三点式振荡器的工作原理-KC03171104-h02(精)
- 格式:ppt
- 大小:853.00 KB
- 文档页数:6
电感三点式振荡电路原理
如图所示是一个电感三点式的振荡电路。
用同样的方法观察图中的电路发现晶体管的发射极与其他两个电极之间接的是电感,而基极与发射极之间接的是电感,与集电极之间接的是电容,满足射同基反,也就是满足相位条件,直流通路正常,在幅度条件满足的情况下可以进行正弦波振荡。
用相位条件来判别可得到:
观察图,电感三点式电路中选频网络的2端是电感与电感的结点,1和3端是电感与电容的结点,所以分析电感三点式振荡电路的相位条件时只需要看选频网络的2端是否直接或者通过一电阻与发
射极(或者场效应管的源极)相连,1和3端是否直接或者通过一电阻与基极和集电极相连。
这与电容三点式的振荡电路判别方法相同。
三点式振荡电路是正弦波发生电路的一种,它与所有的正弦波振荡电路一样要遵守正弦振荡的条件,这里只是将它的相位条件变换为学生便于接受的形式。
射同基反是在长期的教学中发现的规律,用它来分析三点式振荡电路能否振荡可以回避电路的组态,对学生来说判断是否满足射同基反要比判断是否满足相位条件简单得多。
三点式正弦波振荡器(高频电子线路实验报告)摘要本实验采用三点式正弦波振荡器电路,通过实验验证了三点式正弦波振荡器的设计和实际应用,其中包括三点式正弦波振荡器的基本原理、电路结构和工作特性等。
实验结果表明,通过合理的电路设计和优化,可以得到高精度、稳定性好的正弦波振荡器,为工程应用提供了重要的参考。
关键词:三点式正弦波振荡器、电路结构、工作特性一、实验目的1.熟悉三点式正弦波振荡器的基本原理和电路结构;3.通过实验验证三点式正弦波振荡器的设计和实际应用。
二、实验原理三点式正弦波振荡器是一种常用的基本电路,它通过正反馈作用在电路中产生自激振荡现象,从而输出对称的正弦波信号。
其基本原理如下:当输出正弦信号幅度变动时,输入放大器的反相输出端和反馈电容之间的电压也会变化,导致反馈放大器的增益也会随之变化,最终导致输出正弦波的幅度稳定在一定的水平上。
同时,在电路中增加合理的RC网络,可以使三点式正弦波振荡器输出的波形更加准确、稳定。
其中,- OA1, OA2分别为运算放大器;- R1, R2, R3分别为电阻,C1, C2分别为电容,L为电感;- 输出信号可以从OA1反相输出端或者OA2非反相输出端输出。
三、实验过程本实验采用EDA软件进行电路仿真和搭建,整个实验过程分为以下几个步骤:1.根据电路原理图,使用EDAW工具将三点式正弦波振荡器的电路搭建出来;2.依据实验材料,按照电路图要求选择合适的R、C、L值;3.将搭建好的电路连接上电源(+12V),开启仿真。
4.在电路仿真过程中,通过示波器观察输出的正弦波形,并分析波形的稳定性和频率响应等特性;5.修改电路参数,观测输出波形的变化情况,并记录相应的数据;四、实验结果通过实验,在合适的电路参数和电源电压下,三点式正弦波振荡器的输出波形为一定幅值的正弦波。
图2 实验得到的三点式正弦波振荡器输出波形五、实验分析通过本实验,我们可以看出三点式正弦波振荡器具有以下特点:1.输出波形准确、稳定。
电感三点式振荡电路是一种利用电感和电容元件构建
的电子振荡电路,它能够产生一定频率和稳定度的正弦波信号,在各种电子设备中有着广泛的应用。
本文将详细阐述电感三点式振荡电路的工作原理,并举例说明其在实际中的应用。
电感三点式振荡电路由电感、电容和晶体管组成,其中电感和电容构成谐振回路,晶体管控制振荡频率。
具体地说,电感三点式振荡电路由一个电感L、三个电容C1、C2和C3和一个晶体管组成。
其中,电感L和电容C1、C2构成谐振回路,电容C3为反馈电容,晶体管控制振荡频率。
在电感三点式振荡电路中,电感L和电容C1、C2构成谐振回路,它们之间产生一定的频率和相位差。
当晶体管处于放大状态时,输入信号通过电感L和电容C1、C2相乘产生振荡电压,该电压通过电容C3反馈到晶体管的基极。
由于反馈电压与输入电压同相,因此电路产生自激振荡。
当电路达到稳定时,晶体管处于饱和状态,电路产生的正弦波信号通过晶体管的集电极输出。
此时,电感三点式振荡电路产生的正弦波信号频率为谐振回路的固有频率。
由于电路的稳定性较好,因此其产生的正弦波信号稳定度和频率精度较高。
例如,在电视机的行扫描电路中,电感三点式振荡电路被广泛应用于产生一定频率和稳定度的锯齿波信号。
该信号
用于控制电视机的电子枪在屏幕上的水平扫描位置,确保图像的正确显示。
总之,电感三点式振荡电路是一种重要的电子振荡电路,它能够产生一定频率和稳定度的正弦波信号。
在实际应用中,电感三点式振荡电路广泛应用于各种电子设备中的时钟信号、锯齿波信号等场合,具有重要的实用价值。
三点式电容振荡电路一、三点式电容振荡电路三点式电容振荡电路是一种简单的电路结构,其基本原理是将电容和电阻组合成一个微分放大环路,当此环路上没有负反馈时,它将产生振荡。
一般来说,这种电路的结构要求有三个元件,即电容和两个电阻,因此也被称为三点式电容振荡电路。
三点式电容振荡电路的基本结构如下图所示:电路中,R1和R2分别是电阻,C1是电容,V1是激励电压源,V2是振荡输出电压。
二、工作原理三点式电容振荡电路由三个元件组成,它们是一个电容和两个电阻。
电容在激励电压V1的作用下,充放电,一边向R1传送电流,另一边向R2传送电流。
由于电容C1的特性,两边的电流大小是不同的,其中R1的电流比R2的电流大,因此在R1的一端就形成了一个较低的电压,而在R2的一端就形成了一个较高的电压。
当V1激励电压消失时,由于电容C1的特性,它将向R1和R2的另一端放电,从而形成一个信号,把它传递给V2,从而形成振荡。
当电容全部放电时,电路就进入下一个周期,从而形成持续的振荡。
三、应用三点式电容振荡电路的主要用途有:(1)用于无线收发电路的频率稳定振荡。
(2)用于超声波测距电路中的频率稳定振荡和发射控制。
(3)用于转换器中的频率稳定振荡,如变频器、变压器或变流器等。
(4)用于马达控制电路中的频率稳定振荡。
(5)用于模拟电路中的作为一种振荡电路的基础,如振荡器、定时器等。
四、优势三点式电容振荡电路的主要优点有:(1)这种电路结构简单,元件数量少,只需要一个电容和两个电阻,不需要复杂的电路结构。
(2)元件参数的改变可以很容易地改变振荡频率。
(3)它能够持续振荡,而且振荡的幅值不受电源电压的影响。
(4)由于它的低成本和易于构建,它在电子领域的应用非常广泛。
三点式振荡电路定三点式振荡器是指LC回路的三个端点与晶体管的三个电极分别连接而组成的反馈型振荡器。
三点式振荡电路用电感耦合或电容耦合代替变压器耦合,可以克服变压器耦合振荡器只适宜于低频振荡的缺点,是一种广泛应用的振荡电路,其工作频率可从几兆赫到几百兆赫。
1、三点式振荡器的构成原则图5 —20三点式振荡器的原理图图5 —20是三点式振荡器的原理电路(交流通路)为了便于分析,图中忽略了回路损耗,三个电抗元件X be 、X Ce 和X bC 构成了决定振荡频率的并联谐振回路要产生振荡,对谐振网络的要求:?必须满足谐振回路的总电抗 XbeX Ce X b^O ,回路呈现纯阻 性。
反馈电压U f 作为输入加在晶体管的 b 、e 极,输出U O 加 在晶体管的c 、e 之间,共射组态 为反相放大器,放大 器的的输出电压u o 与输入电压U i (即U f )反相,而反馈 g Q电压U f 又是U o 在X bC> X be支路中分配在X be上的电压。
要满足正反馈,必须有为了满足相位平衡条件,U f 和U o 必须反相,由式(5.3.1)可知必有 孑 0成立,即X be 和X Ce 必须是同性质电抗,而XCeX b^ -(X be X Ce )必为异性电抗。
综上所述,三点式振荡器构成的一般原则:(1)为满足相位平衡条件,与晶体管发射极相连X be(X be X bC )UoX be -X Ce U o(531)的两个电抗元件X be 、X Ce必须为同性, 而不与发射极相连的电抗元件X bC的电抗性质与前者相反,概括起来“射同基 反”。
此构成原则同样适用于场效应管电路,对应 的有“源同栅反”。
(2)振荡器的振荡频率可利用谐振回路的谐振频率来估算。
为容性的,称为电容三点式振荡器,也称为考比兹 振荡器(Colpitts),如图5 — 21(a )所示;若与发射极相连的两个电抗元件X be 、X Ce为感性的,称为电感三点式振荡器,也称为哈 特莱振荡器(Hartley),如图5 — 21 (b )所 示。
电容三点式振荡器原理电容三点式振荡器是一种常见的电路,用于产生稳定的交流信号。
它由三个部分组成:一个电容器、一个反馈电阻和一个晶体管。
这种振荡器以其简单的电路结构和稳定的输出频率而广泛应用于无线电通信和电子设备中。
电容三点式振荡器的原理是基于正反馈的作用,通过反馈电路将一部分输出信号输入到输入端,并经过放大处理再次输入到反馈回路中。
电容三点式振荡器的工作原理可以分为如下几个步骤:1. 初始状况:开始时,晶体管处于截止状态(即没有输入信号)。
2. 充电:当输入一个正脉冲信号时,电容器开始充电。
充电电流通过晶体管的基极和发射极之间,导致晶体管进入放大状态。
晶体管的放大效应使得输出信号通过电容器和反馈电阻被反馈到晶体管的基极上。
3. 放电:当电容器充电到电压足够高的时候,电流开始流向集电极,电容器开始放电。
在这个过程中,电容器的电压不断降低,直到它低于晶体管截止的电压。
4. 建立反向电流:一旦电容器的电压低于晶体管的截止电压,晶体管进入非放大状态。
在这个状态下,电流不再流动,电容器开始充电,电流通过反馈电阻回到电容器。
5. 重复过程:随着电容器的充电和放电,信号通过反馈回路加强,并以稳定的频率振荡。
这个过程不断重复,产生稳定的交流信号。
电容三点式振荡器的频率由电容器和反馈电阻的值决定。
当电容器的容量增加,振荡器的频率会降低;反之,当电容器的容量减小,振荡器的频率会增加。
反馈电阻的变化也会影响频率,当反馈电阻增加时,振荡器的频率会降低;反之,当反馈电阻减小时,振荡器的频率会增加。
此外,这种振荡器还需要一个直流电源来为晶体管提供正向偏置电压。
直流电源会给晶体管提供必要的电流来放大信号,并保持电容器的充电和放电过程。
总结来说,电容三点式振荡器是一种通过正反馈作用实现稳定振荡的电路。
通过充电、放电和反馈回路的循环过程,它能产生稳定的交流信号。
这种振荡器在无线电通信和电子设备中具有广泛的应用,例如在射频发射器、时钟电路和音频发生器等方面。
三点式正弦波振荡器一、实验目的1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。
二、实验内容1、 熟悉振荡器模块各元件及其作用。
2、 进行LC 振荡器波段工作研究。
3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。
4、 测试LC 振荡器的频率稳定度。
三、实验仪器1、模块 3 1块2、频率计模块 1块3、双踪示波器 1台4、万用表 1块四、基本原理实验原理图见下页图1。
将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。
)14(1210CC C L f +=π振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数F=32.04702202203311≈+=+C C C振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。
图1 正弦波振荡器(4.5MHz )五、实验步骤1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
2、研究振荡器静态工作点对振荡幅度的影响。
(1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。
(2)改变上偏置电位器W1,记下N1发射极电流I eo (=11R V e ,R11=1K)(将万用表红表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。
电容三点式振荡电路工作原理电容三点式振荡电路是指由三个组成部分构成的振荡电路,分别为晶体管、电容器和电阻器。
该电路因其简单性和稳定性而被广泛应用于电子工业中。
该电路的工作原理是基于电容的原理,即电容可以存储电荷,当电容充电后会产生电场,这个电场会在电容两端形成电场焦耳。
当电容器被放电时,这个电场焦耳将转化为电能并释放到电路中。
在电容三点式振荡电路中,电容器和电阻器是串联连接的,由此形成了一个RC电路。
当这个RC电路接收外部激励信号时,电荷会从电源转移到电容器中,由此引起了电压的变化。
当电压达到一定水平时,晶体管将打开,释放储存在其内部的电能,并将其发送到电容器中。
这将引起电容器的电压降低,晶体管将关闭,电容器将再次充电。
由此,这个振荡过程不断重复,形成了一个周期性的电压振荡。
输出信号的频率受到电容器、电阻器和晶体管参数的影响。
根据这些参数的变化,可以改变输出信号的频率,并且可以调节信号的振幅和波形。
总体来说,电容三点式振荡电路是一种简单但功能强大的电路,非常适合小型电子设备的驱动。
随着电子技术的不断发展,越来越多的应用程序将受益于这种电路的高效率和可靠性。
同时,我们也可以利用振荡电路提供的频率输出来实现时间测量、频率计等需要通过高精度信号计算的任务。
无论是工业生产还是科研开发,电容三点式振荡电路都是非常重要的一部分,其稳定性和准确性使其成为了先进技术的关键支撑。
总之,电容三点式振荡电路以其简单、稳定、有效的工作原理而广受欢迎,在不同的应用场景中发挥着不可替代的作用。
作为电子工程的基础知识及电子设备试验的重要内容之一,这个电路的学习对于提升我们的专业技能和理论水平有着很大的帮助。
电容三点式振荡电路详解三点式振荡电路是一种采用三元素构成的RC振荡电路,包括放大器(或控制元件)、反馈电容和负反馈电阻。
它的电路构成如下:1. 电源:为振荡电路供电,由电压源和电流源构成。
2. 放大器:放大电路接在电源端,它具有输入电压放大和输出电压限幅功能。
3. 反馈电容:它将放大器产生的输出电压连接到放大器的负反馈输入端,以对放大器的输出电压进行反馈控制,使其获得稳定的直流输出。
4. 负反馈电阻:需要联合电容来完成整个反馈的功能,它的容量比较大,使得振荡中的电压可以被有效稳定。
三点式振荡电路的工作原理如下:1. rectification 工作:当放大器的输入端给定的sin θ的正弦波分量小于有效值时,输入端的正弦波经放大器放大后,输出端得到的信号立即发生整流,形成DC Voltage 正弦波变换得到脉冲波从而形成脉冲信号。
2. Feedback 工作:脉冲通过反馈电容与负反馈电阻形成一个低通滤波电路,反馈的直流电压通过这种滤波就可以获得一个携带信号的正弦波的输出信号。
3. oscillation 工作:此输出的正弦波经过放大器的放大元件,再反馈到放大器的负反馈输入端,形成一种持续振荡的循环,从而形成一个实际操作的三点式振荡电路。
三点式振荡电路的优缺点如下:优点:1. 有效率高:振荡电路可以达到良好的放大和抑制,以及对输入信号的高度灵敏度,效率更高。
2. 稳定性好:使用电容反馈节点,稳定性更好,不易受外界干扰。
3. 无限制的增益:可以实现有限的增益,也可以实现较大的增益,满足不同需求。
4. 有效的抑制谐振:能够有效的抑制低频部分的谐波,提高信号的纯度。
缺点:1. 处理效率低:多种元件组成,复杂的步骤中使得效率不高,损失比较多。
2. 成本较高:因为处理效率低,需要大量元件组成,所以成本较高。
3. 复杂的组装过程:需要更大的时间和技巧来检查、组装和调试放大器,复杂而缜密工作使得维护更加复杂。
总之,三点式振荡电路是一种有效的电路,可以带来更快的响应,更精确的振荡频率,且体积比较小。
共基极电容三点式振荡器1. 引言共基极电容三点式振荡器是一种常见的电子电路,用于产生高频信号。
它由三个关键部件组成:共基极放大器、电容耦合器和反馈电路。
本文将详细介绍共基极电容三点式振荡器的原理、特点、设计和应用。
2. 原理共基极电容三点式振荡器的原理基于电容耦合和反馈放大。
其基本工作原理如下:1.共基极放大器:共基极放大器是一种三极管放大器,其输入信号通过基极输入,输出信号通过集电极输出。
由于共基极放大器的输入电流小于输出电流,因此它具有较高的电流放大倍数。
2.电容耦合器:电容耦合器用于将共基极放大器的输出信号耦合到反馈电路中。
它通过一个电容器将信号传递给反馈电路,同时阻隔直流偏置电压。
3.反馈电路:反馈电路将一部分输出信号反馈到共基极放大器的输入端,形成正反馈。
这种正反馈能够使系统产生振荡,并且频率由反馈电路中的元件决定。
3. 特点共基极电容三点式振荡器具有以下特点:1.高频信号产生:共基极电容三点式振荡器适用于高频信号产生,通常在几十千赫兹到几百兆赫兹的频率范围内工作。
2.简单结构:共基极电容三点式振荡器的结构相对简单,由少量的元件组成,易于设计和调试。
3.高稳定性:由于反馈电路的存在,共基极电容三点式振荡器具有较高的稳定性,能够在一定范围内保持振荡频率的稳定。
4.输出波形良好:共基极电容三点式振荡器的输出波形相对纯净,较少的失真,适用于需要高质量信号的应用。
4. 设计步骤设计共基极电容三点式振荡器的步骤如下:1.确定工作频率:根据应用需求,确定振荡器的工作频率。
2.选择元件:选择适合工作频率的三极管、电容器和电阻等元件。
3.设计共基极放大器:根据工作频率和元件参数,设计共基极放大器的电路。
4.设计电容耦合器:根据共基极放大器的输出阻抗和反馈电路的输入阻抗,设计电容耦合器的容值。
5.设计反馈电路:选择合适的反馈电路结构,并根据工作频率和元件参数进行设计。
6.仿真和调试:使用电子电路仿真软件对设计的振荡器进行仿真,并进行调试和优化。
三点式振荡器(学号:)(物理与电子信息学院 10级电子信息工程1班,内蒙古呼和浩特 010022)指导教师:摘要:三点式振荡器是以LC谐振回路作为选频网络的反馈振荡器。
本文主要介绍的是三点式振荡器的基本工作原理,对电感三点式及电容三点式振荡器的原理电路进行分析并讨论了三点式振荡器简化交流通路的画法和判断产生振荡的一般原则,并通过例子来对方法进行验证。
关键词:电感三点式;电容三点式;交流通路;振荡电路中图分类号:TN7521引言振荡器用于产生一定频率和幅度的信号,它无需外部激励就能自动的将直流电源供给的功率转换为指定频率和振幅的交流信号功率输出。
振荡器的种类很多,根据产生振荡波形的不同,可分为正弦波振荡器和非正弦波振荡器。
本文所讨论的三点式振荡器是一种反馈振荡器,它是正弦波振荡器的一种,利用正反馈原理构成。
振荡器在现代科学技术领域中有着广泛的应用,例如,在广播、电视、通信设备中振荡器用来产生所需要的载波和本机振荡信号;在各种信号源、测量仪器中用来产生各种频段的正弦信号等。
它是不可缺少的的核心组成部分之一,是一种最基本的电子线路。
本文先讨论三点式振荡器的基本工作原理,然后分别对电感三点式和电容三点式电路进行分析,最后通过例子来对三点式振荡器简化交流通路的画法和判断产生振荡的一般原则进行验证。
2三点式振荡器的基本工作原理我们应该要了解振荡器正常工作所需满足的三个条件即平衡条件、起振条件以及稳定条件,这样有利于后面我们对三点式振荡器原理的认识。
图1 反馈振荡器的构成框图2.1振荡的平衡条件当反馈信号f u 等于放大器的输入信号i u ,或者说,反馈信号f u 恰好等于产生输出电压o u 所需的输入电压i u ,这时振荡电路的输出电压不再发生变化,电路达到平衡状态,因此,将if U U =称为振荡的平衡条件。
根据图1可知,放大器开环电压放大倍数A 和反馈网络的电压传输系数F分别为: i O U U A =;Of U U F = (1.1.1) 所以iO f U A F U F U == (1.1.2) 由此可得,振荡的平衡条件为1||)(===+f a j e F A F A Tϕϕ (1.1.3) 式中,T 为反馈系统环路增益;||A 、a ϕ为放大倍数A 的模和相角;||F 、fϕ为反馈系数F的模和相角。
电容三点式振荡原理电容三点式振荡原理是指通过三个电容器组成的电路,在一定的条件下能够产生振荡。
电容三点式振荡电路是一种常用的电子振荡电路,广泛应用于通信、电子仪器及测量等领域。
电容三点式振荡电路由三个电容器和两个开关组成,其中两个电容器被连接到一个可调整的电压源上,第三个电容器则通过两个开关与另两个电容器交替连接。
当两个开关交替切换时,电容器之间的电荷会发生变化,从而导致电压的变化。
这种交替的电容器充电和放电的过程,就形成了一个振荡电路。
电容三点式振荡电路的振荡原理可以通过以下步骤进行解释:1. 电路初始状态:电容器C1和C2被连接到电源上,电容器C3离开电源。
电容器C1和C2开始充电,电荷开始积累。
2. 电容器充电过程:在一定的时间间隔后,开关1关闭,开关2打开,此时电容器C1和C2之间有一个路径可以流动电荷,电容器C3被连接到电源上开始充电。
3. 电容器放电过程:在电容器C3充电一段时间后,开关2关闭,开关1打开,电容器C1和C2之间的电荷开始流动,电容器C3被与电源隔离。
4. 交替过程:通过开关的交替切换,电容器C1、C2和C3之间的电荷和电压不断变化,形成振荡。
电容三点式振荡电路的交替作用是由电容器的充电和放电过程决定的。
当开关1打开时,电容器C1开始充电,同时电容器C2放电,电流会从C2流向C1,导致电势差的变化。
当电容器C1充电达到一定程度时,开关2关闭,电容器C1和C2之间的电荷开始流动,电容器C3被连接到电源上,开始充电。
当电容器C3充电一定时间后,开关1关闭,开关2打开,电容器C1和C2之间的电荷重新开始流动,电容器C3被隔离。
通过不断交替充电和放电的过程,电容三点式振荡电路实现了振荡。
电容三点式振荡电路中的电容器和两个开关的选择会直接影响振荡的频率和振幅。
电容器的容值越大,振荡的频率越低;两个开关的开关频率越快,振荡的频率越高。
根据电容三点式振荡电路的设计,可以调整电容值和开关频率,得到所需的振荡信号。
三点式正弦波振荡器实验数据引言三点式正弦波振荡器实验是电子工程学中的一项基础实验,用于研究电路中的振荡现象。
本文将详细介绍该实验的原理、实验装置、实验过程和实验数据分析,并对实验结果进行深入探讨。
一、实验原理正弦波振荡器是一种能够产生稳定频率和振幅的信号源。
它由三个主要部分组成:放大器、反馈网络和频率稳定电路。
1.1 放大器在正弦波振荡器中,放大器起到放大信号的作用。
放大器通常采用共射放大器或共基放大器的形式,工作在其放大区间。
1.2 反馈网络反馈网络是正弦波振荡器中的关键组成部分,它将部分输出信号反馈到放大器的输入端,从而形成正反馈回路,使得系统产生振荡。
1.3 频率稳定电路频率稳定电路用于保持振荡器的输出频率稳定。
最常见的频率稳定电路是RC网络,通过调节电容或电阻的值可以改变振荡器的频率。
二、实验装置本实验使用的实验装置主要包括示波器、信号发生器和三点式正弦波振荡器电路。
2.1 示波器示波器用于显示电路的波形,是本实验中不可缺少的仪器之一。
示波器可以测量电压和时间的关系,并以波形的形式显示出来。
2.2 信号发生器信号发生器用于产生稳定的正弦波信号,作为振荡器电路的输入信号。
信号发生器具有可调节频率和振幅的功能,可以为实验提供所需的输入信号。
2.3 三点式正弦波振荡器电路三点式正弦波振荡器电路是本实验的核心部分。
它由放大器、反馈网络和频率稳定电路组成,可以产生稳定的正弦波信号。
三、实验过程3.1 实验准备首先,将示波器和信号发生器连接起来,并根据实验要求设置信号发生器的输出频率和振幅。
3.2 搭建电路根据实验指导书提供的电路图,搭建三点式正弦波振荡器电路。
确保电路连接正确并牢固。
3.3 调节电路打开示波器和信号发生器,逐步调节电路,使得示波器上显示出稳定的正弦波波形。
根据实验指导书中给出的方法,调节放大器、反馈网络和频率稳定电路的参数。
3.4 记录实验数据在调节电路的过程中,用示波器测量和记录各部分电路的电压和频率值。
改进型电容三点式振荡电路的设计摘要高频信号发生器主要用来向各种电子设备和电路提供高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。
高频信号发生器主要是产生高频正弦振荡波,故电路主要是由高频振荡电路构成。
振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。
为此,振荡器是电子技术领域中最基本的电子线路,也是从事电子技术工作人员必须要熟练掌握的基本电路。
本次课设设计了改进型电容三点式高频振荡器,介绍了设计步骤,比较了各种设计方法的优缺点,总结了不同振荡器的性能特征。
使用Protel2004DXP制作PCB板,并使用环氧树脂铜箔板和FeCl3进行了制板和焊接。
使用实验要求的电源和频率计进行验证,实现了设计目标。
1 实验原理1.1 振荡的原理三点式LC正弦波振荡器的组成法则(相位条件)是:与晶体管发射极相连的两个电抗元件应为同性质的电抗,而与晶体管集电极—基极相连的电抗元件应与前者性质相反。
图1-1所示为满足组成法则的基本电容反馈LC振荡器共基极接法的典型电路。
当电路参数选取合适,满足振幅起振条件时,电路起振。
当忽f可近似认为等略负载电阻、晶体管参数及分布电容等因素影响时,振荡频率oscf,即于谐振回路的固有振荡频率of=(1)式中 C 近似等于1C 与2C 的串联值1212C C C C C ≈+ (2)图1-1 电容反馈LC 振荡器由图1-1所画出的分析起振条件的小信号等效电路如图1-2所示。
图1-2 分析起振条件的小信号等效电路由图1-2分析可知,振荡器的起振条件为:e L e L m ng g n g g n g +=+>'''1)(1 (3)式中 '011,//L e L e eg g R R r ==0e R 为LC 振荡回路的等效谐振电阻;电路的反馈系数 112f C k n C C =≈+ (4)由式(3)看出,由于晶体管输入电阻e r 对回路的负载作用,反馈系数f k 并不是越大越容易起振,反馈系数太大会使增益A 降低,且会降低回路的有载Q 值,使回路的选择性变差,振荡波形产生失真,频率稳定性降低;所以,在晶体管参数一定的情况下,可以调节负载和反馈系数,保证电路起振。
详解三点式振荡器三点式振荡器利用电容耦合或电感(自耦变压器)耦合代替互感耦合,可以克服互感耦合振荡器振荡频率低的缺点,是一种应用范围较广的振荡电路,其工作频率可达到几百兆赫。
1.组成与振荡条件三点式振荡器是指振荡回路的3 个端点与三极管的3 个引脚(电极)分别连接而构成的振荡器,如图6-19所示。
VT 是三极管,Xbe、Xcb、Xce 是3 个电抗。
图6-19 三点式振荡器原理图振荡器起振的条件是:要求Xbe、Xce 必须是相同性质的电抗,也就是同为电感或同为电容;而Xcb 则与Xbe、Xce 的电抗性质相反。
2.分类三点式振荡器主要有电感三点式振荡器、电容三点式振荡器、改进型电容三点式振荡器等。
(1)电感三点式振荡器典型的电感三点式振荡器如图6-20所示。
该电路的核心元器件是VT、L1、L2、C3、C1。
其中,VT 是振荡管,L1、L2 和C3 是振荡回路的3 个电抗,C1 是正反馈电容。
图6-20 典型的电感三点式振荡器电源电压VCC 一路通过电感L1 加到振荡管VT 的集电极,另一路通过R1、R2 分压后为VT 的基极提供导通电压,使VT 导通,它的集电极电流使L1 产生上正、下负的电动势,使电感L2 感应出上正、下负的脉冲电压,该脉冲通过正反馈电容C1 加到VT 的基极,使VT 因正反馈雪崩过程迅速进入饱和导通状态。
VT 饱和后,它的集电极电流不再增大,因电感中的电流不能突变,所以L1 产生反相的电动势,致使L2 相应产生反相的电动势。
该电动势通过C1 使VT 迅速截止。
VT 截止后,L1 两端的电动势对谐振电容C1 充电,随着C1 不断充电,充电电流不断减小,致使L1 再次产生反相电动势,L2 相应产生反相电动势,如上所述,VT 进入振荡状态。
振荡器频率的大小由L1、L2 和C3 的参数决定,改变C3 的容量就可以调节振荡频率。
因此,C3 可以使用可调电容。
提示电感三点式振荡器具有易起振、振荡幅度大、频率调节范围宽等优点,但它的正反馈信号对高次谐波的阻抗大,容易导致输出波形失真,所以此类振荡器主要应用在波形要求不高的场合。
三点式电容振荡电路一、引言三点式电容振荡电路是一种常见的电路结构,用于产生稳定的振荡信号。
该电路由三个元件组成:电容、电感和电阻。
通过合理选择这三个元件的数值,可以实现不同频率的振荡信号输出。
本文将详细介绍三点式电容振荡电路的原理、特点和应用。
二、原理三点式电容振荡电路的原理基于谐振现象。
当电容和电感串联时,它们形成了一个谐振回路。
在理想情况下,谐振回路的谐振频率由电容和电感的数值决定,可以通过以下公式计算:f=2π√LC其中,f为谐振频率,L为电感的电感值,C为电容的电容值。
在三点式电容振荡电路中,电容和电感串联并联有一个电阻。
该电阻起到了阻尼的作用,使得振荡信号不会无限持续下去,而是逐渐衰减。
同时,电阻还起到了稳定振荡信号幅度的作用。
三、特点三点式电容振荡电路具有以下特点: 1. 简单可靠:该电路结构简单,元件数目少,易于制作和维护。
2. 可调性强:通过调整电容和电感的数值,可以实现不同频率的振荡信号输出。
3. 稳定性好:电阻的存在可以使振荡信号的幅度稳定,不会过大或过小。
4. 幅度可调:通过调整电阻的数值,可以控制振荡信号的幅度大小。
四、应用三点式电容振荡电路在电子电路中有广泛的应用,以下是一些常见的应用场景: 1. 时钟电路:三点式电容振荡电路可以作为时钟电路的基础,产生稳定的时钟信号用于同步电子设备的工作。
2. 频率测量:通过调整电容和电感的数值,可以实现不同频率的振荡信号输出,用于频率测量和校准。
3. 无线电发射:三点式电容振荡电路可以作为无线电发射器的基础,产生稳定的射频信号。
4. 振荡器:三点式电容振荡电路可以作为振荡器的核心部件,产生稳定的振荡信号用于调试和测试电路。
五、实验步骤以下是使用三点式电容振荡电路进行实验的步骤: 1. 准备实验所需的元件:电容、电感和电阻。
2. 根据所需的振荡频率,选择合适的电容和电感数值。
3. 将电容、电感和电阻按照电路图连接起来,组成三点式电容振荡电路。
5.3.2 三点式振荡电路定义:三点式振荡器是指LC 回路的三个端点与晶体管的三个电极分别连接而组成的反馈型振荡器。
三点式振荡电路用电感耦合或电容耦合代替变压器耦合,可以克服变压器耦合振荡器只适宜于低频振荡的缺点,是一种广泛应用的振荡电路,其工作频率可从几兆赫到几百兆赫。
1、 三点式振荡器的构成原则图5 —20 三点式振荡器的原理图图5 —20是三点式振荡器的原理电路(交流通路)为了便于分析,图中忽略了回路损耗,三个电抗元件be ce bc X X X 、和构成了决定振荡频率的并联谐振回路。
要产生振荡,对谐振网络的要求:?必须满足谐振回路的总电抗0be ce bc X X X ++=,回路呈现纯阻性。
反馈电压f u 作为输入加在晶体管的b 、e 极,输出o u 加在晶体管的c 、e 之间,共射组态为反相放大器,放大器的的输出电压o u 与输入电压i u (即f u )反相,而反馈电压f u 又是o u 在bc X 、be X 支路中分配在be X 上的电压。
要满足正反馈,必须有()be be f o o be bc ce X X X X X u u u ==-+ (5.3.1)为了满足相位平衡条件,f u 和o u 必须反相,由式(5.3.1)可知必有0be ce X X >成立,即be X 和ce X 必须是同性质电抗,而()bc be ce X X X =-+必为异性电抗。
综上所述,三点式振荡器构成的一般原则:(1) 为满足相位平衡条件,与晶体管发射极相连的两个电抗元件be X 、ce X 必须为同性,而不与发射极相连的电抗元件bcX 的电抗性质与前者相反,概括起来“射同基反”。
此构成原则同样适用于场效应管电路,对应的有“源同栅反”。
(2) 振荡器的振荡频率可利用谐振回路的谐振频率来估算。
若与发射极相连的两个电抗元件be X 、ceX 为容性的,称为电容三点式振荡器,也称为考比兹振荡器(Colpitts),如图5 —21(a )所示;若与发射极相连的两个电抗元件be X 、ceX 为感性的,称为电感三点式振荡器,也称为哈特莱振荡器(Hartley),如图5 —21(b )所示。
三点式振荡基本原理整理三点式振荡电路组成法则(相位条件)三点式振荡器是指LC回路的三个端点与晶体管的三个电极分别连接而组成的一种振荡器。
三点式振荡器电路用电容耦合或自耦变压器耦合代替互感耦合, 可以克服互感耦合振荡器振荡频率低的缺点, 是一种广泛应用的振荡电路, 其工作频率可达到几百兆赫。
上图是三点式振荡器的原理图。
先分析在满足正反馈相位条件时LC回路中三个电抗元件应具有的性质。
电容三点式电路(又称考毕兹电路,Coplitts)图中是回路电容, L是回路电感, 分别是高频旁路电容和耦合电容。
一般来说, 旁路电容和耦合电容的电容值至少要比回路电容值大一个数量级以上。
有些电路里还接有高频扼流圈, 其作用是为直流提供通路而又不影响谐振回路工作特性。
对于高频振荡信号, 旁路电容和耦合电容可近似为短路, 高频扼流圈可近似为开路。
由于电容三点式电路已满足反馈振荡器的相位条件, 只要再满足振幅起振条件就可以正常工作。
因为晶体管放大器的增益随输入信号振幅变化的特性与振荡的三个振幅条件一致, 所以只要能起振, 必定满足平衡和稳定条件。
电感三点式电路(又称哈特莱电路,Hartley)三点式电路的特点:电容三点式:反馈电压中高次谐波分量很小,因而输出波形好,接近正弦波。
反馈系数因与回路电容有关,如果用该变回路的方法来调整震荡频率,必将改变反馈系数,从而影响起震。
电感三点式:便于用改变电容的方法来调整震荡频率,而不会影响反馈系数,但是反馈电压中高次谐波分量比较多,输出波形差。
雾化电路庐电路装置能使盆景的假山、树木周围产生层层雾气,犹如山间飘着朵朵白云,极大地提高了观赏价值。
同时也适合过分干燥的环境对空气加湿,以利人的呼吸;在水中加入适量的某种溶剂,给被污染的居住环境消毒等。
工作原理电路由超声波发生器、水位控制器、电源等部分组成。
超声波发生器主要由三极管VT1构成,VT1及其外围元件组成电容三点式LC振荡器,B是超声波换能器,其固有频率fc=1.65MHz,电容C1、C2决定振荡幅度,其固有频率略低于fc,L1、C2为正反馈元件,其固有频率略高于fc,VD5为VT1的保护二极管。