC .01=-+y xD .052=--y x5.平移直线10x y -+=使其与圆22(2)(1)1x y -+-=相切,则平移的最短距离为()B .2 1 D. 16.已知α,β,γ,δ表示不同的平面,l 为直线,下列命题中正确的是()A .,αγβγαβ⊥⊥? B .,αββγαγ⊥⊥?⊥ C .,,αγβδαβγδ⊥? D .,,l l αγβγαβγ⊥⊥=?⊥7. 已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π48.已知椭圆2222:1(0)x y C a b a b +=>>,直线l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M-,则直线l 的斜率为() A.13 B.32 C.12D.1 9.已知圆(x -3)2+(y +5)2=36和点A (2,2),B (-1,-2),若点C 在圆上且△ABC 的面积为52,则满足条件的点C 的个数是()A .1B .2C .3D .410.已知F 是椭圆E :()222210x y a b a b+=>>的左焦点,经过原点O 的直线l 与椭圆E 交于P ,Q 两点,若3PF QF =,且120PFQ ∠=?,则椭圆E 的离心率为()A B .12 C D 11.已知圆()22:22C x y -+=,直线:2l y kx =-,若直线l 上存在点P ,过点P 引圆的两条切线12,l l ,使得12l l ⊥,则实数k 的取值范围是()A .()0,22??+∞?B .[2,2]C .(),0-∞D .[0,)+∞ 12.已知椭圆()2222:10x y C a b a b+=>>的两个焦点1F ,2F 与短轴的两个端点1B ,2B 都在圆221x y +=上,P 是C 上除长轴端点外的任意一点,12F PF ∠的平分线交C 的长轴于点M ,则12MB MB +的取值范围是()A .??B .??C .??D .2,?? 二、填空题:本大题共4小题,每小题5分,请将答案写在答题卡上。
石室中学高2021届2019~2020学年度上期十月考试数学试卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设21,F F 为定点,|21F F |6=,动点M 满足6||||21=+MF MF ,则动点M 的轨迹是A.椭圆B.直线C.圆D.线段 2. 已知点()2,1,2A 和点()2,3,4B ,则B .C. D. 3.已知圆的方程为042422=-+-+y x y x ,则圆的半径为 A. 3 B. 9 C.3 D.3±4.椭圆192522=+y x 上有一点P 到右焦点的距离为3,则P 到左焦点的距离等于A.3 B .6 C.7 D.105. 平移直线x -y +1=0使其与圆(x -2)2+(y -1)2=1相切,则平移的最短距离为A.2-1B .2- 2 C. 2D.2+16. 在椭圆1204022=+y x 上有一点P ,F 1、F 2是椭圆的左右焦点,△F 1PF 2为直角三角形,则这样的点P 有A .2个B .4个C .6个D .8个7. 双曲线2241-=yx 的离心率为B .C.D. 8. 如果222=+ky x表示焦点在y 轴上的椭圆,那么实数k 的取值范围是A .(,1)-∞B .(0,1)C .(0,2)D .(1,)+∞9.已知0ab ≠,点(,)M ab 是圆222x y r +=外一点,直线m 是经过点M 和坐标原点的直线,直线l 的方程是2ax by r +=,则下列结论正确的是A .m l P 且l 与圆相交B .l m ⊥且l 与圆相交C . m l P 且l 与圆相离D .l m ⊥且l 与圆相离10.已知1F 、2F 是椭圆的两个焦点,满足120⋅=MF MF 的点M 总在椭圆内部,则椭圆离心率的取值范围是 A .(0,1) B .1(0,]2C.(0,2 D.[,1)211.若直线2ax +by +6=0截圆C: x 2+y 2+2x -4y +3=0的弦长为(a ,b )向圆所作的切线长的最小值是A.2B.3C.4D.612.过坐标原点且不和坐标轴重合的直线交椭圆22:1169+=x y C 与,A B 两点,,,P M N 是椭圆C 上异于B A ,的点,且//,//AP OM BP ON ,则∆MON 的面积为A .B .32C .152D .6 二、填空题:共4题,每小题5分,合计20分.13.到定点1(0,12)-F 和2(0,12)F 的距离之和等于26的动点P 的轨迹方程为_________ 14.设圆22450x y x +--=的弦AB 的中点为(3,1),则直线AB 的方程是 .15.在椭圆13422=+y x 内有一点)1,1(-P ,F 为椭圆右焦点,在椭圆上有一点M ,使||||+MP MF 的值最小,则这一最小值是____________16.过椭圆22221(0)x y a b a b+=>>右焦点2F 的动直线l 与椭圆交于A 、B 两点,1F 为椭圆左焦点,当1ABF ∆的面积取得最大值时,直线x l ⊥轴,则此椭圆离心率的取值范围 .2三、解答题:共6题,合计70分.17. (本小题满分10分)已知椭圆C 的焦点12(1,0),(1,0)-F F ,点在椭圆C 上. (Ⅰ)写出椭圆C 的方程;(Ⅱ)点P 在椭圆上,且12∆PF F 的面积为1,求点P 的坐标.18.(本小题满分12分)已知直线l 过原点,圆22:650C x y x +-+=. (Ⅰ)若直线l 与圆C 相切,求l 的方程;(Ⅱ)若直线l 与圆C 交于,A B 两点,求线段AB 的中点M 的轨迹方程.19. (本小题满分12分)已知点(,0)A m 和(0,)B n ,2216m n +=,动点P 满足3=BP PA .设动点P 的轨迹为曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)不过(0,1)H 点的直线2y x t =+与曲线C 交于,M N 两点,若直线HM 与HN 的斜率之和为1,求实数t 的值.20. (本小题满分12分)在平面直角坐标系xoy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上.(I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.21. (本小题满分12分)在平面直角坐标系xOy 中,已知点(1,0)A -,(1,0)B ,动点M 满足4+=AM BM .记动点M 的轨迹为曲线C ,直线:2=+l y k x 与曲线C 相交于不同的两点,P Q .(Ⅰ)求曲线C 的方程;(Ⅱ)若曲线C 上存在点N ,使得λ+=OP OQ ON ()λ∈R ,求λ的取值范围.22. (本小题满分12分)已知椭圆C :22221x y a b +=(0a b >>)的短轴长为13.(I )求椭圆C 的标准方程;(II )设椭圆C 的左右焦点分别为1F ,2F ,左右顶点分别为A ,B ,点,M N 为椭圆C 上位于x 轴上方的两点,且12F M F N ,记直线,AM BN 的斜率分别为12,k k .若12320k k +=,求直线1F M 的方程.。
四川省成都市石室中学2020届高三数学上学期入学考试考试题理(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数满足,其中为虚数单位,则()A. B. C. D.【答案】A【解析】【详解】由,得,则,故选:A.2.己知集合,,则()A. B. C. D.【答案】B【解析】【分析】由二次不等式的解法可得:,由指数函数的值域的求法可得:,再结合并集的运算可得:,得解.【详解】解:解不等式,解得,即,又因为,所以,即,即,故选B.【点睛】本题考查了二次不等式的解法、指数函数的值域的求法及并集的运算,属基础题.3.下列判断正确的是()A. 命题“,”的否定是“,”B. 函数的最小值为2C. “”是“”的充要条件D. 若,则向量与夹角为钝角【答案】C【解析】【分析】由全称命题的否定为特称命题可得:命题的否定是“,”,选项A错误,由在为增函数,即,即B错误;由根式方程的求法得“”是“”的充要条件,即C正确,由向量的夹角可得向量与夹角为钝角或平角,即D错误,得解.【详解】解:对于选项A,命题“,”的否定是“,”,即A错误;对于选项B,令,则,则,,又在为增函数,即,即B错误;对于选项C,由“”可得“”,由“”可得,解得“”,即“”是“”的充要条件,即C正确,对于选项D,若,则向量与夹角钝角或平角,即D错误,故选C.【点睛】本题考查了全称命题的否定、均值不等式的应用、根式方程的求法及向量的夹角,属基础题.4.对于函数,下列结论不正确的是()A. 在上单调递增B. 图像关于y轴对称C. 最小正周期为D. 值域为【答案】C【解析】【分析】由,求得,再利用的性质即可得解.【详解】解:因为,则函数是在上单调递增的偶函数,且值域为,周期为,即选项正确,选项错误,故选C.【点睛】本题考察了三角恒等变换及函数的性质,属基础题.5.在如图的程序框图中,若输入m=77,n=33,则输出的n的值是A. 3B. 7C. 11D. 33【答案】C【解析】这个过程是,,故所求的最大公约数是。
成都石室中学2024~2025学年度上期高2025届十月考试数学试卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的选项填涂在答题卡相应位置.1. 已知集合{}1,2,4A =,2{N |20}B x x x =Î+-£,则A B =U ( )A. {}2,1,0,1,2,4-- B. {}0,1,2,4C. {}1,2,4 D. {}1【答案】B 【解析】【分析】根据一元二次不等式的解法,求得{}0,1B =,结合集合并集的概念与运算,即可求解.【详解】由不等式220x x +-£,可得(2)(1)0≤x x +-,解得21x -££,所以集合{}{N |21}0,1B x x =Î-££=,又因为{}1,2,4A =,可得{}0,1,2,4A B È=.故选:B.2. 2024年巴黎奥运会中国代表队获得金牌榜第一,奖牌榜第二的优异成绩.首金是中国组合黄雨婷和盛李豪在10米气步枪混合团体赛中获得,两人在决赛中14次射击环数如图,则( )A. 盛李豪的平均射击环数超过10.6B. 黄雨婷射击环数的第80百分位数为10.65C. 盛李豪射击环数的标准差小于黄雨婷射击环数的标准差D. 黄雨婷射击环数的极差小于盛李豪射击环数的极差【答案】C 【解析】【分析】根据图表数据可直接判断选项A ,利用第80百分位数的解法直接判断选项B ,根据图表的分散程度即可判断选项C ,根据极差的求法直接判断选项D.【详解】由题知,盛李豪的射击环数只有两次是10.8环,5次10.6环,其余都是10.6环以下,所以盛李豪平均射击环数低于10.6,故A 错误;由于140.811.2´=,故第80百分位数是从小到大排列的第12个数10.7,故B 错误;由于黄雨婷的射击环数更分散,故标准差更大,故C 正确;黄雨婷射击环数的极差为10.89.7 1.1-=,盛李豪的射击环数极差为10.810.30.5-=,故D 错误.故选:C3. 已知0.10.6a =,0.6log 0.3b =,0.6log 0.4c =,则a ,b ,c 的大小关系为( )A. b c a >> B. a b c >>C. c b a >> D. a c b>>【答案】A 【解析】【分析】由对数函数的底数小于1得到函数单调递减,判断出b ,c 的大小关系,又判断出b ,c 大于1,a 小于1,从而得出结论.【详解】由于0.6log y x =(0,)+¥单调递减,故0.60.60.6log 0.3log 0.4log 0.61b c =>=>=,又∵0.100.60.61a =<=,∴b c a >>.故选:A.4. 已知实数a ,b ,c 满足a b c >>,且0a b c ++=,则下列说法正确的是( )A. 22ab cb > B.222a cc a+³C. ||||a b > D. 0ab bc +>【答案】C 【解析】【分析】根据已知等式可确定0,0a c ><,结合不等式性质和作差法依次判断各个选项即可.【详解】由题,0,0a c ><,取1,0,1a b c ===-,则22ab cb =,故A 错误;在2522a c c a +=-,故B 错误;0ab bc +=,故D 错误;因为22()()()0a b a b a b c a b -=+-=-->,所以22a b >,即||||a b >,故C 正确.故选:C.5. “函数2()ln(22)f x x ax =-+的值域为R ”的一个充分不必要条件是( )A. [B. (C. ()-¥+¥U D. )+¥【答案】D 【解析】【分析】根据对数函数的性质,先分析出对数的真数部分能取得所有的正数,然后根据二次函数与其对应二次方程的关系,求出a 的范围即可求解.【详解】因为函数2()ln(22)f x x ax =-+的值域为R ,设222y x ax =-+,则二次函数y 需要取到一切正数,对应于方程2220x ax -+=中,0D ³,即2480a -³,解得a ³或a £,从而)+¥是“函数2()ln(22)f x x ax =-+的值域为R ”的充分不必要条件.故选:D6. 核燃料是重要的能量来源之一,在使用核燃料时,为了冷却熔化的核燃料,可以不断向反应堆注入水,但会产生大量放射性核元素污染的冷却水,称为核废水.核废水中含有一种放射性同位素氚,它有可能用辐射损伤细胞和组织,影响生物的繁殖和生态平衡.已知氚的半衰期约为12年,则氚含量变成初始量的110000大约需要经过( )年.(lg 20.3010»)A. 155 B. 159C. 162D. 166【答案】B 【解析】【分析】根据题意列出等量关系,借助换底公式和题目给出的参考量得出结果.【详解】设氚含量变成初始量的110000大约需要经过t 年,则1211()210000t =,121log 1210000t =,即48159lg 2t =»年,故选:B.7. 若函数()y f x =的图象如图1所示,则如图2对应的函数可能是( )A. (12)y f x =-B. 1(1)2y f x =-C. (12)y f x =--D. 1(1)2y f x =--【答案】A 【解析】【分析】根据函数定义域求出新函数定义域判断B,D;取特殊值判断C,根据函数平移伸缩变换判断A.【详解】由()y f x =的定义域为(1,)-+¥知,1(1)2y f x =-中111,42x x ->-<,不符合图2,故排除B ,D ;对于C ,当12x =时,(0)0y f =->,不满足图2,故C 错误;将函数()y f x =图关于y 轴对称,得到()y f x =-的图,向右平移1个单位得到(1)y f x =-的图,最后纵坐标不变,横坐标变为原来的一半,得到函数(12)y f x =-的图可能为图2.故选:A.8. 已知函数()11,0,2221,0.x x x f x x ì+>ï=íï-£î,则方程()(3)2f x f x +-=的所有根之和为( )A. 0 B. 3C. 6D. 9【答案】C【解析】的【分析】将方程根的问题转化为函数()y f x =和2(3)y f x =--的图象交点横坐标问题,数形结合即可判断交点个数,再根据对称性求解和即可解答.【详解】方程()(3)2f x f x +-=的根为函数()y f x =和2(3)y f x =--的图象交点横坐标,由函数()11,0,2221,0.x x x f x x ì+>ï=íï-£î得,()31,3,23232,3,x x x y f x x -ì<ï=--=íï-³î如下图所示,两函数图象共有4个交点,且因为()(3)2f x f x +-=,所以函数()y f x =与函数2(3)y f x =--的图象关于点3(,1)2中心对称,故方程()(3)2f x f x +-=的所有根之和为6.故选:C.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分, 部分选对的得部分分,有选错的得0分,.9. 已知函数()f x 的定义域为R ,()()()22f x y f x f y +=+,则( )A. ()00f = B. ()11f =C. ()f x 是奇函数 D. ()f x 在R 上单调递增【答案】AC 【解析】【分析】通过赋值法及特例逐项判断即可.【详解】由()()()22f x y f x f y +=+知,当0x y ==时, ()()030f f =,即()00f =,故A 正确;取()f x x =-,则()f x 满足条件()()()22f x y f x f y +=+,但()11f =-,且()f x 是在R 上单调递减,故B ,D错误;当,x t y t =-=时,()()()2f t f t f t =-+,即()()f t f t -=-,故C 正确.故选:AC.10. 已知复数12,z z 的共轭复数分别为21,z z ,则下列命题为真命题的是( )A. 1212z z z z +=+B. 1212z z z z ×=×C. 若120z z ->,则12z z >D. 若2221212z z z z +=+,则21210z z z z +××=【答案】ABD 【解析】分析】设出1i z a b =+,2i z c d =+,,,,R a b c d Î,结合共轭复数及模长定义与复数运算法则逐项计算可判断A 、B 、D ;举出反例可判断C.【详解】设1i z a b =+,2i z c d =+,且,,,R a b c d Î,则1i z a b =-,2i z c d =-;对A :12i i ()i z z a b c d a c b d +=+++=+++,12()i a c z b d z +=+-+所以12()i a c z b d z -=+++,所以1212z z z z +=+,故A 正确;对B :12i)(i)()i (()z z a b c d ac bd bc ad ++=--+=,12i)(i)()i (()z z a b c d ac bd bc ad --=--+=,故B 正确;对C :当1212i,2i z z =+=时,满足1210z z -=>,但不能得出12z z >,故C 错误;对D :2121212121211221212()()()()z z z z z z z z z z z z z z z z z z +=++=++=+++22121212z z z z z z =+++,故11220z z z z +=,故D 正确.故选:ABD.11. 设函数()()()ln f x x a x b =++,则下面说法正确的是( )A. 当0,1a b ==时,函数()f x 在定义域上仅有一个零点B. 当0,0a b ==时,函数()f x 在(1,)+¥上单调递增C. 若函数()f x 存在极值点,则a b£【D. 若()0f x ³,则22a b +的最小值为12【答案】ABD 【解析】【分析】代入0,1a b ==得到()f x 解析式,结合对数运算可得A 正确;求导分析单调性可得B 正确;当a b £时求导分析,当a b >利用换元法二次求导数分析可得C 错误;由复合函数同增异减得到()f x 的单调性,再结合二次函数取值可得D 正确;【详解】对于A ,当0,1a b ==时,()ln(1)f x x x =+,由()0f x =得,0x =,函数()f x 在定义域上仅有一个零点,故A 正确;对于B ,当0a b ==时,函数()ln f x x x =,当1x >时,()ln 10f x x ¢=+>,故函数()f x 在(1,)+¥上单调递增,故B 正确;对于C ,()ln()ln()1x a a bf x x b x b x b x b+-¢=++=+++++,当a b £时,函数()f x ¢在定义域上单调递增,且当x b ®-时,()f x ¥¢®-,当x ®+¥时,()f x ¥¢®+,此时函数()f x ¢存在零点0x ,即函数()f x 在0(,)b x -上单调递减,在0(,)x +¥上单调递增,故此时函数()f x 存在极值点,当a b >时,设()ln()1a b g x x b x b-=++++,则()2212()()a b x b a g x x b x b x b -+-=-=+++¢,令()0g x ¢=,则2x a b =-,故函数()f x ¢在(,2)b a b --上单调递减,在(2,)a b -+¥上单调递增,故()()2ln()2f x f a b a b ¢³¢-=-+,故当21e b a b <<+时,函数()f x ¢存在零点,函数()f x 存在极值点,综上,当函数()f x 存在极值点时,21eb a b <<+或a b £,故C 错误;对于D ,()()ln 0x a x b ++³恒成立,当()0f x =时,x a =-或1x b =-,当且仅当两个零点重合时, 即1a b -=-,因为y x a =+为增函数,设()()1ln ln 1y x b x a =+=++,则1y 在(1,)a a ---上单调递减,在(,)a -+¥上单调递增,所以函数()f x 在(1,)a a ---上单调递减,在(,)a -+¥上单调递增,满足()()ln 0x a x b ++³, 则22212212a b b b +=-+³,当12b =时取“=”,故D 正确,故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12. 若函数2()23f x x kx =++在[1,2]上单调,则实数k 的取值范围为_____.【答案】8k £-或4k ³-【解析】【分析】运用二次函数的单调性知识,结合对称轴可解.【详解】函数2()23f x x kx =++的对称轴为04k x =-,故当24k -³或14k-£时,函数()f x 在[1,2]上单调,即8k £-或4k ³-,故答案为:8k £-或4k ³-.13.若()y f x =是定义在R 上的奇函数,()(2)f x f x =-,(1)2f =,则(1)(2)(3)(2025)f f f f +++=L ________.【答案】2【解析】【分析】根据题意,推得(4)()f x f x +=,得到()y f x =的周期为4,再求得(1),(2),(3),(4)f f f f 的值,结合周期性,即可求解.【详解】因为函数()y f x =是定义在R 上的奇函数,故()()f x f x -=-,又因为()(2)f x f x =-,所以(2)()f x f x -=--,故(2)()f x f x +=-,所以(4)(2)()f x f x f x +=-+=,即()y f x =的周期为4,由于()y f x =为定义在R 上的奇函数,且(1)2f =,可得(0)0f =,(2)(0)0f f ==,(3)(1)(1)2f f f =-=-=-,所以(1)(2)(3)(4)0f f f f +++=,则(1)(2)(3)(2025)f f f f +++=L 506[(1)(2)(3)(4)](1)2f f f f f ´++++=.故答案为:2.14. 若过点()1,b 作曲线e x y x =的切线有且仅有两条,则b 的取值范围是______.【答案】25[0,e)e ìü-íýîþU 【解析】【分析】由题意,设切点000(,e )xx x ,利用相切性质得到关于0,b x 的关系式0200(1)e xb x x =-+,将切线条数问题转化为关于0x 的方程解的个数问题求解,再分离参数转化为函数2()(1)e x g x x x =-+的图象与直线y b =的交点个数问题,构造函数研究函数的单调性与最值,数形结合求b 的范围即可.【详解】设切点为000(,e )xx x ,()(1)e x f x x ¢=+,故切线方程为00000e (1)e ()x x y x x x x -=+-,将()1,b 代入切线方程得00000e(1)e (1)x x b x x x -=+-,0200(1)e x b x x \=-+,过点()1,b 作曲线e x y x =的切线有且仅有两条,则关于0x 的方程0200(1)e xb x x =-+有两解,可转化为直线y b =与函数2(1)e x y x x =-+的图象有两个交点.令2()(1)e x g x x x =-+,则2()(2)e (1)(2)e x x g x x x x x ¢=--=--+,当2x <-时,()0f x ¢<,()f x 在(),2¥--单调递减;当2<<1x -时,()0f x ¢>,()f x 在()2,1-单调递增;当1x >时,()0f x ¢<,()f x 在(1,+∞)单调递减;故()g x 的单调减区间(,2),(1,)-¥-+¥,增区间是(2,1)-.当x ®-¥时,()0g x ®,当x ®+¥时,()g x ®-¥,且25(1)e,(2)e g g =-=-,当y b =与()y g x =有且仅有两个交点时,25[0,e)e b ìüÎÈ-íýîþ,故答案为:25[0,e)e ìüÈ-íýîþ.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数()1ln 1kxf x x -=-为奇函数.(1)求实数k 值;(2)若函数()()2xg x f x m =-+,且()g x 在区间[]2,3上没有零点,求实数m 的取值范围.【答案】(1)1-(2)(,4ln 3)(8ln 2,)m Î-¥--+¥U 【解析】【分析】(1)根据奇函数定义建立方程,解得1k =±,检验即可求解;(2)利用导数研究函数的单调性可知()g x 在[2,3]上单调递减,根据零点的概念建立不等式,解之即可求解.【小问1详解】因为()1ln1kxf x x -=-是奇函数,所以()()f x f x -=-, 即11ln ln ln 1111kx kx x x kx x --+=-=----, 所以1111kx x kxx +=----,故22211k x x -=-,则1k =±,当1k =时,111xx -=--显然不成立;经验证:1k =-符合题意;所以1k =-;【小问2详解】由1()ln21x x g x m x +=-+-,22()2ln 21x g x x ¢=---, 当[2,3]x Î时,()0g x ¢<,故()g x 在[2,3]上单调递减.的的故()[ln 28,ln 34]g x m m Î-+-+.因为()g x 在区间[]2,3上没有零点,所以ln 280m -+>或ln 340m -+<,解得4ln 3m <-或8ln 2m >-,即(,4ln 3)(8ln 2,)m Î-¥--+¥U .16. 已知三棱锥D ABC -,D 在平面ABC 上的射影为ABC V 的重心O ,15AC AB ==,24BC =.(1)证明:BC AD ^;(2)E 为AD 上靠近A 的三等分点,若三棱锥D ABC -的体积为432,求二面角E CO B --的余弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)由题意可得AM BC ^、OD ^平面ABC ,根据线面垂直的性质可得OD BC ^,结合线面垂直的判定定理和性质即可证明;(2)建立如图空间直角坐标系,利用三棱锥的体积公式求得12OD =,由空间向量的线性运算求得()4,0,4OE =uuu r,结合空间向量法求解面面角即可.【小问1详解】如图所示,连结AO 并延长交BC 于M ,因为O 为△ABC 的重心,所以M 是BC 的中点,又因为AC AB =,所以由等腰三角形三线合一可得AM BC ^, 因为D 在平面ABC 上的射影为O ,所以OD ^平面ABC , 又ÌBC 平面ABC ,所以OD BC ^,又,,AM OD O AM OD =ÌI 平面AMD ,所以^BC 平面AMD , 又AD Ì平面AMD ,所以BC AD ^,【小问2详解】由(1)知AM BC ^,OD ^面ABC ,过M 作z 轴平行于OD ,则z 轴垂直于面ABC ,如图,以,MA MB 为x 轴,y 轴,建立空间直角坐标系,在ABC V 中,15AC AB ==,24BC =由(1)知,AM BC ^,故9AM ==,得11082ABC S AM BC =×=V , 所以三棱锥A-BCD 的体积为 1110843233ABC S OD OD ×=´´=V ,则12OD =因为O 为△ABC 的重心,故133OM AM ==,则()()()()()0,12,0,0,12,0,3,0,0,9,0,0,3,0,12C B O A D -,()()()6,0,0,6,0,12,3,12,0OA AD OC ==-=--uuu r uuu r uuu r因为E 为AD 上靠近A 的三等分点,所以()12,0,43AE AD ==-uuu r uuu r,故()14,0,43OE OA AD =+=uuu r uuu r uuu r设(),,n x y z =r 为平面ECO 的一个法向量,则4403120n OE x z n OC x y ì×=+=ïí×=--=ïîuuu r r uuu rr ,取4x =,则1,4y z =-=-,故()4,1,4n =--r,易得()0,0,1m =r是平面COB 的一个法向量, 设二面角E CO B --的平面角为q ,则q 为钝角,所以cos cos ,m n m n m n q ×=-=-==r r r rr r 所以二面角E CO B --的余弦值为 【点睛】17. 某小区有3000名居民,想通过验血的方法筛选乙肝病毒携带者,假设携带病毒的人占%a .为减轻工作量,随机地按n 人一组分组,然后将各组n 个人的血样混合在一起化验.若混合血样呈阴性,说明这n 个人全部阴性;若混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需要对每个人再分别化验一次.(1)若0.2,20,a n ==试估算该小区化验的总次数;(2)若0.9a =,且每人单独化验一次花费10元,n 人混合化验一次花费9n +元,求当n为何值时,每个居民化验的平均费用最少.注:假设每位居民的化验结果呈阴性还是阳性相互独立.当00.01p <<时,(1)1n p np -»-.【答案】(1)270 (2)10【解析】【分析】(1)设每组居民需化验的次数为X ,确定其取值,分别求概率,进而可得期望,即得;(2)设每组n 人总费用为Y 元,结合条件计算,然后表示出结合基本不等式即得.【小问1详解】设每组需要检验的次数为X ,若混合血样为阴性,则1X =,若混合血样呈阳性,则21X =, 所以20(1)(10.002)P X ==-,20(21)1(10.002)P X ==--, 所以202020()1(10.002)21[1(10.002)]2120(10.002)E X =´-+´--=-´-2120(1200.002) 1.8»-´-´=一共有300020150¸=组,故估计该小区化验的总次数是1.8150270´=.【小问2详解】设每组n 人总费用为Y 元,若混合血样呈阴性,则9Y n =+;若混合血样呈阳性,则119Y n =+,故(9)(10.009)n P Y n =+=-,(119)1(10.009)n P Y n =+=--()(9)0.991(119)(10.991)11100.9919n n n E Y n n n n =+×++×-=-´+每位居民的化验费用为()11100.99199911100.9911110(10.009)n n E Y n n n n n n n-´+==-´+»-´-+=911100.091 2.8n n -++³+=元 当且仅当90.09n n=,即10n =时取等号,故10n =时,每个居民化验的平均费用最少.18. 在平面直角坐标系xOy 中,已知()1,1A ,()1,1B -,动点P 满足OP mOA nOB =+uuu r uuu r uuu r,且1mn =.设动点P 形成的轨迹为曲线C .(1)求曲线C 的标准方程;(2)过点()2,2T 的直线l 与曲线C 交于M ,N 两点,试判断是否存在直线l ,使得A ,B ,M ,N 四点共圆.若存在,求出直线l 的方程;若不存在,说明理由.【答案】(1)22144x y -=(2)不存在直线l 符合题意,理由见解析【解析】【分析】(1)设(),P x y ,则由OP mOA nOB =+uuu r uuu r uuu r,可得x m n =+,y m n =-,再结合1mn =,消去,m n ,即可得曲线C 的标准方程,(2)判断直线l 的斜率存在,设l :()22y k x =-+,设()11,M x y ,()22,N x y ,将直线方程代入曲线C 的方程,化简后利用根与系数的关系,结合中点坐标公式表示出MN 的中点H 的坐标,利用弦长公式表示出MN ,表示出线段MN 的中垂线方程,求出其与与x 轴的交点坐标为4,01k Q k æöç÷+èø,而AB 的中垂线为x 轴,所以若A ,B ,M ,N 共圆,则圆心为4,01k Q k æöç÷+èø,从而由2222224MNQA QM QH HM QH ==+=+列方程求解即可.【小问1详解】设(),P x y ,则(),OP x y =uuu r,()1,1OA =uuu r ,()1,1OB =-uuu r ,因为OP mOA nOB =+uuu r uuu r uuu r,所以()()()(),1,11,1,x y m n m n m n =+-=+-,所以x m n =+,y m n =-,所以2x y m +=,2x yn -=,又122x y x y mn +-=×=,整理得22144x y -=,即曲线C 的标准方程为22144x y -=;【小问2详解】易知当l 的斜率不存在时,直线l 与曲线C 没有两个交点,所以直线l 的斜率存在,设l :()22y k x =-+,将直线l 与曲线C 联立,得22(2)2144y k x x y =-+ìïí-=ïî,消去y ,整理得()22212(22)4880kxk k x k k ----+-=,因为()()22224(22)4148832(1)0k k kkk k D =----+-=->且210k -¹,所以1k <且1k ¹-,设()11,M x y ,()22,N x y ,则1241k x x k +=+,21224881k k x x k -+=-,所以MN 的中点22,11kH k k æöç÷++èø,且1x M N =-=,将1241k x x k +=+,21224881k k x x k -+=-代入上式,整理得4MN =当0k ¹时,线段MN 的中垂线方程为1l :12214111k y x x k k k k k æö=--+=-+ç÷+++èø,令y =0,解得41k x k =+,即1l 与x 轴的交点坐标为4,01k Q k æöç÷+èø,当k =0时,线段MN 的中垂线为y 轴,与x 轴交于原点,符合Q 点坐标,因为AB 的中垂线为x 轴,所以若A ,B ,M ,N 共圆,则圆心为4,01k Q k æöç÷+èø,所以2222224MNQA QM QH HM QH ==+=+,所以()2222281442211111(1)(1)k k k k k k k k k +-æöæöæö-+=++ç÷ç÷ç÷++++-èøèøèø,整理得32622100k k k -++=,即()22(1)3450k k k +-+=,因为1k <且1k ¹-,所以上述方程无解,即不存在直线l 符合题意.19. 在高等数学中,我们将()y f x =在0x x =处可以用一个多项式函数近似表示,具体形式为:()()()()()()()()()200000002!!n nf x f x f x f x f x x x x x x x n ¢¢=+¢-+-+×××+-+×××(其中()()n f x 表示()f x 的n 次导数*3,N n n ³Î),以上公式我们称为函数()f x 在0x x =处的泰勒展开式.当00x =时泰勒展开式也称为麦克劳林公式.比如e x 在0x =处的麦克劳林公式为:22111e 12!3!x n x x x x n =++++++L L !,由此当0x ³时,可以非常容易得到不等式223111e 1,e 1,e 1,226x x x x x x x x x ³+³++³+++L 请利用上述公式和所学知识完成下列问题:(1)写出sin x 在0x =处的泰勒展开式.(2)若30,2x æö"Îç÷èø,sin e 1a xx >+恒成立,求a 的范围;(参考数据5ln 0.92»)(3)估计5ln3的近似值(精确到0.001)【答案】(1)1352111(1)sin 3!5!(21)!n n x x x x x n --+-=-+++-L L ; (2)1a ³; (3)0.511【解析】【分析】(1)求导,根据题意写出sin x 在0x =处的泰勒展开式;(2)结合sin x 在0x =处的泰勒展开式,构造函数证明3310,,sin 26x x x x æö"Î>-ç÷èø,再令31()ln(1)6g x x x x =--+,30,2x æöÎç÷èø,求导得到函数单调性,证明出30,,()02x g x æö"Î>ç÷èø,当1a ³时,31sin sin ln(1)6a x x x x x ³>->+ ,满足要求,当1a <时,令()sin ln(1)h x a x x =-+,30,2x æöÎç÷èø,易求得(0)10h a ¢=-<,所以必存在一个区间(0,)m ,使得()h x 在(0,)m 上单调递减, 所以(0,)x m Î时,()(0)0h x h <=,不合要求,从而得到答案;(3)求出ln(1)x +和ln(1)x -的泰勒展开式,得到35122ln 2135x x xx x +=+++-L ,令14x =,估计5ln3的近似值.【小问1详解】()sin cos x x ¢=,()cos sin x x ¢=-,()sin cos x x ¢-=-,()cos sin x x ¢-=,其中cos 01,sin 00==,sin x 在0x =处的泰勒展开式为:1352111(1)sin 3!5!(21)!n n x x x x x n --+-=-+++-L L ,【小问2详解】因为1352111(1)sin 3!5!(21)!n n x x x x x n --+-=-+++-L L ,由sin x 在0x =处的泰勒展开式,先证3310,,sin 26x x x x æö"Î>-ç÷èø,令3211()sin ,()cos 1,()sin 62f x x x x f x x x f x x x =-+¢=-+¢¢=-,()1cos f x x ¢¢¢=-,易知()0f x ¢¢¢>,所以()f x ¢¢在30,2æöç÷èø上单调递增,所以()(0)0f x f ¢¢>¢¢=,所以()f x ¢在30,2æöç÷èø上单调递增,所以()(0)0f x f ¢>¢=,所以()f x 在30,2æöç÷èø上单调递增,所以()(0)0f x f >=,再令31()ln(1)6g x x x x =--+,30,2x æöÎç÷èø,易得1(1)(2)2()1x x x g x x --+¢=+,所以()g x 在(0,1)上单调递增,在31,2æöç÷èø上单调递减,而3155(0)0,ln 02162g g æö==->ç÷èø,所以30,,()02x g x æö"Î>ç÷èø恒成立,当1a ³时,31sin sin ln(1)6a x x x x x ³>->+ ,所以sin e 1a x x >+成立,当1a <时,令()sin ln(1)h x a x x =-+,30,2x æöÎç÷èø,易求得(0)10h a ¢=-<,所以必存在一个区间(0,)m ,使得()h x 在(0,)m 上单调递减, 所以(0,)x m Î时,()(0)0h x h <=,不符合题意. 综上所述,1a ³.【小问3详解】因为1154ln ln,1314+=-转化研究1ln 1x x +-的结构,23456ln(1)23456x x x x x x x +=-+-+-+L ,23456ln(1)23456x x x x x x x -=-------L ,两式相减得35122ln 2135x x x x x +=+++-L ,取1,4x =得35512121ln 2((0.5108343454=´+´+´+»L ,所以估计5ln 3的近似值为0.511(精确到0.001).【点睛】麦克劳林展开式常常用于放缩法进行比较大小,常用的麦克劳林展开式如下:()21e 12!!n x n x x x o x n +=+++++L ,()()()352122sin 13!5!21!n n n x x x x x o x n ++=-+-+-++L ,()()()24622cos 112!4!6!2!nn n x x x xx o x n =-+-++-+L ,()()()2311ln 11231n n n x x xx x o x n +++=-+-+-++L ,()2111n n x x x o x x =+++++-L ,()()()221112!nn n x nx x o x -+=+++。
成都市石室中学2019-2020学年度上期高三10月月考数学试卷(理科)一、选择题:(本大题共12小题,每小题5分.)1.已知集合{|(1)(2)0},{|0}=--≤=>M x x x N x x ,则( ) A. N M ⊆ B. M N ⊆ C. M N ⋂=∅ D. M N R =U【答案】B【详解】由题意知:()(){}{}12012M x x x x x =--≤=≤≤,则M N ⊆ 本题正确选项:B2.已知i 为虚数单位,则232019i i i i ++++L 等于( ) A. i B. 1 C. i - D. 1- 【答案】D【详解】由于234110i i i i i i +++=--+=,且)ni n N *∈(的周期为4,2019=4504+3⋅,所以原式=2311i i i i i ++=--=-.故选:D3.已知命题p :(),0x ∀∈-∞,22310x x -+>,命题q :若0x ≥,则22310x x -+≤,则以下命题正确的为( )A. p 的否定为“[0,)x ∃∈+∞,22310x x -+≤”,q 的否命题为“若0x <,则22310x x -+>”B. p 的否定为“(,0)x ∃∈-∞,22310x x -+≤”,q 的否命题为“若0x <,则22310x x -+>”C. p 的否定为“[0,)x ∃∈+∞,22310x x -+≤”,q 的否命题为“若0x ≥,则22310x x -+>”D. p 的否定为“(,0)x ∃∈-∞,22310x x -+≤”,q 的否命题为“若0x ≥,则22310x x -+>” 【答案】B【详解】p 的否定为“(,0)x ∃∈-∞,22310x x -+≤”,q 的否命题为“若0x <,则22310x x -+>” 故选:B4.已知{}n a 是公差为12的等差数列,n S 为{}n a 的前n 项和.若2a ,6a ,14a 成等比数列,则5S =( ) A.352B. 35C. 252D. 25【答案】C【详解】因为2a ,6a ,14a 成等比数列,所以226214111151133,()()()2222a a a a a a a =+=++∴=, 因此5311255542222S =⨯+⨯⨯⨯=,选C.5.中国古代数学著作《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.意思是现有松树高5尺,竹子高2尺,松树每天长自己高度的一半,竹子每天长自己高度的一倍,问在第几天会出现松树和竹子一般高?如图所示是源于其思想的一个程序框图,若输入的x =5,y =2,输出的n 为4,则程序框图中的中应填( )A. y <xB. y≤xC. x≤yD. x =y【答案】C【详解】解:模拟程序的运行,可得x =5,y =2,n =1 x 152=,y =4 不满足条件,执行循环体,n =2,x 454=,y =8,此时,x >y , 不满足条件,执行循环体,n =3,x 1358=,y =16,此时,x >y ,不满足条件,执行循环体,n =4,x 40516=,y =32,此时,x <y ,由题意,此时,应该满足条件,退出循环,输出n 的值为4. 可得程序框图中的 中应填x ≤y ?故选:C .6.设函数2,1(),12x x f x x x -⎧≤⎪=⎨>⎪⎩,则满足()()2f f a f a =⎡⎤⎣⎦的a 的取值范围是( )A. (],0-∞B. []0,2C. [)2,+∞D. (][),02,-∞+∞U【答案】D【详解】作出()y f x =的图象,可得()f x 的最小值为12, 令()t f a =,考虑()2tf t =的解, 考虑()y f t =与2ty =的图像的交点情况,如图所示故1t ≥,下面考虑()1f a ≥的解,如图所示,可得0a ≤或2a ≥.故选D.7.若直线()24y k x =-+与曲线24y x =-有两个交点,则k 的取值范围是( )A. [)1,+∞B. 31,4⎡⎫--⎪⎢⎣⎭C. 3,14⎛⎤ ⎥⎝⎦D. (],1-∞-【答案】C 【解析】曲线24y x =-可化为,所以图象是以原点为圆心,为半径的圆,且只包括x 轴上方的图象,而直线()24y k x =-+经过定点,当直线与该半圆相切时刚好有一个交点,可以用圆心到直线的距离等于半径,求出临界值,利用数形结合,慢慢将直线绕定点转动,当直线过圆上的一点时,正好有两个交点,此时,再转动时仍只有一个交点,所以取值范围为3,14⎛⎤⎥⎝⎦,故选C.8.已知2ln3a =,3ln 2b =,6c e=,则a ,b ,c 的大小关系为( ) A. a c b >> B. b c a >> C. c a b >> D. c b a >>【答案】C【详解】由题得ln 9,ln8a b ==, ∴a b >. 又633ln 32ln 32(ln 3)2e c a e e e--=-=-=⋅,设()ln ,0f x x e x x =->, 则()1e x e f x x x-'=-=, ∴当0x e <<时,()0,()f x f x '<单调递减; 当x e >时,()0,()f x f x '>单调递增。
∵3e >,∴(3)()f f e >,即3ln3ln 0e e e e ->-=, ∴0c a ->,因此c a >, ∴c a b >>. 故选C .9.2021年广东新高考将实行312++模式,即语文数学英语必选,物理历史二选一,政治地理化学生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则他们选课相同的概率( ) A.136B.116C.18D.16【答案】D【详解】今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则基本事件总数n 24C ==6,他们选课相同包含的基本事件m =1, ∴他们选课相同的概率p m 1n 6==. 故选:D .10.已知函数()[]f x x =([]x 表示不超过实数x 的最大整数),若函数()2x xg x e e -=--的零点为0x ,则()0g f x =⎡⎤⎣⎦( )A. 12e e--B. -2C. 12e e-- D. 2212e e-- 【答案】B【详解】因为()2x xg x e e -=--,所以)0(x x g x e e -+'>=在R 上恒成立,即函数()2xxg x e e-=--在R 上单调递增;又0(0)220g e e =--=-<,11(1)20g e e -=--> 所以()g x 在(0,1)上必然存在零点,即0(0,1)x ∈, 因此[]00()0f x x ==,所以()0(0)2g f x g ==-⎡⎤⎣⎦. 故选B11.已知双曲线2222:1x y C a b -=(0,0a b >>)的焦距为4,其与抛物线2:3E y x =交于,A B 两点,O为坐标原点,若OAB ∆为正三角形,则C 的离心率为( )【答案】C【详解】设OAB ∆的边长为2m ,由抛物线和双曲线均关于x 轴对称,可设)),,,Am Bm -,又2m =,故1m =,所以)A ,故22311a b -=,又2c =,即224a b +=,解得a b ==则ce a==故选:C .12.已知函数31()21xxf x x x e e =-++-,其中e 是自然对数的底数.若()2(1)22f a f a -+≤,则实数a 的取值范围是( ).A. 31,2⎡⎤-⎢⎥⎣⎦B. 3,12⎡⎤-⎢⎥⎣⎦C. 11,2⎡⎤-⎢⎥⎣⎦D. 1,12⎡⎤-⎢⎥⎣⎦【答案】C【详解】令31()()12xxg x f x x x e e =-=-+-,x ∈R . 则()()g x g x -=-,()g x ∴在R 上为奇函数. 21()320220x xg x x e e '=-+++-=…, ∴函数()g x 在R 上单调递增.2(1)(2)2f a f a -+„,化为:2(1)1(2)10f a f a --+-„,即2(1)(2)0g a g a -+„,化为:2(2)(1)(1)g a g a g a --=-„, 221a a ∴-„,即2210a a +-„, 解得112a -剟. ∴实数a 的取值范围是1[1,]2-.故选:C .二、填空题:本大题共4小题,每小题5分,共20分.13.已知数列{}n a 满足11a =,11lg lg 2n n a a +=+,则5a =________. 【答案】100【详解】因为1111111lg lg lg lg lg 222n n n n n n n na a a a a a a a ++++=+⇒⇒-===⇒11a =. 所以数列{}n a 为以1为首项为公比的等比数列,即44511100a a q ==⨯=故填:10014.现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有____种.(用数字作答) 【答案】36【详解】由题意得5人排成一排,甲、乙两人不相邻,有3234A A 种排法,其中甲排在两端,有31332A A 种排法,则6人排成一排,甲、乙两人不相邻,且甲不排在两端,共有32313433362A A A A -=(种)排法.所以本题答案为36.15.已知球O 的内接圆锥体积为23π,其底面半径为1,则球O 的表面积为__________. 【答案】254π 【详解】由圆锥体积为23π,其底面半径为1,设圆锥高为h 则221133h ππ=⨯⨯,可求得2h = 设球半径为R ,可得方程:()2221R R --=,解得:54R =25254=164S ππ∴=⨯本题正确结果:254π16.已知抛物线C :22(0)y px p =>的焦点为F ,且F 到准线l 的距离为2,直线1l:0x my -=与抛物线C 交于P ,Q 两点(点P 在x 轴上方),与准线l 交于点R ,若||3QF =,则QRF PRFS S ∆∆=________.【答案】67【详解】因为F 到准线l 的距离为2,所以2p =,抛物线C :24y x =,(1,0)F .设11(,)P x y ,22(,)Q x y ,因为||3QF =,即22+1=3=2x x ⇒所以2y =-代入直线1l:522+225022m m --=⇒= 所以直线1l 为:525022x y ---= 由2252502(25)450224x y y y y x ⎧---=⎪⇒---=⎨⎪=⎩所以1245y y =- ,所以124510y -==,152x = ,所以2167121==5112QRFPRFS QR QF x S PRPFx ∆∆++===++故填:67三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤. 17.在ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,sin 2sin C B =.(1)求BDCD; (2)若1AD AC ==,求BC 的长.【答案】(1)2;(2)322.【详解】解:(1)由正弦定理可得在ABD ∆中,sin sin AD BDB BAD=∠, 在ACD ∆中,sin sin AD CDC CAD=∠, 又因为BAD CAD ∠=∠,sin 2sin BD CCD B==. (2)sin 2sin C B =,由正弦定理得22AB AC ==, 设DC x =,则2BD x =,则222254cos cos 24AB AD BD x BAD CAD AB AD +--∠==∠⋅,2222222AC AD CD x AC AD +--==⋅. 因为BAD CAD ∠=∠,所以2254242x x --=,解得22x =. 323BC x ==.18.为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学年开展覆盖本校各年级学生的《标准》测试工作.为做好全省的迎检工作,某市在高三年级开展了一次体质健康模拟测试(健康指数满分100分),并从中随机抽取了200名学生的数据,根据他们的健康指数绘制了如图所示的频率分布直方图.(1)估计这200名学生健康指数的平均数x 和样本方差2s (同一组数据用该组区间的中点值作代表); (2)由频率分布直方图知,该市学生的健康指数X 近似服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s . ①求(63.498.2)P X <<;②已知该市高三学生约有10000名,记体质健康指数在区间()63.4,98.2的人数为ξ,试求E ξ. 1.35 1.16≈, 若随机变量X 服从正态分布()2,N μσ,则()0.683P X μσμσ-<<+≈,(22)0.955P X μσμσ-<<+≈,(33)0.997P X μσμσ-<<+≈.【答案】(1)75,135;(2)①0.819;②8190.【详解】(1)由频率分布直方图可知,各区间对应的频数分布表如下: 分值区间[)40,50 [)50,60 [)60,70[)70,80 [)80,90 []90,100频数 5 15 40 75 45 20∴()14555515654075758545952075200x =⨯+⨯+⨯+⨯+⨯+⨯⨯=, ()()()()2222251540454575557565758575200200200200s =-⨯+-⨯+-⨯+-⨯()2209575135200+-⨯=.(2)①由(1)知X 服从正态分布()75,135N ,且11.6σ≈, ∴11(63.498.2)(-+2)=0.9550.6830.81922P X P X μσμσ<<=<<⨯+⨯=. ②依题意,ξ服从二项分布,即ξ~()410,0.819B ,则8190E np ξ==.19.在四棱锥P ABCD -中,AD BC ∥,12AB BC CD AD ===,G 是PB 的中点,PAD ∆是等边三角形,平面PAD ⊥平面ABCD .(Ⅰ)求证:CD ⊥平面GAC ;(Ⅱ)求二面角P AG C --大小的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)10 【详解】解:(Ⅰ)取AD 的中点为O ,连结OP ,OC ,OB ,设OB 交AC 于H ,连结GH .∵AD BC ∥,12AB BC CD AD ===∵四边形ABCO 与四边形OBCD 均为菱形 ∴OB AC ⊥,OB CD ∥∵CD AC ⊥ ∵PAD ∆为等边三角形,O 为AD 中点 ∴PO AD ⊥∵平面PAD ⊥平面ABCD 且平面PAD I 平面ABCD AD =.PO ⊂平面PAD 且PO AD ⊥ ∴PO ⊥平面ABCD ∵CD ⊂平面ABCD ∴PO CD ⊥∵H ,G 分别为OB ,PB 的中点∴GH PO P ∴GH CD ⊥又∵GH AC H =I AC ,GH ⊂平面GAC CD ⊥平面GAC(Ⅱ)取BC 的中点为E ,以O 为空间坐标原点,分别以OE uuu r ,OD uuu r ,OP uuur 的方向为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系O xyz -.设4=AD,则(0,0,P ,()0,2,0A -,)C,()0,2,0D,12G -⎝. (0,2,AP =u u u r,32AG =⎝u u u r .设平面PAG 的一法向量(,,)n x y z =r.由00n AP n AG ⎧⋅=⎨⋅=⎩u u u v v u u u vv 20302y x y ⎧+=⇒++=y x z ⎧=⎪⇒⎨=⎪⎩. 令1z =,则()1,n =r.由(Ⅰ)可知,平面AGC的一个法向量()CD =u u u r.∴二面角P AG C --的平面角的余弦值cos 5n CD n CDθ⋅=-==-u u u v v u u u v v . 二面角P AG C --大小的正弦值为5.20.已知椭圆C :()222210x y a b a b +=>>过点()0,1A.(Ⅰ)求椭圆C 的方程;(Ⅱ)斜率为1的直线l 交椭圆C 于()11,M x y ,()22,N x y 两点,且12x x >.若直线3x =上存在点P ,使得PMN ∆是以PMN ∠为顶角的等腰直角三角形,求直线l 的方程.【答案】(Ⅰ) 2213x y += (Ⅱ) y=x -1【详解】(Ⅰ)由题意得2221,3.b c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩解得23a =. 所以椭圆C 的方程为2213x y +=. (Ⅱ)设直线l 的方程为y=x+m ,()3,P P y 由2213x y y x m ⎧+=⎪⎨⎪=+⎩,得2246330x mx m ++-=.令223648480m m ∆=-+>,得22m -<<.1232x x m +=-,()212314x x m =-. 因为PMN ∆是以PMN ∠为顶角的等腰直角三角形,所以NP 平行于x 轴.过M 做NP 的垂线,则垂足Q 为线段NP 的中点.设点Q 的坐标为(),Q Q x y ,则2132Q M x x x x +===. 由方程组()12212213231432x x m x x m x x ⎧+=-⎪⎪⎪=-⎨⎪+⎪=⎪⎩,,,解得2210m m ++=,即1m =-. 而()122m =-∈-,, 所以直线l 的方程为y=x-1.21.已知函数2()12xx f x e =-- (1)若直线y x a =+为()f x 的切线,求a 的值. (2)若[)0,x ∀∈+∞,()f x bx ≥恒成立,求b 的取值范围.【答案】(1)0;(2)1b ≤【详解】(1)设切点为()00,P x y ,()'xf x e x =-, ∴()000'1x f x e x =-=,令()x h x e x =-, 则()'1x h x e =-, 当0x >时,()'0h x >,()h x 在()0,∞+上为增函数; 当0x <时,()'0h x <,()h x 在(),0-∞上为减函数; 所以()()min 01h x h ==,所以00x =,又0200112x e x x a --=+,所以0a =. (2)[)0,x ∀∈+∞,()f x bx ≥恒成立2102x x e bx ⇔---≥,[)0,x ∈+∞. 令2()12xx g x e bx =---,[)0,x ∈+∞. ()()'x g x e x b h x =--=,()'1x h x e =-,当0x >时,()'10xh x e =->,所以()h x 在[)0,+∞上为增函数, ()min 1h x b =-,①若1b ≤,则当0x >时'()0g x >,故()g x 在[)0,+∞上为增函数,故[)0,x ∈+∞时,有()()00g x g ≥=即2102xx e bx ---≥恒成立,满足题意. ②若1b >,因为()'g x 为()0,∞+上的增函数且()'010g b =-<,()'ln 2ln ln 2g b b b =--⎡⎤⎣⎦, 令()ln ln 2s b b b =--,其中1b >,()1'10s b b=->, 所以()s b 在()1,+∞为增函数,所以()()11ln 20s b s >=->,故存在0x ,使得()0'0g x =且()00,x x ∈时,()'0g x <,()g x 在()00,x 为减函数,故当()00,x x ∈时,()()00g x g <=,矛盾,舍去.综上可得:1b ≤.22.在平面直角坐标系xOy 中,圆C :22(4)4x y +-=.以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.(Ⅰ)求圆心C 的极坐标;(Ⅱ)从原点O 作圆C 的弦,求弦的中点轨迹的极坐标方程.【答案】(Ⅰ)4,2π⎛⎫ ⎪⎝⎭(Ⅱ)4sin ρθ=233ππθ⎛⎫<< ⎪⎝⎭ 【详解】(Ⅰ)因为22(4)4x y +-=,所以圆心(0,4)C所以圆心C 的极坐标为4,2π⎛⎫ ⎪⎝⎭(Ⅱ)根据题意知直线斜率不为0,故设直线为x my =联立直线与圆有2222(4)4(1)8120x y m y y x my ⎧+-=⇒+-+=⎨=⎩2=6448(1)033m m ∆-+>⇒-<< 所以12281y y m +=+ ,121228()1m x x m y y m +=+=+所以弦的中点坐标为1221224=2143321x x m x m m y y y m +⎧=⎪⎪+-<<⎨+⎪==⎪+⎩①,② ①② 得到x m y = ,再代入②得:241y x y =⎛⎫+ ⎪⎝⎭化简有24x y y += 将222cos ,sin x x y y ρθρρθ=⎧+=⎨=⎩代入有()2cos sin 4sin ρθρθρθ+=,化简得4sin ρθ=又因为m <<即cos sin θθ<< 所以233ππθ<< 所以弦的中点轨迹的极坐标方程为4sin ρθ=233ππθ⎛⎫<<⎪⎝⎭。