第三章振荡器
- 格式:ppt
- 大小:3.71 MB
- 文档页数:72
第3章 正弦波振荡器3.1 为什么振荡电路必须满足起振条件、平衡条件和稳定条件?试从振荡的物理过程来说明这三个条件的含义。
答:(1)在刚接通电源时,电路中会存在各种电扰动,这些扰动在接通电源瞬间会引起电路电流的突变(如晶体管b i 或c i 突变),这些突变扰动的电流均具有很宽的频谱,由于集电极LC 并联谐振回路的选频作用,其中只有角频率为谐振角频率o ω的分量才能在谐振回路两端产生较大的电压()o o u j ω。
通过反馈后,加到放大器输入端的反馈电压()f o u j ω与原输入电压()i o u j ω同相,并且有更大的振幅,则经过线性放大和正反馈的不断循环,振荡电压振幅会不断增大。
故要使振荡器在接通电源后振荡幅度能从小到大增长的条件是:()()()()f o o i o i o u j T j u j u j ωωωω=>即: ()1o T j ω> ……起振条件 (2)振荡幅度的增长过程不可能无休止地延续下去。
随着振幅的增大,放大器逐渐由放大区进入饱和区截止区,其增益逐渐下降。
当因放大器增益下降而导致环路增益下降至1时,振幅的增长过程将停止,振荡器达到平衡状态,即进入等幅状态。
振荡器进入平衡状态后,直流电源补充的能量刚好抵消整个环路消耗的能量。
故平衡条件为:()1o T j ω=(3)振荡器在工作过程中,不可避免地要受到各种外界因素变化的影响,如电源电压波动、噪声干扰等。
这些会破坏原来的平衡条件。
如果通过放大和反馈的不断循环,振荡器能产生回到原平衡点的趋势,并且在原平衡点附近建立新的平衡状态,则表明原平衡状态是稳定的。
振荡器在其平衡点须具有阻止振幅变化、相位变化的能力,因此:振幅平衡状态的稳定条件是:()0i iAo iU U T U ω=∂<∂;相位平衡状态的稳定条件是:()0oT o ωωϕωω=∂<∂3.2 图题3.2所示的电容反馈振荡电路中,1100pF C =,2300pF C =,50μH L =。
振荡器的工作原理
振荡器是一种物理学中的重要装置,它可以将输入的能量转换为可观察的振动形式,从而帮助我们理解许多自然现象。
它也是许多实用技术的基础,如计算机,手机,音频设备和微型机器人等。
振荡器的工作原理非常简单,但也非常有效。
振荡器的工作原理是:它把输入的能量转化为可观察的振动,这种振动称为振荡。
振荡的基本原理是物体具有一定的惯性,如果给它施加一个外力,它就会发生振动,称为自激振荡。
振荡器的结构很简单,一般由一个重物和一个弹簧组成,当外力施加到重物上时,它会发生振动,弹簧振动的能量会被重物收集,这样振动就会不断增加,直到它达到一个特定的最大值。
振荡器可以把一种能量转化为另一种,这种能量转化对于许多实际应用来说是非常重要的,例如计算机中的时钟电路,它可以把电能转化为时间信号,从而控制计算机的工作。
此外,振荡器还可以用于检测和测量物体的振动,例如地震,震动和振动测量仪。
振荡器也可以用于实现陀螺仪,它是一种计算机传感器,用于检测物体的旋转。
它通过检测振荡器的振动来确定物体的旋转方向和角度。
总之,振荡器的原理是把输入的能量转化为可观察的振动,它是许多实用技术的基础,可以用于检测和测量物体的振动,以及实现陀
螺仪等。
思考题与习题3.3 若反馈振荡器满足起振和平衡条件,则必然满足稳定条件,这种说法是否正确?为什么? 解:不正确。
因为满足起振条件和平衡条件后,振荡由小到大并达到平衡。
但当外界因素(温度、电源电压等)变化时,平衡条件受到破坏。
若不满足稳定条件,振荡起就不会回到平衡状态,最终导致停振。
3.4 分析图3.2.1(a)电路振荡频率不稳定的具体原因?解:电路振荡频率不稳定的具体原因是晶体管的极间电容与输入、输出阻抗的影响,电路的工作状态以及负载的变化,再加上互感耦合元件分布电容的存在,以及选频回路接在基极回路中,不利于及时滤除晶体管集电极输出的谐波电流成分,使电路的电磁干扰大,造成频率不稳定。
3.7 什么是振荡器的起振条件、平衡条件和稳定条件?各有什么物理意义?振荡器输出信号的振幅和频率分别是由什么条件决定的? 解:(1) 起振条件: 振幅起振条件 01A F >相位起振条件 2A F n ϕϕπ+=(n=0,1,…)(2)平衡条件:振幅平衡条件AF=1相位平衡条件 2A F n ϕϕπ+=(n=0,1,…)(3) 平衡的稳定条件:振幅平衡的稳定条件0AU ∂<∂ 相位平衡的稳定条件0Zϕω∂<∂振幅起振条件01A F >是表明振荡是增幅振荡,振幅由小增大,振荡能够建立起来。
振幅平衡条件AF=1是表明振荡是等幅振荡,振幅保持不变,处于平衡状态。
相位起振条件和相位平衡条件都是2A F n ϕϕπ+=(n=0,1,…),它表明反馈是正反馈,是构成反馈型振荡器的必要条件。
振幅平衡的稳定条件A ∂/0U ∂<0表示放大器的电压增益随振幅增大而减小,它能保证电路参数发生变化引起A 、F 变化时,电路能在新的条件下建立新的平衡,即振幅产生变化来保证AF=1。
相位平衡的稳定条件Z ϕ∂/ω∂<0表示振荡回路的相移Z ϕ随频率增大而减小是负斜率。
它能保证在振荡电路的参数发生变化时,能自动通过频率的变化来调整A F ϕϕ+=YF Z ϕϕ+=0,保证振荡电路处于正反馈。
摘要压控振荡器作为无线收发机的重要模块,它不仅为收发机提供稳定的本振信号,还可以倍频产生整个电路所需的时钟信号。
它的相位噪声、调节范围、调节灵敏度对无线收发机的性能有很大影响。
文章首先介绍了振荡器的两种基本理论:负反馈理论和负阻振荡理论。
分别从起振、平衡、稳定三个方面讨论了振荡器工作所要满足的条件,并对这些条件以公式的形式加以描述。
接着介绍了两种类型的压控振荡器:环形振荡器和LC振荡器。
对这两种振荡器的结构、噪声性能和电源的敏感性方面做出了分析和比较,通过分析可以看出LC压控振荡器更加适合于应用在射频领域。
紧接着介绍了CMOS工艺可变电容和电感的物理模型,以及从时变和非时变两个方面对相位噪声进行了分析。
最后本文采用csm25Rf工艺并使用Cadence SpectreRF仿真器进行仿真分析,设计了一个COMS LC压控振荡器,频率变化范围为2.34GHz-2.49GHz,振荡的中心频2.4GHz,输出振幅为 480mV,相噪声为100kHz 频率偏移下-91.44dBc/Hz ,1MHz频率偏移下-116.7dBc/Hz, 2.5V电源电压下功耗为18mW。
关键词:LC压控振荡器;片上螺旋电感;可变电容;相位噪声,调谐范围。
ABSTRACTV oltage-control-oscillator is the crucial components of wireless transceiver , it provides local signal and clock for the whole circuit, its performance parameter, such as: phase noise, tuning range, power consumption, have great effect on wireless transceivers.Firstly, two oscillator theorems: negative-feedback theorem and negative-resistance theorem , are presented and the conditions of startup, equilibrium, stabilization required for oscillator are discussed respectively.Secondly , we introduce two types of VCO : ring VCO and LC VCO ,and made a comparison between them , it is obvious that LC VCO are suit for RF application. The physical model for MOS varactor and planar spiral inductor are present.At last, a COMS LC VCO with csm25rf technology is presented , the VCO operates at 2.34GHz to 2.49 GHz, and its oscillation frequency is 2.4GHz. The amplitude is 480 mV. The phase noise at 100 kHz offset is –91.48dBc/Hz, and -116.7dBc/Hz at 1MHz. The power consumption of the core is 18mW with 2.5V power supply.Key Words:LC VCO;on-chip spiral inductor;MOS-varactor;phase noise;turning range.目录第一章绪论 (1)1.1 研究背景 (1)1.2 LC压控振荡器的研究现状 (2)1.2.1 片上电感和可变电容 (2)1.2.2 相位噪声理论和降噪技术 (2)1.3 论文研究的主要内容 (3)第二章 LC振荡器的基本原理 (5)2.1 振荡器概述 (5)2.2反馈理论 (5)2.2.1巴克豪森准则 (5)2.2.2平衡条件 (6)2.2.3 稳定条件 (7)2.3 负阻理论 (8)2.3.1 起振条件 (8)2.3.2 平衡条件 (8)2.3.3 稳定条件 (9)2.4 常见的振荡器 (11)2.4.1 环形振荡器 (11)2.4.2 LC振荡器 (11)第三章压控振荡器的实现 (13)3.1 环形振荡器 (13)3.2 LC压控振荡器 (14)3.2.1 COMS变容管的实现 (14)3.2.2 COMS工艺中的电感 (17)3.3 LC压控振荡器的实现 (21)3.3.1 LC交叉耦合振荡器 (21)3.3.2 压控振荡器的数学模型 (22)3.3.3 LC压控振荡器的实现 (23)3.4 振荡器的相位噪声 (24)3.4.1 相位噪声的知识 (24)3.4.2 非时变模型 (26)3.4.3时变模型 (28)3.4.4 降低相位噪声的方法 (32)第四章 2.4GHz LC压控振荡器设计方案 (34)4.1 电路结构的选择 (34)4.2 谐振器的设计 (34)4.2.1 片上电感 (34)4.2.2 MIM电容 (35)4.2.3 压控变容器(Varactor) (35)4.2.4 谐振器电路设计 (35)4.3 负电阻产生电路设计 (36)4.4 外围电路 (36)4.5 电源电路 (38)第五章仿真结果分析 (39)5.1 电路模拟结果 (39)5.1.1 LC压控振荡器V-f曲线 (39)5.1.2 瞬态仿真曲线 (40)5.1.3 频谱分析曲线 (40)5.1.4 相位噪声仿真曲线 (41)5.2 VCO的性能总结 (42)结束语 (43)致谢 (44)参考文献 (45)第一章绪论1.1 研究背景随着集成电路技术的发展,电路的集成度逐渐提高,功耗变的越来越大,于是低功耗的CMOS技术优越性日益显著。
振荡器原理
振荡器是一种能够产生振荡信号的电路或装置。
在振荡器中,通过电路反馈将一部分输出信号再次输入到电路的输入端,经过放大和滤波处理后形成稳定的周期性信号输出,从而实现振荡功能。
振荡器的基本原理是正反馈。
正反馈是指输出信号的一部分经过放大处理后再送回输入端,与输入信号叠加产生反馈效应。
这种反馈是自我维持的,通过适当的放大和补偿,反馈信号会被不断放大,最终形成稳定的振荡信号。
具体而言,振荡器一般由放大器、反馈网络和滤波网络组成。
放大器用于放大信号,反馈网络将输出信号经过适当的系数放大后再送回输入端。
而滤波网络则起到筛除非振荡频率成分的作用,使输出信号更加纯净。
根据不同的工作原理,振荡器可以分为多种类型,如LC振荡器、晶体振荡器、RC振荡器等。
其中,LC振荡器利用电感和电容的共振作用实现振荡,晶体振荡器则利用晶体的谐振性质产生振荡信号,而RC振荡器则利用电阻和电容的时间常数来控制振荡频率。
振荡器在电子领域中具有广泛的应用。
它们常用于通信系统中的频率发生器和时钟源、无线电设备中的振荡电路、电子钟和计时器等。
振荡器的稳定性和精确性对于这些应用至关重要,因此在设计和制造中需要注意电路参数的选择和优化,以确保振荡器能够产生准确且稳定的振荡信号。