高斯光束的透镜变换实验哦
- 格式:docx
- 大小:72.21 KB
- 文档页数:4
实验三 高斯光束的透镜变换实验一 实验目的1.熟悉高斯光束特性。
2.掌握高斯光束经过透镜后的光斑变化。
3.理解高斯光束传输过程.二 实验原理众所周知,电磁场运动的普遍规律可用Maxwell 方程组来描述。
对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。
在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。
使用高斯光束的复参数表示和ABCD 定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。
在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式:()222()[]2()00,()r z kr i R z A A r z e ez ωψωω---=⋅ (6)式中,0A 为振幅常数;0ω定义为场振幅减小到最大值的1e 的r 值,称为腰斑,它是高斯光束光斑半径的最小值;()z ω、()R z 、ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为:()z ωω= (7)000()Z z R z Z Z z ⎛⎫=+ ⎪⎝⎭(8)1ztg Z ψ-= (9) 其中,200Z πωλ=,称为瑞利长度或共焦参数(也有用f 表示)。
(A )、高斯光束在z const =的面内,场振幅以高斯函数22()r z e ω-的形式从中心向外平滑的减小,因而光斑半径()z ω随坐标z 按双曲线:2200()1z zZ ωω-= (10)规律而向外扩展,如图四所示高斯光束以及相关参数的定义图四(B )、 在(10)式中令相位部分等于常数,并略去()z ψ项,可以得到高斯光束的等相面方程:22()r z const R z += (11) 因而,可以认为高斯光束的等相面为球面。
(C )、瑞利长度的物理意义为:当0z Z =时,00()2Z ωω=。
在实际应用中通常取0z Z =±范围为高斯光束的准直范围,即在这段长度范围内,高斯光束近似认为是平行的。
高斯光束转平行光高斯光束,一种常见的激光束形状,可以通过两种主要方式转化为平行光,即使用透镜和平面反射镜。
第一种方法是使用透镜。
透镜是一种至关重要的光学元件,它在各种光学系统中发挥着核心作用。
它拥有一种神奇的能力,那就是聚焦光线,将平行或发散的光线聚集到一个点上,这个点就被称为透镜的焦点。
在各种应用中,如显微镜、望远镜、相机等,透镜都发挥着关键作用。
当高斯光束这类具有特定形状和传播方向的光线通过透镜时,透镜会对其产生影响,使光线聚焦到一点上。
这个过程是自动的,无需外部干预。
正是由于这种聚焦作用,我们能够将高斯光束转化为平行光。
这一特性使得透镜在各种光学系统中扮演着重要角色,帮助我们更好地理解和利用光线。
透镜的设计和制造需要精确的工艺和科学的技术,以确保其聚焦光线的准确性和稳定性。
这也意味着透镜的质量和性能对于光学系统的整体性能有着直接的影响。
因此,对于从事光学研究的科学家和工程师来说,理解和掌握透镜的基本原理和应用是非常重要的。
另一种方法是使用平面反射镜。
平面反射镜是一种常见的光学元件,其特殊的功能在于能够将光线反射回原点。
当光线照射到平面反射镜上时,它会使光线以相同角度反射回去,而不会改变光线的方向。
因此,平面反射镜可以用来将高斯光束转化为平行光。
在实际应用中,为了实现这一转化过程,通常需要两个反射镜。
因为一个反射镜只能将光线从一个方向反射,而无法将光线完全转化为平行光。
然而,当两个反射镜结合在一起时,它们可以相互协作,使光线经过两次反射后,以与原始光线不同的方向反射出去,从而实现将高斯光束转化为平行光的目标。
此外,平面反射镜的制造工艺也相对简单,因此它们在光学系统中得到了广泛的应用。
例如,在激光器、望远镜、显微镜等光学仪器中,平面反射镜都发挥了重要的作用。
同时,由于其可靠性和稳定性,平面反射镜也是各种需要精确控制光线路径的领域中的理想选择。
在光学领域,高斯光束的转换是一个非常重要的操作,它关乎到最终光束的质量和应用的准确性。
在这个例子中,我们将考虑高斯光束在一个简单的成像系统中的传播。
在第一章中,关联物像平面的ABCD 矩阵可写为⎥⎦⎤⎢⎣⎡-=m f m M /1/10 其中m 为透镜的横向放大率,f 是成像透镜的焦距。
用ABCD 定律,并假设1'==n n ,我们用q 描述物面上的高斯光束,通过透镜后,用q ’描述在像面上的高斯光束m a f m qq 11'+-=使用q 参数,可以方便地把上式分为实部和虚部。
聚焦点'ω和近轴像面的波面曲率半径为ωωm ='10.76mR f Rf m R -=2'10.77从上述关系中可以得出几个结论。
像物聚焦点大小的比率就是近轴横向放大率。
考虑将激光束腰放置在物方平面的情况,这时∞=R 。
将10.77的极值放在这个情况下,可得mf R -='对于正透镜的通常情况,它有实的物距和像距,f 为正,m 为负,因此R ’是正的,按照光束符号惯例表示像空间光束在通过它的近轴像面之前已经通过了它的束腰,例如,束腰位于近轴像的位置。
这种现象叫做“焦移”,因为最大近轴发光点不在几何焦点处。
为了在近轴像面处得到光束束腰(∞='R )我们必须在物面处有m f R /=。
焦移现象对于有很小发散角的“慢”光束而言更生动,换句话说,对于有小的菲涅尔数的光束而言。
(孔径半径为a 和波前曲率半径为R 的菲涅尔数为R a λ/2)。
我们可以用OSLO中的交互式ABCD 分析数据表来阐明这一现象。
我们在目录数据库中选择一个焦距为500mm 的透镜,用近轴设置数据表来设置近轴放大率为-1。
将主波长设为0.6328m μ,在设置放大率前删除波长2和3,如下图所示使用交互式ABCD 分析表,我们可以考察穿过这个透镜的高斯光束。
用束腰直径为0.25mm ,束腰离第0面距离为0。
在OSLO 中使用高斯光束数据表时有几个惯例:1 使用这个数据表,你必须在4个区域(w,w0,z,R )中的两个中添入数据。
第1篇一、实验目的1. 加深对高斯光束物理图像的理解;2. 学会对描述高斯光束传播特性的主要参数,即光斑尺寸、远场发散角的测量方法进行掌握;3. 学习体会运用微机控制物理实验的方法。
二、实验原理1. 高斯光束的传播特性高斯光束的振幅在传播平面上呈高斯分布,近场时近似为平面波,远场时近似为球面波。
高斯光束的振幅分布公式为:\[ I(r, z) = I_0 \exp\left(-\frac{2r^2}{w_0^2(z)}\right) \]其中,\( I(r, z) \) 为距离光轴距离为 \( r \) 处,距离光束传播方向为 \( z \) 处的光强;\( I_0 \) 为光束中心处的光强;\( w_0 \) 为光束中心处的光斑尺寸。
光斑尺寸 \( w(z) \) 与光束中心处的光斑尺寸 \( w_0 \) 的关系为:\[ w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_r}\right)^2} \]其中,\( z_r \) 为光束的瑞利长度。
2. 发散角的定义及测量光束的全发散角定义为光束中光强下降到中心光强的 \( 1/e \) 位置时,光束边缘与光轴所成的角度。
在远场情况下,光束的全发散角近似为:\[ \theta = \frac{1.22 \lambda}{w(z)} \]其中,\( \lambda \) 为光束的波长。
三、实验仪器与设备1. 激光器:输出波长为 \( \lambda = 632.8 \) nm 的红光激光;2. 凹面镜:曲率半径为 \( R = 50 \) cm;3. 平面镜:用于反射激光;4. 光电探测器:用于测量光强;5. 数据采集卡:用于采集光电探测器数据;6. 计算机:用于处理实验数据。
四、实验步骤1. 将激光器输出光束照射到凹面镜上,使光束经凹面镜反射后形成高斯光束;2. 将光电探测器放置在凹面镜后的某个位置,调整探测器位置,使探测器接收到的光强最大;3. 记录探测器接收到的光强 \( I \);4. 根据公式 \( I = I_0 \exp\left(-\frac{2r^2}{w_0^2(z)}\right) \) 求解光斑尺寸 \( w_0 \);5. 根据公式 \( \theta = \frac{1.22 \lambda}{w(z)} \) 求解发散角\( \theta \);6. 重复步骤 3-5,改变探测器位置,记录不同位置的光强 \( I \) 和发散角\( \theta \)。
高斯光束经透镜的衍射效应
高斯光束经过透镜会产生衍射效应,这是因为透镜具有衍射特性,能够改变光束的传播方向和光强分布。
当高斯光束通过透镜时,透镜会使光束发生聚焦或发散的作用,这会导致光束的衍射效应增强或减弱。
衍射效应的具体表现是,透镜作为一个光学元件对不同波长的光束具有不同的聚焦作用,从而导致经透镜后的光束的相位和振幅分布发生改变。
具体来说,高斯光束的经过透镜后,会发生以下变化:
1. 焦距:透镜会将光束聚焦到一点或发散开来。
光束聚焦或发散的程度取决于透镜的焦距大小和入射光束的直径。
2. 相位分布:透镜会改变光束的相位分布,导致经过透镜后的光束具有不同的相位延迟。
这会影响光束的相干性和干涉效应。
3. 振幅分布:透镜会改变光束的振幅分布,使得经过透镜后的光束在空间中的分布发生变化。
这会导致出现衍射斑、光晕或其他特殊的光强分布。
总之,高斯光束经透镜的衍射效应是由于透镜对光束进行聚焦或发散的作用,导致光束的相位和振幅分布发生改变。
这个衍射效应在光学系统设计和光束加工中具有重要的应用和影响。
高斯光束反射特性的实验研究随着科技的发展,许多物理知识已经发现,其中包括了关于高斯光束的反射特性。
今天,本文将介绍高斯光束反射特性的实验研究,以及研究背后的理论原理和应用意义。
首先,让我们来看看实验研究中的主要方法。
首先,本实验中使用的是一种叫做“高斯光束法”的方法。
这种方法的基本思想是,利用物理学中的Gauss定律,通过计算光束在各个方向上的反射机理,来计算出反射特性。
具体而言,本实验中使用的是激光来作为光束,它的频率分布和方向分布由理论研究所得出,其计算过程如下:在各个方向上计算出激光束的散射和反射系数,再将结果综合表示出反射特性。
接下来,我们来讨论实验研究背后的理论原理。
在物理学中,有一个关于光的基本定律,称为“拉普拉斯定律”,它指出,光会在场中受到外力的影响,从而改变其方向或形状。
而对于高斯光束来说,它会受到一种“电子反射”的影响,即在受到外力的作用下,它会被电子反射回去,反射角度为90度。
因此,当外力的大小及方向变化时,反射角度也会变化,从而影响反射特性。
最后,我们来看看高斯光束反射特性实验研究的应用意义。
首先,通过对高斯光束反射特性的研究,可以更好地掌握光的特性,从而帮助我们更好地操纵光的运动方式,例如利用光来进行投影、传输信息、照明等。
其次,研究反射特性也可以用于改善光学系统的性能,例如通过调整反射角度来优化镜头的聚焦性能,或者通过调整激光的反射机制来实现对纳米级物体进行定位和精确测量等。
总的来说,本次实验研究能够为我们更好地理解和操纵光的运动带来深远的意义。
它也可以帮助我们改善光学系统的性能,从而实现更好的科学研究和应用。
综上所述,本文针对高斯光束反射特性进行了实验研究,介绍了研究背后的理论原理和应用意义。
研究结果表明,通过对反射特性的深入研究,可以更好地掌握和操纵光的行为,从而实现更好的科学研究和应用。
实验三 高斯光束的透镜变换实验
一 实验目的
1.熟悉高斯光束特性。
2.掌握高斯光束经过透镜后的光斑变化。
3.理解高斯光束传输过程. 二 实验原理
众所周知,电磁场运动的普遍规律可用Maxwell 方程组来描述。
对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。
在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。
使用高斯光束的复参数表示和ABCD 定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。
在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式:
()2
2
2()
[
]2()
00
,()
r z kr i R z A A r z e e
z ωψωω---=
⋅ (6)
式中,0A 为振幅常数;0ω定义为场振幅减小到最大值的1的r 值,称为腰斑,它是高斯光束光斑半径的最小值;()z ω、()R z 、ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为:
()z ωω=(7)
000()Z z R z Z Z z ⎛⎫
=+ ⎪⎝⎭
(8)
1
z
tg Z ψ-= (9) 其中,2
00Z πωλ
=,称为瑞利长度或共焦参数(也有用f 表示)。
(A )、高斯光束在z const =的面内,场振幅以高斯函数2
2()
r z e ω-的形式从中心向
外平滑的减小,因而光斑半径()z ω随坐标z 按双曲线:
22
00
()1z z
Z ωω-= (10)
规律而向外扩展,如图四所示
高斯光束以及相关参数的定义
图四
(B )、 在(10)式中令相位部分等于常数,并略去()z ψ项,可以得到高斯光束的等相面方程:
2
2()
r z const R z += (11) 因而,可以认为高斯光束的等相面为球面。
(C )、瑞利长度的物理意义为:当0z Z =
时,00()Z ω=。
在实际应用中通常取0z Z =±范围为高斯光束的准直范围,即在这段长度范围内,高斯光束近似认
为是平行的。
所以,瑞利长度越长,就意味着高斯光束的准直范围越大,反之亦然。
(D )、高斯光束远场发散角0θ的一般定义为当z →∞时,高斯光束振幅减小到中心最大值1e 处与z 轴的交角。
即表示为:
00
()
lim
z z z
ωθλ
πω→∞
== (12)
高斯光束可以用复参数q 表示,定义2111
i q R πω
=-,由前面的定义,可以得到0q z iZ =+,因而(6)式可以改写为 2200(,)kr q
iZ A r q A e q
-= (13)
此时,
11Re()R q =,211
Im()q
πωλ=-。
高斯光束通过变换矩阵为A B M C D ⎛⎫
= ⎪⎝⎭的光学系统后,其复参数2q 变换为:
121Aq B
q Cq D
+=+ (14)
因而,在已知光学系统变换矩阵参数的情况下,采用高斯光束的复参数表示法可以简洁快速的求得变换后的高斯光束的特性参数。
三、实验仪器
He-Ne 激光器, 光学导轨, 光电二极管, CCD , CCD 光阑,偏振片,高斯光束变换透镜组件, 图像采集卡、BEAMVIEW 光束分析与测量软件 四 实验内容: 高斯光束的变换矩阵
(1)将He-Ne 激光器开启,调整高低和俯仰,使其输出光束与导轨平行。
可通过前后移动一个带小孔的支杆实现。
(2)启动计算机,运行BeamView 激光光束参数测量软件。
(3)He-Ne 激光器输出的光束测定及模式分析。
使激光束垂直入射到CCD 靶面上,在软件上看到形成的光斑图案,在CCD 前
的CCD光阑中加入适当的衰减片。
可利用激光光束参数测量软件分析激光束的模式,判定其输出的光束为基模高斯光束还是高阶横模式(作为前面模式分析实验内容的一部分)。
(4)由图像确定He-Ne激光器输出是基模光斑。
前后移动CCD探测器,利用激光光束参数测量软件观测不同位置的光斑大小,光斑最小位置处即是激光束的束腰位置。
(5)在光斑束腰位置后面L1处放置一透镜,观察透镜后激光光束的变化情况,并测量处透镜后的束腰位置及光斑大小,
(6)由式(14)给出
A B
M
C D
⎛⎫
= ⎪
⎝⎭
变换矩阵。
注意事项:射入CCD的激光不能太强,以免烧坏芯片。
思考题:
实验测量的变换矩阵与理论值的差异主要来源于那些地方。