指数函数教学案例.doc
- 格式:doc
- 大小:12.23 KB
- 文档页数:4
㊀㊀㊀初探高中数学项目化学习以 指数函数 为例◉江苏省太仓高级中学㊀周艳东1引言项目化学习(P r o j e c tb a s e d l e a r n i n g,P B L ),指的是学生对与学科或跨学科有关的驱动性问题进行深入㊁持续的探究,调动所有知识㊁能力㊁品质等创造性地解决新问题㊁形成公开成果,对核心知识和学习历程产生深刻理解,并能够在新情境中进行迁移.作为一种 以研代教 的新尝试,项目化学习在促进学科知识和现实世界的联结,促使深度学习的发生,实现课程的跨界融通等方面具有重要的作用,它解决了分科与综合㊁知识与能力㊁真实情境与问题解决的矛盾,为课堂教学带来了创新与变革[1].高中数学中的很多教学内容都可以转化为项目,通过项目化学习来进行,比如,人教A 版教材必修第一册 4.2指数函数 这节内容.2项目化学习的客观条件2.1真实而复杂的情境就实践性的内涵来说,一方面,与生活联系紧密的内容更容易项目化,从而让学习变得真实;另一方面,真实情境更有助于激发学习动机,从而让学生全身心投入到提出假设㊁解释说明㊁交流讨论㊁挑战质询的学习过程中.教材设计了 景区门票与游客人数 碳14衰变 这两个真实且相对复杂的情境构建指数函数模型.尤其是 景区门票与游客人数 这个情境,其对应的是前几年关于 景区收门票与不收门票,哪种情况能产生最大经济效益 这个社会热点问题.全国多数景区都收门票,靠门票支撑景区与当地经济的发展,但也有一些景区不收门票,比如,杭州的西湖景区,不收门票反而带来了更大的经济效益,这种现象完全可以作为一个项目来研究.2.2具有挑战性的问题在 景区门票与游客人数 这一问题中,学生不仅需要经历现实问题数学化的过程,而且要把两个景区15年的游客人次统计数据(如表1所示)进行对比分析,寻找数据的变化规律,然后用合适的函数模型表示出来,最后借助图象直观和数学运算,对两地的收入情况进行对比并给出合理的建议.表1时间/年A 景区/万次年增加量/万次B 景区/万次年增加量/万次200160027820026099309312003620113443520046311138339200564110427442006650947548200766111528532008671105886020096811065567201069110729742011702118118220127119903922013721101005102201473211111811320157431112441262.3承前启后的知识内容指数函数 在教材中起到承上启下的作用,一方面,它是函数的延续,是继幂函数后学生学习的第二个函数模型;另一方面,它也为后续学习对数函数甚至三角函数积累宝贵的学习经验.也就是说, 指数函数 与学生所学和即将学的知识存在着密切的联系,因此在实践操作中,就很容易构建以 指数函数 为认知中心的知识网络.不仅如此,如果深入体会 指数函数 与生活㊁与人生之间的关联性,还会发现 指数函数 具有丰富的德育内涵,比如, 指数爆炸 与 疾病传播 ㊁ 指数衰减 与 一尺之锤,日取其半,百世不竭 等.由此可见,开展 指数函数 项目化学习,不仅能够整体化构建知识体系,而且能够创生出有价值的成果.922022年6月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀教学导航教育教学Copyright ©博看网. All Rights Reserved.㊀㊀㊀3项目的设计设计项目时,需要思考很多因素,比如,为什么要设计这个项目,这个项目中涉及的核心知识㊁关键概念是什么,想让学生通过项目掌握什么样的技能,这个项目对于学生的意义是什么,学生是否喜欢等.一个完整的项目一般由项目主题㊁项目描述㊁核心概念㊁驱动问题㊁活动设计这五个部分构成.3.1项目主题项目主题的选择和设计要符合科学性和发展性的特点.主题不仅要明确,而且要指向生活现实,立足学生学情. 指数函数 指向过于宽泛,不宜直接作为项目的主题,如果以 景区是否应该收门票? 两个景区收入函数模型的对比分析 为主题,就更能够体现项目的味道.3.2项目描述项目描述的主要功能是通过对项目的研究背景及研究任务的简单阐述,让学生明确研究的价值及意义,激发学生研究的兴趣.以 景区是否应该收门票?两个景区收入函数模型的对比分析 这个项目主题为例,可以这样描述项目:最近,全国部分景区㊁公园门票价格纷纷上涨,不少景区门票争先恐后地迈入了 百元时代 .据2012年的统计,全国130家5A级景区中,有近半数门票价格过百元.其中,价格在100元至200元的5A级景区约占35.38%.自然景区㊁公园该不该收门票㊁如何收门票这些问题,成为人们热议的话题现有A,B两个景区近15年的游客人数的数据,试通过分析数据,建立两个景区游客人数的函数模型,并在此基础上提出合理的建议.3.3核心概念核心概念指的是项目本身所包含的主要知识及项目学习中所运用的主要知识.比如, 景区是否应该收门票? 两个景区收入函数模型的对比分析 这个项目所涉及的核心概念有增加量与增长率㊁指数函数的定义㊁指数函数的图象与性质㊁数据分析㊁图象拟合等; 指数函数性质的人生启示 项目则涉及指数爆炸㊁指数衰减㊁极限等概念.3.4驱动问题驱动问题是指驱动项目学习进程的问题链.驱动问题源自对项目学习任务的细分,其目的在于把相对宏大的㊁复杂的研究任务,分解为一个个相对独立又紧密联系的问题,学生通过对这些问题的思考,会找到项目的解决方案.在 景区是否应该收门票? 两个景区收入函数模型的对比分析 项目中,学生需要面对如何进行数据分析找到变化规律㊁如何获得函数模型㊁如何研究函数性质等一系列困难,这些都可以通过设计以下驱动问题得以化解:问题1:如何发现数据变化的规律?问题2:联系已经学过的函数模型,哪类函数模型可以用来刻画B景区的变化规律?问题3:这个函数模型具有怎样的性质?问题4:生活中还有哪些现象能够用这个函数模型进行刻画请找一些具体的案例进行说明.问题5:通过比较A,B两个景区旅游收入的变化情况,能获得怎样的结论?3.5活动设计活动设计是对驱动问题的回应,即围绕着驱动问题设计相应的活动,帮助学生获得研究的思路或找到问题的答案.比如,针对上述驱动问题,可以设计如下活动:活动1:利用信息技术把数据转化成图象,分析图象的特征.活动2:围绕增加量㊁增长率两个特征量寻找函数模型.活动3:画出函数图象,归纳函数的性质.活动4:联系生活,分享经验.活动5:通过运算对门票现象做出理性分析.4项目化学习的实施4.1合理规划,小组合作如果项目比较宏大,往往需要在课前㊁课内㊁课后分阶段有计划地推进.由于 景区是否应该收门票? 两个景区收入函数模型的对比分析 这个项目涉及的核心知识与技能比较少,属于 微项目 的范畴,因此完全可以在课内完成.由于学习任务的综合性㊁复杂性和挑战性,项目实施具体要以小组合作学习的方式推进.4.2关注过程,多元评价评价应贯穿项目化学习的全过程,要树立以发展核心素养为目标的价值取向.在评价中,要把定量评价与定性评价㊁过程性评价与终结性评价结合起来,具体可以借助评价量表进行操作[2].参考文献:[1]夏雪梅.在学科中进行项目化学习:学生视角[J].全球教育展望,2019(2):83G94.[2]郭芬云,刘静.项目化学习的特征及其教学意义[J].中国成人教育,2020(16):11G15.Z03教育教学教学导航㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年6月上半月Copyright©博看网. All Rights Reserved.。
《指数函数》学历案(第一课时)一、学习主题本节课的主题是中职数学课程中的《指数函数》。
我们将围绕指数函数的定义、性质及图像等方面进行学习和探究,帮助学生建立对指数函数的基本认识和掌握其基本应用。
二、学习目标1. 理解指数函数的定义,掌握其基本形式。
2. 了解指数函数的性质,包括单调性、值域等。
3. 掌握指数函数图像的绘制方法,能够根据函数表达式绘制大致图像。
4. 学会利用指数函数解决简单的实际问题。
三、评价任务1. 通过课堂提问和小组讨论,评价学生对指数函数定义及性质的掌握情况。
2. 通过学生独立绘制指数函数图像的过程及结果,评价其图像绘制技能。
3. 通过解决实际问题的作业,评价学生对指数函数应用能力的掌握程度。
四、学习过程1. 导入新课:通过复习之前学过的幂的概念,引导学生理解指数函数的来源及基本形式。
2. 定义与性质:通过教师讲解及课件演示,使学生明确指数函数的定义,并理解其基本性质,如单调性、值域等。
3. 图像绘制:通过具体实例,指导学生掌握指数函数图像的绘制方法,并尝试自己绘制。
4. 实际应用:结合实际问题,引导学生运用指数函数解决实际问题,如放射性物质衰变等。
5. 课堂小结:总结本节课的重点内容,强调指数函数的重要性及其在实际生活中的应用。
五、检测与作业1. 课堂检测:通过课堂小测验,检测学生对指数函数定义及性质的掌握情况。
2. 作业布置:布置相关练习题,包括指数函数的简单计算、图像绘制及实际问题解决等,要求学生独立完成并提交。
3. 作业评价:教师批改作业,了解学生掌握情况,并进行针对性指导。
六、学后反思1. 反思教学方法:教师反思本节课的教学过程,总结优点及不足,为今后的教学提供借鉴。
2. 反思学生学习情况:教师通过观察学生课堂表现、作业完成情况等,了解学生学习情况,进行个性化指导。
3. 学生自我反思:学生回顾本节课的学习过程,总结自己的收获及不足,为今后的学习制定改进措施。
通过本节课的学习,学生应该能够更加深入地理解指数函数的概念和性质,掌握其基本应用。
高中数学《指数函数及其性质》教学案例分析指数函数及其性质是高中数学重要的内容之一,也是学生较难理解的部分。
为了帮助学生更好地掌握指数函数的概念及其性质,我设计了以下的教学案例分析。
【案例分析】案例一:小明家的兔子繁殖问题小明家养了一对兔子,其中一只是雄兔,一只是雌兔。
已知一对兔子的寿命为2年,每对兔子每年可以繁殖一对新兔子,并且新生的兔子从出生后的第2年开始可以繁殖。
现在请你计算一下,小明家从第1年开始,到第n年结束,一共有多少对兔子?将此问题建模为数学问题。
【学生活动】1. 学生自主独立思考并讨论如何建立数学模型。
2. 学生可以根据问题描述,逐年列出兔子的数量的变化情况。
3. 学生可以发现,第1年有1对兔子,第2年有2对兔子,第3年有3对兔子……依次递增。
4. 学生可以推测,第n年结束时的兔子对数为n。
5. 学生运用已学的指数函数的知识,得出兔子对数是以指数形式增长的。
【教师指导】1. 引导学生理解指数函数的概念,指出指数函数是以底数为常数、指数为自变量的函数。
2. 引导学生根据已知条件,建立函数模型:f(n) = 2^(n-1),其中f(n)表示第n年结束时的兔子对数。
3. 引导学生通过计算,验证函数模型的正确性。
4. 引导学生利用求函数零点的方法,求解方程2^(n-1) = 0,引导学生分析零点对应的实际意义。
【案例分析】案例二:小明家的股票投资问题小明有100万元,他把这笔钱全部用于股票投资。
已知该股票每年的收益率为5%,并且收益是连续复利计算的。
请你计算一下,经过n年后,小明的投资金额是多少。
将此问题建模为数学问题。
通过以上案例分析,学生可以通过实际问题来理解指数函数及其性质。
在解决问题的过程中,学生需要运用已学的知识,建立数学模型,并通过计算验证模型的正确性。
学生还需要利用指数函数的性质,解决实际问题。
这样的教学方法既激发了学生的学习兴趣,又提高了学生的问题解决能力。
《指数函数的概念》教案一、教学目标:1. 理解指数函数的定义和基本性质。
2. 学会运用指数函数解决实际问题。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学内容:1. 指数函数的定义与表达式2. 指数函数的性质3. 指数函数的应用三、教学重点与难点:1. 重点:指数函数的定义、性质及应用。
2. 难点:指数函数在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究指数函数的定义和性质。
2. 用实例讲解指数函数在实际问题中的应用,提高学生的学习兴趣。
3. 利用数形结合法,帮助学生直观地理解指数函数的性质。
五、教学过程:1. 引入:通过生活中的实例,如细胞分裂、放射性衰变等,引导学生思考指数增长的特点。
2. 讲解:介绍指数函数的定义、表达式,并通过PPT展示指数函数的图像,让学生直观地感受指数函数的性质。
3. 实践:让学生分组讨论,每组选取一个实际问题,运用指数函数进行解决,并分享解题过程和答案。
4. 总结:对本节课的内容进行总结,强调指数函数的性质和应用。
5. 作业:布置相关练习题,巩固所学内容。
教案仅供参考,具体实施时可根据实际情况进行调整。
六、教学评价:1. 评价指标:学生对指数函数定义的理解、指数函数性质的掌握以及实际问题中的应用能力。
2. 评价方法:课堂练习、小组讨论、课后作业和考试。
3. 评价内容:a. 指数函数的定义及其表达式;b. 指数函数的单调性、奇偶性、周期性等性质;c. 运用指数函数解决实际问题的能力。
七、教学资源:1. PPT课件:展示指数函数的图像、实例及应用;2. 练习题:涵盖指数函数的定义、性质和应用;3. 实际问题案例:用于引导学生运用指数函数解决实际问题;4. 小组讨论工具:如白板、彩笔等。
八、教学进度安排:1. 课时:2课时(90分钟);2. 教学环节:引入(10分钟)、讲解(40分钟)、实践(25分钟)、总结(10分钟)、作业布置(5分钟)。
《指数函数》教学案例一、背景介绍本课选自普通高中教科书人教B 版《数学》(必修二)第四章第一节,指数函数是高中新引进的第一个基本初等函数,因此,先让学生了解指数函数的实际背景,然后对指数函数概念的建立,函数图象的绘制及基本性质作初步的介绍。
课标要求理解指数函数的概念和意义,能借助计算机画出具体指数函数的图象,初步探索并理解指数函数有关的性质。
本节课属于新授课,通过引导,组织和探索,让学生在学习的过程中体会研究具体指数函数及其性质的过程和方法,如具体到一般的过程、数形结合的的方法等,使学生能更深刻理会指数函数的意义和基本性质。
二、本节课教学目标1.知识与技能:(1)掌握指数函数的概念,并能根据定义判断一个函数是否为指数函数.(2)能根据指数函数的解析式作出函数图象,并根据图象给出指数函数的性质.(3)能根据单调性解决基本的比较大小的问题.2.过程与方法:通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论、方程的思想及特殊到一般的学习数学的方法 ,增强识图用图的能力。
3.情感、态度、价值观:使学生领会数学的抽象性和严谨性,培养他们实事求是的科学态度,积极参与和勇于探索的精神.4.重难点:(1)指数函数的定义、图象、性质(2) 指数函数的性质和应用。
三、课堂教学实录 (一)问题情景问题1.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,…,一个这样的细胞分裂次以后,得到的细胞个数与有怎样的关系.问题2.有一根1米长的绳子,第一次剪去绳长的一半,第二次再剪去剩余绳子的一半,…,剪去次后绳子剩余的长度为米,试写出与之间的关系. 学生活动1.思考问题1,2给出y 与x 的函数关系?2.观察得到的函数2xy =,1()2xy =与函数y=x 2的区别. 3.观察函数2xy =,1()2xy =与xy a =的相同特点.建构数学(用投影仪,把两个例子展示到黑板上)[师]:通过问题1,2的分析同学们得出y 与x 之间有怎样的关系? [生1]:2xy = [生2]:1()2xy =[师]:这两个关系式能否都构成函数呢?[生]:每一个x 都有唯一的y 与之对应,因此按照函数的定义这两个关系都可以构成函数.[师]:既然这两个都是函数,那么同学们观察我们得到的这两个函数2x y =,1()2xy =在形式上与函数y=x 2有什么区别.(引导学生从自变量的位置观察).[生]:前两个函数的自变量都在指数的位置上,而y=x 2的自变量在底上.[师]:那么再观察一下2xy =,1()2xy =与函数xy a =有什么相同点?[生]:他们的自变量都在指数的位置,而且他们的底都是常数. [师]:由此我们可以抽象出一个数学模型x y a =就是我们今天要讲的指数函数.(在屏幕上给出定义) (二)概念形成定义:一般地,函数xy a = (a >0,a ≠1)叫做指数函数,它的定义域是R.概念解析1:[师]:同学们思考一下为什么x y a =中规定a >0,a ≠1?(引导学生从定义域为R的角度考虑).(先把a=0,a <0,a=1显示出来,学生每分析一个就显示出一个结果)[生]:⑴若a=0,则当x=0时, xa =0没有意义.⑵若a <0,则当x 取分母为偶数的分数时,没有意义.例如:.⑶若a=1,则ax=1,这时函数就为一个常数1没有研究的价值了. 所以,我们规定指数函数的底a >0,a ≠1.[师]:很好,请坐.我们既然知道了底的取值范围,那么看这样一个问题:问题1.已知函数(32)xy a =-为指数函数,求a 的取值范围.(屏幕上给出问题)概念解析2: [师]:我们知道形如x y a =(a >0,a ≠1)的函数称为指数函数.通过观察我们发现:⑴ax 前没有系数,或者说系数为1.既1xa ;⑵指数上只有唯一的自变量x ;⑶底是一个常数且必须满足:a >0,a ≠1. 那么,根据分析同学们判断下列表达式是否为指数函数?(在屏幕上给出问题2)问题2.⑴(0.2)xy =,⑵(2)xy =-,⑶xy a =,⑷1()3x y =⑸1x y =,⑹ 2.3x y =,⑺3x y -=, [生1]:(答)⑴⑶⑷为指数函数.⑵⑸⑹⑺不是.[生2]:我不同意,⑺应该是指数函数,因为13()3xx y -==[师]:很好,我们发现有些函数表面上不是指数函数,其实经过化简以后就变成了指数函数.所以不要仅从表面上观察,要抓住事物的本质. [师]:上面我们分析了指数函数的定义,那么下面我们就根据解析式来研究它的图象和性质.(三)概念深化根据解析式我们要作出函数图象一般有哪几个步骤? [生]:(共同回答)列表,描点,连线.[师]:好,下面我请两个同学到黑板上分别作出2xy =,12xy =和3x y =,13xy =的函数图象.(等学生作好图并点评完以后,再把这四个图用几何画板在屏幕上展示出来)[师]:那么我们下面就作出函数:2xy =,12xy =,3xy =,13xy =的图象[师]:通过这四个指数函数的图象,你能观察出指数函数具有哪些性质?(先把表格在屏幕上打出来,中间要填的地方先空起来,根据学生的分析一步步展示出来)[生1]:函数的定义域都是一切实数R ,而且函数的图象都位于x 轴上方.[师]:函数的图象都位于x 轴上方与x 有没有交点?随着自变量的取值函数值的图象与x 轴是什么关系?[生1]:没有.随着自变量x 的取值函数的图象与轴无限靠近.[师]:即函数的值域是:(0,+∞).那么还有没有别的性质?[生2]:函数12xy =、13xy =是减函数,函数2x y =、3x y =是减函数.[师]:同学们觉的他这种说法有没有问题啊?(有)函数的单调性是在某个区间上的,因此有说明是在哪个范围内.又0<12,12<1,1<2,3那么上述的结论可以归纳为:[生2]:当0<a <1时,函数x y a =在R 上是减函数,当a >1时,函数xy a =在R 上是增函数.[师]:很好,请做!(提问)你观察我们在作图时的取值,能发现什么性质?[生3]:当自变量取值为0时,所对的函数值为1.一般地指数函数xy a =当自变量取0时,函数值恒等于1.[师]:也就是说指数函数恒过点(0,1),和底a 的取值没有关系.那么你能否结合函数的单调性观察函数值和自变量x 之间有什么关系? [生3]:由图象可以发现:当0<a <1时,若x >0,则0<f(x)<1;若x <0,则1≤f(x).当a >1时,若x >0,则f(x)>1;若x <0,则0<f(x)<1.[师]:刚才是我们通过每个函数的图象得到共同的性质,那么同学们在观察函数图象之间有没有什么联系?[生4]:函数2xy =与12xy =的图象关于y 轴对称,函数3xy =与13xy =的图象关于y 轴对称,所以是偶函数.[师]:前面的结论是正确的,同学们说后面那句话对吗?[生]:(共同回答)不对,因为函数的奇偶性是对一个函数的,所以没有这个性质.[师]:由此我们得到一般的结论,函x y a =与xy a -=的图象关于y 轴对称.[师]:很好,那么我们把同学们刚才归纳的指数函数的性质综合起来,放到一张表格内.小练习1根据指数函数的性质,利用不等号填空.(在屏幕上给出练习,让学生口答)⑴345________0,⑵15-________0,⑶07________0,⑷4249-_______0,⑸223________1,⑹479-________1,注:这部分知识主要考察了指数函数的值域和对性质:当0<a<1时,①若x>0,则0<f(x)<1②若x<0,,则1<f(x);当a>1时①若x>0,则f(x)>1②若x<0,则0<f(x)<1的应用.这个知识点是比较重要的部分在后面的比较大小中常常用到,所以在这个地方给出这样的一个巩固练习还是很有必要的.(四)应用举例例1:比较下列各题中两值的大小分析:[师]:前面我们讲了指数函数,好象和这个比大小没有关系.这几个也不是函数那怎么比较大小呢?先不考虑这个上面讲的性质哪个可以和大小联系起来呢?[生]:单调性和大小有关,我们可以借助于指数函数的单调性老考虑,要比较大小的两个数可以看成指数函数解答:(1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,可以利用函数的单调性比较大小。
《指数函数的概念》教案一、教学目标1. 理解指数函数的定义和性质。
2. 掌握指数函数的图像和特征。
3. 能够运用指数函数解决实际问题。
二、教学内容1. 指数函数的定义:指数函数是一种形式的函数,形如f(x) = a^x,其中a 是底数,x 是指数。
2. 指数函数的性质:底数a > 1 时,函数随着x 的增大而增大;底数0 < a < 1 时,函数随着x 的增大而减小。
3. 指数函数的图像:指数函数的图像通常是一条曲线,当底数a > 1 时,曲线向上凸起;当底数0 < a < 1 时,曲线向下凸起。
4. 指数函数的应用:解决实际问题中涉及增长、衰减、人口增长等方面的问题。
三、教学重点与难点1. 重点:指数函数的定义和性质。
2. 难点:指数函数的图像和应用。
四、教学方法1. 讲授法:讲解指数函数的定义、性质和图像。
2. 案例分析法:分析实际问题,运用指数函数解决。
3. 互动讨论法:引导学生提问、思考、交流。
五、教学过程1. 引入:通过生活实例,如人口增长、放射性衰变等,引导学生思考指数函数的应用。
2. 讲解:讲解指数函数的定义、性质和图像,结合实例进行分析。
3. 练习:让学生绘制指数函数的图像,观察和分析函数特征。
4. 应用:运用指数函数解决实际问题,如人口增长预测、放射性物质衰减等。
六、教学评价1. 评价指标:学生对指数函数定义、性质和图像的理解程度,以及运用指数函数解决实际问题的能力。
2. 评价方法:课堂提问、练习题、小组讨论、课后作业等。
3. 评价结果:根据学生的表现,给予及时反馈,鼓励优点,指出不足,促进学生的学习进步。
七、教学资源1. 教材:指数函数的相关章节。
2. 课件:用于展示指数函数的定义、性质和图像。
3. 练习题:用于巩固所学知识,提高解题能力。
4. 实际问题案例:用于引导学生运用指数函数解决实际问题。
八、教学进度安排1. 第一课时:介绍指数函数的定义和性质。
指数函数教案设计一、教学目标知识与技能:1. 理解指数函数的定义和性质。
2. 掌握指数函数的图象和应用。
3. 学会解决与指数函数相关的问题。
过程与方法:1. 通过观察、分析和归纳,探索指数函数的性质。
2. 利用指数函数模型解决实际问题。
情感态度价值观:1. 培养学生的数学思维能力。
2. 激发学生对数学的兴趣和好奇心。
二、教学内容第一节:指数函数的定义与性质1. 引入指数函数的概念。
2. 分析指数函数的性质:单调性、奇偶性、周期性。
第二节:指数函数的图象1. 绘制常见指数函数的图象。
2. 分析指数函数图象的特点。
第三节:指数函数的应用1. 应用指数函数解决实际问题。
2. 利用指数函数模型进行预测和计算。
三、教学方法采用问题驱动法、案例教学法和讨论法。
通过提出问题、分析问题、解决问题的过程,引导学生主动探索指数函数的性质和应用。
利用实际案例,让学生体验数学与生活的紧密联系。
通过小组讨论,培养学生的合作能力和口头表达能力。
四、教学资源1. 教案、PPT课件。
2. 指数函数相关案例资料。
3. 计算器、白板等教学工具。
五、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与程度。
2. 作业完成情况:检查学生作业的完成质量和速度。
3. 小组讨论:评估学生在讨论中的表现,包括观点阐述、合作能力和解决问题的能力。
4. 课后反馈:收集学生对课堂内容和教学方法的反馈,以便进行教学改进。
六、教学安排第一节:指数函数的定义与性质(45分钟)1. 引入指数函数的概念(10分钟)2. 分析指数函数的性质:单调性、奇偶性、周期性(25分钟)3. 练习与讨论(10分钟)第二节:指数函数的图象(45分钟)1. 绘制常见指数函数的图象(20分钟)2. 分析指数函数图象的特点(20分钟)3. 练习与讨论(5分钟)第三节:指数函数的应用(45分钟)1. 应用指数函数解决实际问题(20分钟)2. 利用指数函数模型进行预测和计算(20分钟)3. 练习与讨论(5分钟)七、教学反思在授课过程中,注意观察学生的反应,根据学生的实际情况调整教学节奏和内容。
学科德育案例x 次后绳子剩余的长度为y 米,试写出y 与x 之间的函数关系式。
生:x y )21(=(∈x *N ) (二)师生互动、探究新知 1.指数函数的定义⑴让学生思考讨论以下问题(问题逐个给出):①xy 2=(∈x *N )和xy )21(=(∈x *N )这两个解析式有什么共同特征?②它们能否构成函数?③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字? 引导学生观察,两个函数中,底数是常数,指数是自变量。
如果可以用字母a 代替其中的底数,那么上述两式就可以表示成xa y =的形式。
自变量在指数位置,所以我们把它称作指数函数。
⑵让学生讨论并给出指数函数的定义。
对于底数的分类,可将问题分解为:①若0 a 会有什么问题?(如2-=a ,21=x 则在实数范围内相应的函数值不存在) ②若 会有什么问题?(对于0≤x ,xa 都无意义) ③若又会怎么样?(无论 取何值,它总是1,对它没有研究的必要.)为了避免上述各种情况的发生,所以规定且.接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如xy 35⨯=,xy 23=,xy 3-=。
这样设计的目的是学生可能存在对指数函数形式上的一种误解,即只看指数位置是否为自变量。
通过以上的三个小例子,学生就完成对指数函数彻底的认识,解决的问题。
2.指数函数性质 ⑴提出两个问题①目前研究函数一般可以包括哪些方面;②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究? 可以从图象和解析式列表这三个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,⑵分组活动,合作学习让学生分为三大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;一组借助列表利用计算器和坐标网格研究指数函数;⑶交流、总结教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果。
4.1.2指数函数(教案)-【中职专用】高一数学同步精品课堂(人教版2021·基础模块上册)【课程名称】:高一数学同步精品课堂(人教版2021·基础模块上册)【课时数量】:1课时【适用对象】:中职高一学生【教学目标】:1. 理解指数函数及其定义域、值域、单调性等基本性质;2. 理解指数函数与幂函数之间的关系;3. 掌握指数函数的图像及其在实际问题中的应用。
【教学内容与时间分配】:一、导入(5分钟)1. 与上节课复习幂函数知识并引入指数函数;2. 通过例题引出指数函数的定义。
二、教学(30分钟)1. 指数函数的定义及其性质:(1)指数函数的定义;(2)指数函数的定义域、值域、奇偶性、单调性;(3)特殊的指数函数:f(x)=a^x+a^(-x)。
2. 指数函数与幂函数的关系:(1)幂函数与指数函数的定义比较;(2)两者之间的关系及其性质。
3. 指数函数的图像及其应用:(1)画出常见指数函数的图像;(2)指数函数在实际问题中的应用。
三、总结(10分钟)1. 简要总结指数函数及其性质;2. 强化练习。
【教学重点与难点】:1. 控制指数函数和幂函数的定义和性质之间的联系和差异,弄清它们间的逐步转化及其特点;2. 理解指数函数的定义和性质,并能够应用其在实际问题中。
【教学方法】:1. 课堂讲授法:通过案例分析,让学生了解指数函数的定义、性质和图像;2. 互动探究法:在学生的探究过程中启发性指导,引导学生深入理解概念;3. 组合模式:在授课之外,适当安排小组讨论、小组展示等环节,活跃课堂气氛。
【教学手段】:黑板、白板、多媒体、PPT等多种教学手段。
【教学参考资料】:1. 《新课程数学》(人教版);2. 《高中数学必修一》(人教版)。
【教学评估方法】:1. 在教学班前开展诊断测评;2. 课堂练习;3. 课后练习;4. 学期末考试。
【教学反思】:指数函数的学习,主要是通过教师的引导,让学生学会运用公式求指数函数的值、域、值域等,较为简单。
高中数学教案实例【篇一:高中数学教学案例】课题 : 2.1.2指数函数及其性质一、教学设计思路:1、函数及其图像在高中数学中占有重要的位置,如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图像语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望和好奇心。
我们知道:函数的表示法有3种:列表、图像、解析法,以往函数的学习大多只关注图像的作用,这其实只借助了图像的直观性。
只是从一个角度看函数是片面的。
本节课,力图让学生从不同角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便迁移到其他函数的研究中去。
2、本节课我努力做到:①在课堂活动中通过同伴合作,自主探究培养学生积极主动、勇于探索的学习方式;②在教学过程中努力做到生生对话,师生对话,且在对话之后重视体会、总结、反思、力图在培养和发展学生数学素养的同时让学生掌握学习研究数学的方法;③通过课堂教学活动向学生渗透数学思想方法。
二、教案【篇二:高中数学课堂教学设计案例一则】高中数学课堂教学设计案例一则默认分类2009-10-11 07:29阅读69评论0字号:大中小新课程标准下的高中数学课堂教学设计案例一则一、课堂教学改革势在必行新课标的基本理念是:构建共同基础,提供发展平台;提供多样课程,适应个性选择;倡导积极主动、勇于探索的学习方式;注重提高学生的数学思维能力;发展学生的数学应用意识。
高度概括地说,老师的教与学生的学就是自主、合作、创新。
所谓自主就是尊重学生学习过程中的自主性、独立性,即在学习的内容上、时间上、进度上,更多地给学生自主支配的机会,给学生自主判断、自主选择和自主承担的机会;合作就是学生之间与师生之间的互动合作,平等交流;创新就意味着不固步自封、不因循守旧、不墨守成规。
传统的教学方式一般以组织教学、讲授知识、巩固知识、运用知识和检查知识来展开,其基本做法是:以纪律教育来维持组织教学,以师讲生听来传授新知识,以背诵、抄写来巩固已学知识,以多做练习来运用新知识,以考试测验来检查学习效果。
高中数学教学案例 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】
课题:§2.1.2指数函数及其性质
灵宝三高李荣娟
一、教学设计思路:
1、函数及其图像在高中数学中占有重要的位置,如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图像语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望和好奇心。
我们知道:函数的表示法有3种:列表、图像、解析法,以往函数的学习大多只关注图像的作用,这其实只借助了图像的直观性。
只是从一个角度看函数是片面的。
本节课,力图让学生从不同角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便迁移到其他函数的研究中去。
2、本节课我努力做到:①在课堂活动中通过同伴合作,自主探究培养学生积极主动、勇于探索的学习方式;②在教学过程中努力做到生生对话,师生对话,且在对话之后重视体会、总结、反思、力图在培养和发展学生数学素养的同时让学生掌握学习研究数学的方法;③通过课堂教学活动向学生渗透数学思想方法。
二、教案
教学
反思
与评
价:
通
过具
有一
定思
考价
值的
问题,激发学生的求知欲望和好奇心,树立数形结合思想,学会“看图说话,并加强指数运算
的计算能力。
通过练习使学生掌握指数函数的简单性质.。
指数函数教学案例(2)(2)采用这些方法的理论依据:为了调动学生的学习积极性,使学生变被动为主动愉快的学习.教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。
在指数函数图像的画法上,借助电脑,演示作图过程以及图像变化的动画过程,、新工具、新模式给了学生以新的感受,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。
(有条件的可以安排在机房上课,让学生也利用函数作图器作图)三、教学设计在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的与过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。
1.创设情景、导入新课教师活动:①用电脑展示两个实例,第一个是生物中细胞问题(某种细胞时由1个成2个,2个成4个,.。
..。
,一个这样的细胞 x次后,得到的细胞个数y与x有怎样的函数关系),第二个是放射性物质变化的例子(一种放射性物质不断变化为其他物质,每经过一年剩留的质量约是原来的84%,求经过多少年,剩留量是原来的一半,结果保留一位有效数字)。
②组织学生思考、分小组讨论所提出的问题,注意引导学生从定义出发来解释两个问题中变量之间的关系.③引导学生把对应关系概括到形式。
学生活动:分别写出细胞个数y与次数x的关系式和剩留量y与经过的年数x的关系式;设计意图:①通过生活实例充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,也为引出指数函数的概念做准备,扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备;②由具体数字抽象概括出指数函数y=ax的模型,为研究指数函数做准备;③两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。
2。
启发诱导、探求新知(1)指数函数概念的引出教师活动:①引导学生观察这两个函数,寻找他们的特征②请学生思考对于底数a是否需要限制,如不限制会有什么问题出现③引导学生观察指数函数与幂函数在概念上的区别。
《指数函数》课程教学设计方案作者信息姓名联系电话所教学科数学所教学段高中电子邮件单位名称课程信息主题名称指数函数选题意图借助“拉面对折的次数与所得的根数之间的关系”、“一尺之锤日取其半”及“细胞分裂问题”等具体实例了解指数函数的概念,掌握指数函数的性质,并熟练判定指数函数。
内容来源高中数学(人教B版)必修一第三章第3.1.2节。
适用对象高中数学高一年级教学目标了解指数函数的概念,掌握指数函数的性质,并熟练判定指数函数。
教学用途□课前预习 课中讲解或活动□课后辅导□其他课程设计教学过程设计意图“拉面对折的次数与所得的根数之间的关系”播放《舌尖上的中国》拉面制作的视频,从生活中提炼数学元素,激发学生学习兴趣。
“一尺之锤日取其半”通过PPT演示过程,从传统文化中总结数学知识,激发学生民族自豪感。
“细胞分裂问题”通过课本实例,逐渐回归理论。
总结规律,得出指数函数定义及解析式在此过程中教师将引导学生探究为什么定义中规定a>0且a≠1?对a的范围的具体分析,有利于学生对指数函数一般形式的掌握,同时为后面研究函数的图象和性质埋下了伏笔。
判定指数函数通过不同例子深刻体会指数函数的形式特征。
小练习进一步加深理解。
设计亮点:1、教法分析遵循“教师的主导作用和学生的主体地位相统一的教学规律”,本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。
通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。
2、案例选取借助“拉面对折的次数与所得的根数之间的关系”、“一尺之锤日取其半”及“细胞分裂问题”等具体实例了解指数函数的概念,掌握指数函数的性质,并熟练判定指数函数。
3、媒体选择让学生观看剪辑视频、PPT,体会视觉语言中的“镜头切换”,从而更好的理解如何在图像变化中体会变量和不变量。
4、互动设计问题的提出将带领学生进入本节课研究与探索的高潮。
学生可能从不同的视角观察图像,从而得出自己发现的规律,但此时教师并不急于给出结论,而是让学生充分经历知识的形成过程,从而形成自己对本节课难点的理解和解决策略,培养学生的直觉和感悟能力。
2.2.2指数函数内容主题指数函数日期2016-9-10第几课时第1课时教学媒体多媒体、实物投影课型新授课教学目标1.知识目标:(1)理解指数函数的定义,初步掌握指数函数的图象,性质及其简单应用.(2)通过指数函数的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法.(3)通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣. 2.能力目标:通过数形结合,利用图象来认识,掌握函数的性质,增强学生分析问题,解决问题的能力。
教学重难点重点:本节课是围绕指数函数的概念和图象,并依据图象特征归纳其性质展开的。
因此本节课的教学重点是掌握指数函数的图象和性质。
难点: 1、对于1>a和10<<a时函数图象的不同特征,学生不容易归纳认识清楚。
因此,弄清楚底数a对函数图象的影响是本节的难点之一;2、底数相同的两个函数图象间的关系。
预习设计预习书本P49并思考以下几个问题:①什么是指数函数?举例说明?②为什么要规定底数大于0且不等于1?③研究指数函数的图像与性质。
④同底数幂如何比较大小?⑤不同底数幂能否直接比较大小?板书设计知识建构问题7:(顾一帆回答,时间1分钟)问题8:(时间5分钟)用,所以将指数范围扩充为实数范围,所以指数函数的定义域为R.扩充的另一个原因是因为使它更具代表更有应用价值.问题4:学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3)xy3)3(-=可以写成xy)93(=,也是指数图象.最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入。
问题5:学生回答列表、描点、连线,从图象上观察性质。
问题6:此处教师可利用几何画板列表描点,给出十组数据,而学生自己列表描点连线,至少六组数据.连点成线时,一定提醒学生图象的变化趋势(当x越小,图象越靠近x轴,x越大,图象上升的越快),并连出光滑曲线.投影:(1)定义域: R;(2)值域: ()+∞,0(3)奇偶性:既不是奇函数也不是偶函数(4)截距:在x轴上没有,在y轴上为1.(5)单调性:xy2=在R是增函数,xy)21(=在R上是减函数问题7:学生观察回答:图象关于y轴对称。
指数函数的图像与性质教案一、教学目标1. 理解指数函数的定义和基本性质。
2. 能够绘制和分析指数函数的图像。
3. 掌握指数函数在实际问题中的应用。
二、教学内容1. 指数函数的定义与表达式指数函数是一种特殊类型的函数,形式为f(x) = a^x,其中a 是底数,x 是指数。
指数函数的定义域是所有实数,值域是正实数。
2. 指数函数的图像特点(1) 当a > 1 时,指数函数的图像上升。
(2) 当0 < a < 1 时,指数函数的图像下降。
(3) 指数函数的图像经过点(0, 1)。
3. 指数函数的性质(1) 单调性:当a > 1 时,指数函数单调递增;当0 < a < 1 时,指数函数单调递减。
(2) 指数函数的值域为正实数。
(3) 指数函数的图像具有无限多条切线,且切线斜率恒为a。
三、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、分析和解决实际问题,深入理解指数函数的图像与性质。
2. 利用数学软件或图形计算器绘制指数函数的图像,帮助学生直观地感受指数函数的特点。
3. 设计具有挑战性的练习题,激发学生的思考和探索能力,巩固所学知识。
四、教学评估1. 通过课堂讲解、练习题和小组讨论,评估学生对指数函数定义、图像和性质的理解程度。
2. 布置课后作业,要求学生绘制指数函数的图像,并运用指数函数解决实际问题,以评估学生的应用能力。
3. 在课程结束后,进行一次小测验,检验学生对指数函数的整体掌握情况。
五、教学资源1. 教学PPT或教案文档,包含指数函数的定义、图像和性质的相关知识点。
2. 数学软件或图形计算器,用于绘制指数函数的图像。
3. 练习题和案例分析题,供学生巩固所学知识和应用实践。
六、教学步骤1. 引入指数函数的概念,引导学生思考指数函数在实际生活中的应用场景。
2. 讲解指数函数的定义与表达式,引导学生理解指数函数的基本形式。
3. 利用数学软件或图形计算器,绘制不同底数的指数函数图像,引导学生观察和分析指数函数的图像特点。
教学计划:《指数函数》一、教学目标1.知识与技能:学生能够理解指数函数的概念,掌握指数函数的一般形式及其性质。
学生能够识别并绘制指数函数的图像,理解图像与函数性质之间的关系。
学生能够运用指数函数解决简单的实际问题,如增长率、衰减率等。
2.过程与方法:通过观察、比较、归纳等方法,引导学生发现指数函数的特征和规律。
通过动手实践(如绘制函数图像),加深学生对指数函数性质的理解。
通过案例分析,培养学生将实际问题抽象为数学问题的能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养探索数学奥秘的好奇心。
培养学生的逻辑思维能力和严谨的科学态度。
引导学生认识到数学在现实生活中的应用价值,增强应用数学的意识。
二、教学重点和难点重点:指数函数的概念、一般形式、性质及其图像特征。
难点:理解指数函数图像与函数性质之间的关系,以及运用指数函数解决实际问题。
三、教学过程1. 引入新课(5分钟)生活实例引入:通过展示细胞分裂、人口增长、放射性物质衰减等实际问题的例子,引导学生思考这些现象背后的数学规律。
提出问题:引导学生观察这些现象的共同点,即都涉及到了“基数”和“指数”的概念,进而引出指数函数的概念。
明确目标:介绍本节课将要学习的内容——指数函数,并说明学习目标。
2. 讲授新知(15分钟)定义讲解:详细讲解指数函数的概念、一般形式(如,其中且)及其基本性质(如定义域、值域、单调性等)。
图像展示:利用多媒体设备展示不同底数下指数函数的图像,引导学生观察图像特征,如底数大于1时函数图像上升,底数在0和1之间时函数图像下降等。
性质归纳:引导学生根据图像特征归纳出指数函数的性质,如单调性、过定点(如)等。
3. 案例分析(10分钟)例题讲解:选取一两个具有代表性的例题(如计算复利、分析人口增长趋势等),详细讲解如何运用指数函数模型解决问题。
思路展示:通过板书或PPT展示解题思路和步骤,引导学生理解如何将实际问题抽象为数学问题并求解。
指数函数教学案例(2)
(2)采用这些方法的理论依据:为了调动学生的学习积极性,使学生变被动为主动愉快的学习。
教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。
在指数函数图像的画法上,借助电脑,演示作图过程以及图像变化的动画过程,新技术、新工具、新模式给了学生以新的感受,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。
(有条件的可以安排在机房上课,让学生也利用函数作图器作图)
三、教学设计
在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。
1.创设情景、导入新课
教师活动:①用电脑展示两个实例,第一个是生物中细胞分裂问题(某种细胞分裂时由1 个分裂成2 个,2个分裂成4个,......,一个这样的细胞分裂x 次后,得到的细胞个数y与x有怎样的函数关系?),第二个是放射性物质变化的例子(一种放射性物质不断变化为其他物质,每经过一年剩留的质量约是原来的84%,求经过多少年,剩留量是原来的一半,结果保留一位有效数字)。
②组织学生思考、分小组讨论所提出的问题,注意引导学生从定义出发来解释两个问题中变量之间的关系。
③引导学生把对应关系概括到形式。
学生活动:分别写出细胞个数y与分裂次数x的关系式和剩留量y与经过的年数x的关系式;
设计意图:①通过生活实例充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,也为引出指数函数的概念做准备,扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备;②由具体数字抽象概括出指数函数y=ax的模型,为研究指数函数做准备;③两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。
2.启发诱导、探求新知
(1)指数函数概念的引出
教师活动:①引导学生观察这两个函数,寻找他们的特征②请学生思考对于底数a是否需要限制,如不限制会有什么问题出现③引导学生观察指数函数与幂函数在概念上的区别。
学生活动:①学生独立思考并回忆指数的概念;②解释这两个问题中变量间
的关系为什么构成函数,从而归纳指数函数的概念;③理清指数函数与幂函数在概念上的区别。
设计意图:①引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点;②注意提示底数的取值范围,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了分类讨论的铺垫。
③将指数函数与幂函数在定义上进行区别,加深了对指数函数概念的掌握。
(2)研究指数函数的图象
教师活动:①给出两个简单的指数函数和,并要求学生画它们的图象②在准备好的小黑板上利用列表描点法规范地画出这两个指数函数的图象③利用函数作图器和几何画板作图。
学生活动:①思考画函数图象的方法有哪些?②画出这两个简单的指数函数图象③让学生利用计算器或计算机来画。
设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助函数作图器或几何画板准确作图,既可以培养学生的学习兴趣也可以使图象更精确。
四、板书设计
考虑到板书在教学过程中发挥的功能,本节课我设计了由四个板块构成的板书,
说明;这册新教材更突出了学生的生活数学,从引入到应用,都围绕着生活数学,对学生的学习积极性的培养起到了很好的作用。
这节知识还提到了函数作图器,相信它比几何画板更容易学,学生对它更感兴趣。
指数函数教学案例
通过初中学段的学习和职业高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:知识维度:初中已经学习了正比例函数、反比例函数和一次函数,上册第三章又进一步学习了函数的概念及其通性,并对一次函数、二次函数作了更深入
研究,学生已经初步掌握了研究函数的一般方法,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。
能力维度:学生对采用描点法描绘函数图象的方法已基本掌握,能够为研究指数函数的性质做好准备。
素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。
(1)教学目标
知识目标:①了解指数函数模型的实际背景,认识数学与现实生活、其他学科的联系②掌握指数函数的概念③掌握指数函数的图象和性质
能力目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;
情感目标:①在学习的过程中体会研究具体函数及其性质的过程和方法,如体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力
(2)教学重点和难点
教学重点:指数函数的图象和性质。
教学难点:指数函数的图象性质与底数a的关系。
(3)教学关键:从实际出发,使学生在获得一定的感性认识和基础上,通过观察、比较、归纳提高到理性认识,以形成完整的概念;在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。
二、教法与学法指导
1.学法指导
由于职高学生大部分数学基础较差,理解能力、运算能力、思维能力等方面参差不齐,同时学生学好数学的自信心不强,学习积极性不高,厌学情绪严重。
针对实际情况,考虑到学生非智力因素的影响,我主要在以下几个方面做了尝试:
(1)激发学生的求知欲和学习积极性。
从学生感兴趣的生活实例着手,激发学生的学习兴趣,指导学生积极思维,主动获取知识。
(2)领会常见数学思想方法。
在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个职业高中的数学学习。
(3)在互相交流和自主探究中获得发展。
在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。
(4)注意学生的个体差异。
利用小组合作来帮助后进的学生,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。