脉冲场凝胶电泳技术资料
- 格式:ppt
- 大小:836.00 KB
- 文档页数:12
pfge原理PFGE原理是一种分子生物学技术,全称为脉冲场凝胶电泳(Pulsed-Field Gel Electrophoresis),它是一种分离和分析DNA片段的方法,可以将大片段的DNA分子从凝胶中分离出来,从而进行电泳分析。
1. 原理PFGE的原理在于凝胶中应用交错电场,使DNA的运动方向变化,从而使大分子量DNA可以被更好的分离。
首先,DNA被切成片段,并在凝胶中进行电泳分离。
PFGE所采用的凝胶是一种“交错”的凝胶,即在不同方向上阻碍电泳运动的纤维素。
在电场中,DNA分子因为其大小、形状和电荷密度不同而负载不同的电荷,向着凝胶的两个端点移动。
在PFGE过程中,电场方向会不断改变,这种改变可以使大分子量DNA分子在不同方向上进行运动。
一次分离过程通常持续16小时以上。
2. 应用PFGE技术是目前常用的DNA分子分离技术之一,其应用范围广泛,主要用于以下领域:(1)遗传学研究:PFGE技术可以帮助了解基因组结构和动态变化,尤其是在菌群的基因组研究中,PFGE技术具有重要作用。
(2)食品安全检测:PFGE技术可以用于食品安全检测,例如细菌的分离和鉴定,食品中微生物的种类、数量及分布等的研究。
(3)医学研究:PFGE技术在医学领域中有广泛应用,比如可以用来检测癌症等重大疾病,检测病原体和细菌的快速鉴定等。
3. 优势相较于常规的DNA电泳,PFGE技术有以下几点优势:(1)可以分离大分子量的DNA分子,比如细菌的染色体DNA。
(2)可以提高DNA分离的分辨率,从而更准确地分析DNA的结构和变异情况。
(3)PFGE的原理可以单独分离DNA分子,使处理比较麻烦的DNA成为可能,比如重复序列等。
总之,PFGE技术在现代生命科学中已经成为了不可或缺的基础技术之一。
通过PFGE技术,我们可以更好地理解细胞DNA的组成和结构,同时对食品和医学工作中的研究也有着巨大的帮助作用。
脉冲场凝胶电泳(PFGE实验原理、操作步骤和注意事项【实验原理】大分子DNA(一般长度超过20kb ,在某些情况下,超过40kb 在电场作用下通过孔径小于分子大小的凝胶时,将会改变无规卷曲的构象,沿电场方向伸直,与电场平行从而才能通过凝胶。
此时,大分子通过凝胶的方式相同,迁移率无差别(也称“极限迁移率”,不能分离。
脉冲场凝胶电泳技术解决了这一难题,它应用于分离纯化大小在10~2000kb 之间的DNA 片段。
这种电泳是在两个不同方向的电场周期性交替进行的,DNA 分子在交替变换方向的电场中作出反应所需的时间显著地依赖于分子大小,DNA 越大,这种构象改变需要的时间越长,重新定向的时间也越长,于是在每个脉冲时间内可用于新方向泳动的时间越少,因而在凝胶中移动越慢。
反之,较小的DNA 移动较快,于是不同大小的分子被成功分离。
在许多实用的PFGE 方法中,倒转电场凝胶电泳是最简单最常用的方法(FIGE。
通过把一个在不同电场方向有不同脉冲方式的脉冲电场加在样品上,倒转电场凝胶电泳(FIGE设备能把大小范围在10~2000kb 的DNA 片段分开。
FIGE 也可通过重新确定一个对准完全固定好角度的电场,这样会进一步扩展其分离极限达到10Mb 。
【仪器、材料与试剂】1. 制备DNA 样品所需材料1TEN 缓冲液(0.1mol/LTris,pH7.5;0.15mol/LNaCl;0.1mol/LEDTA。
2Seaplaque 琼脂糖(EC 缓冲液中浓度为2%。
3EC 缓冲液(6mol/LTris,pH7.5;lmol/L NaCl;0.5%Brij58;0.2% 脱氧胆酸盐(Deoxycholate;0.5%十二烷基肌氨酸钠(Sarcosyl。
(生物秀实验频道 )4ESP 缓冲液(0.5mol/L EDTA,1%十二烷基肌氨酸钠,lmg/mL 蛋白酶K 。
5 溶葡萄球菌素(5mg/mL。
6RNase(10mg/mL。
脉冲场凝胶电泳(PFGE实验原理、操作步骤和注意事项【实验原理】大分子DNA(一般长度超过20kb ,在某些情况下,超过40kb 在电场作用下通过孔径小于分子大小的凝胶时,将会改变无规卷曲的构象,沿电场方向伸直,与电场平行从而才能通过凝胶。
此时,大分子通过凝胶的方式相同,迁移率无差别(也称“极限迁移率”,不能分离。
脉冲场凝胶电泳技术解决了这一难题,它应用于分离纯化大小在10~2000kb 之间的DNA 片段。
这种电泳是在两个不同方向的电场周期性交替进行的,DNA 分子在交替变换方向的电场中作出反应所需的时间显著地依赖于分子大小,DNA 越大,这种构象改变需要的时间越长,重新定向的时间也越长,于是在每个脉冲时间内可用于新方向泳动的时间越少,因而在凝胶中移动越慢。
反之,较小的DNA 移动较快,于是不同大小的分子被成功分离。
在许多实用的PFGE 方法中,倒转电场凝胶电泳是最简单最常用的方法(FIGE。
通过把一个在不同电场方向有不同脉冲方式的脉冲电场加在样品上,倒转电场凝胶电泳(FIGE设备能把大小范围在10~2000kb 的DNA 片段分开。
FIGE 也可通过重新确定一个对准完全固定好角度的电场,这样会进一步扩展其分离极限达到10Mb 。
【仪器、材料与试剂】1. 制备DNA 样品所需材料1TEN 缓冲液(0.1mol/LTris,pH7.5;0.15mol/LNaCl;0.1mol/LEDTA。
2Seaplaque 琼脂糖(EC 缓冲液中浓度为2%。
3EC 缓冲液(6mol/LTris,pH7.5;lmol/L NaCl;0.5%4ESP 缓冲液(0.5mol/L EDTA,1%十二烷基肌氨酸钠,lmg/mL 蛋白酶K 。
5 溶葡萄球菌素(5mg/mL。
6RNase(10mg/mL。
7 胶模(由常规琼脂糖凝胶制得或购买成品。
8 苯甲基横酰氟(PMSF(17.4mg/mL 于乙醇中。
90.5μg/mL 溴化乙锭2. 分离、纯化大的DNA 片段所需材料1 紫外递质。
脉冲场凝胶电泳技术及其在细菌感染性疾病中的应用分析在细菌的相关研究中,比如其流行特征、追踪传染源等,有多种方式可以实现。
其中应用比较广泛的方法是将菌株分型,以此来得到同源性关系。
具体来说,脉冲场凝胶电泳技术是实现基因分型的一种最为常用的方法,该方法得到的结果的重复性和分辨率都是非常好的,很多相关的研究人员都会采用该种方式来研究细菌感染性疾病的相关知识。
本文对脉冲场凝胶电泳技术的应用进行相关分析和探究,具体内容如下。
1 原理脉冲场凝胶电泳技术也称为PFGE技术,该技术是在1984年被美国科学家提出的。
PFGE技术主要是通过限制性核算内切酶可以将DNA实现消化,最终可以产生多个有限的,并且各段长度都不一样的DNA片段,一般来说,片段数量通常在5到20之间。
之后便可以采用常用的电泳方式实现分离。
根据跟李的电泳条带图谱,可以正确地判断细菌的种类。
基于以上原理,PFGE技术可以很好地反应细菌所有基因组的情况,包括一些细微的地位,这将对细菌的相关研究具有非常有利的影响。
2 结果判断如果在图片条带上的大小以及出现的数量都是相同的,则可以认为其型别是相同的。
如果在所有的图片条带中,有两个或者三个是有所差别的,则可以认为其亲缘关系是较为密切的。
如果在所有的图片条带中,有四到六个是有所大的,则可以认为它们之间有可能会存在亲缘关系。
而如果在所有的图片条带中出现了大于等于七个有所差异的条带,则认为两者之间不存在任何的亲缘关系。
考虑到细菌间的变异特性,将85%作为判断相关的标准。
3 主要影响因素第一,是缓冲液温度。
缓冲液的温度会产生一定的影响。
这是因为缓冲液的温度越高,那么电泳对应的速度是越快的,这就使得整个的时间变得更短,这会导致条带的分辨率变得较低,不能很好得进行识别。
在缓冲液温度较低的情况下,对应的电泳所需要的时间就会变得越长,会让条带更好地进行分辨,通常将温度维持在14度左右,第二,是脉冲的角度。
脉冲的角度也会对结果产生一定的影响。
脉冲场凝胶电泳近年来,以脉冲场凝胶电泳(Pulsed field gel electrophoresis ,PFGE)为代表的分子生物学分型方法日渐受到青睐,其原理为通过一定的方法,直接或间接反映病原体变异分化的本质即DNA 序列的改变,从而做到微观变化的宏观显示。
电泳结果通常是条带图谱。
该方法的发展成熟为监测控制细菌的流行提供了广阔的前景。
通过分型可以鉴定比较菌株是否一致, 对于细菌性传染病监测、传染源追踪、传播途径调查和识别等暴发调查有着非常重要的意义。
一、脉冲场凝胶电泳的原理PFGE 与常规电泳的不同之处在于,常规的电泳采用的是单一的均匀电场,DNA 分子经凝胶的分子筛作用由负极移向正极。
而PFGE 采用了两个交变电场,即两个电场交替地开启和关闭,使DNA 分子的电泳方向随着电场的变化而改变。
正是因为电场方向的交替改变,才使大分子DNA 得以分离。
图l 是根据Carle 和Olson最初设计的正交场电泳装置(orth-ogona1field gel electrophoresis ,OFA-GE)绘制的PFGE 示意图。
A 、B 代表两个交替开启和关闭的电场。
当A 电场开启时,B 电场关闭,DNA 分子从A 电场的负极(A-)向正设(A+ )移动;当B 电场开启时,DNA 分子改变原来的运行方向,随B 电场由负极向正极移动。
这样,随着电场方向的交替变化DNA 分子 即呈“Z” 字形向前移动。
目前的理论和实验研究表明,当某一电场开启时,DNA 分子即顺着此电场的方向纵向拉长和伸展,以“蛇行”(reputation)的方式穿过凝胶孔。
如果电场方向改变 DNA 分子将必须先调转头来,才能沿着新的电场方向泳动。
这样,随着电场方向反复变化,伸展的DNA 分子必须相应地变化移动方向。
可以想象, 较小的分子能相当快速地适应这种变化,但大分子则需更多的时间来改变方向,而真正用于前移的时间相对减少,从而将不同大小的分子分开。
脉冲场凝胶电泳(PFGE实验原理、操作步骤和注意事项【实验原理】大分子DNA一般长度超过20kb,在某些情况下,超过40kb在电场作用下通过孔径小于分子大小的凝胶时,将会改变无规卷曲的构象,沿电场方向伸直,与电场平行从而才能通过凝胶。
此时,大分子通过凝胶的方式相同,迁移率无差别(也称“极限迁移率”,不能分离。
脉冲场凝胶电泳技术解决了这一难题,它应用于分离纯化大小在10〜2000kb之间的DNA片段。
这种电泳是在两个不同方向的电场周期性交替进行的,DNA 分子在交替变换方向的电场中作出反应所需的时间显着地依赖于分子大小,DNA 越大,这种构象改变需要的时间越长,重新定向的时间也越长,于是在每个脉冲时间内可用于新方向泳动的时间越少,因而在凝胶中移动越慢。
反之,较小的DNA移动较快,于是不同大小的分子被成功分离。
在许多实用的PFGE方法中,倒转电场凝胶电泳是最简单最常用的方法(FIGE。
通过把一个在不同电场方向有不同脉冲方式的脉冲电场加在样品上,倒转电场凝胶电泳(FIGE 设备能把大小范围在10〜2000kb 的DNA 片段分开。
FIGE 也可通过重新确定一个对准完全固定好角度的电场,这样会进一步扩展其分离极限达到10Mb 。
【仪器、材料与试剂】1. 制备DNA 样品所需材料1TEN 缓冲液(0.1mol/LTris ,pH7.5;0.15mol/LNaCl ;0.1mol/LEDTA。
2Seaplaque 琼脂糖(EC 缓冲液中浓度为2%。
3EC 缓冲液(6mol/LTris ,pH7.5;lmol/L NaCl ;0.5%4ESP缓冲液(0.5mol/L EDTA,1%十二烷基肌氨酸钠,Img/mL蛋白酶K。
5 溶葡萄球菌素(5mg/mL。
6RNase(10mg/mL。
7 胶模( 由常规琼脂糖凝胶制得或购买成品8 苯甲基横酰氟(PMSF(17.4mg/mL 于乙醇中。
90.5匕g/mL溴化乙锭2. 分离、纯化大的DNA 片段所需材料1 紫外递质。