垂径定理(1)
- 格式:ppt
- 大小:409.00 KB
- 文档页数:15
9下§3.3垂径定理(1)(垂径定理)课题组一、不能遗忘的记忆(思维混乱源自记忆模糊,遗忘就意味着多用10倍的时间纠错.)1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧;2. 垂径定理解读:(1)条件:“弦”可以是直径;(2)结论:“平分弧”既意味着平分弦所对的劣弧,也意味着平分弦所对的优弧;3. 垂径定理的三种语言:文字语言 图形语言 几何语言是直径(AB 过圆心)二、不能忽视的归纳(深度学习离不开归纳.没有归纳的学习一定是低效的,甚者是无效的.)1.回顾(补充)学习:轴对称图形:一个图形沿一条直线对折,两部分能够完全重合.2.垂径定理证明方法:构造等腰三角形,由垂直于弦得出平分弦;由圆心角相等得出弧相等.3.有关圆的常用辅助线: 连接圆心与弦一端点(半径),过圆心作弦的垂线段(弦心距),再由半径、弦心距、半弦构成直角三角形,利用勾股定理解答. 三、必须分享的智慧(没有知识的活用,没有方法的迁移,就谈不上智慧.)【典例】如图,已知圆O 的半径为mm 30,弦AB =mm 36,求点O 到AB 的距离及OAB∠的正弦值.一读:关键词:半径,弦.二联:重要结论:过圆心的垂线平分弦.重要方法:半径、半弦、弦心距构造直角三角形.三解:解: 过 圆心O 作 于M;DM AM =∴;AD AC =;BD BC =AB M CD AB ,于⊥ 18362121=⨯==∴AB AM A BO M AB OM ⊥在 中,由勾股定理得: 在 中,所以,点 到AB 的距离为mm 24,OAB ∠的正弦值为四悟:解决有关圆中相关数量问题时,常通过连接半径,作出弦心距,利用垂径定理构造直角三角形解答.四、金题核思点拨(学习抓关键,思维抓核心,学必须学的.)1. 已知圆O 的直径是m c 50,圆O 的两条平行弦cm AB 40= ,cm CD 48=,求弦AB 与CD 之间的距离.核思点拨: 弦CD AB //,但不知两弦与圆心的位置关系,所以分两种情况讨论:圆心在两弦之间或圆心在两弦同侧.再由垂径定理及勾股定理解答.答案:过点 作 于 ,则 于连接 由垂径定理得,在 中,由勾股定理得: OAM RT ∆OAM RT ∆O 1522=-=BF OB OF OBF RT ∆2421,2021====CD DE AB BF ODOB 、AB OF ⊥18,300==AM A 2422=-=AM OA OM 54302400sin ===A M A .54CD OE ⊥E O F .25,20==OB BF同理在 中,两弦在圆心同侧时,两弦距离两弦在圆心异侧时,两弦距离2. 如图,F 是圆O 直径AB 上一点,且cm AB 9=,垂直于AB 的弦cm CD 12=,垂足为F ,延长CB 到E ,使CB BE =,连接DE .求DE 的长.核思点拨: 条件中已有了弦心距OF 与半弦CF ,连半径r OC =,由垂径定理知6=CF r OF -=9,在直角三角形中用 勾股解答求出r ,从而求出 值,由三角形中位线得,答案: 连接 直径 弦在 中,由勾股定理得:cm OE OF EF 22=+=∴DOE RT ∆BF 2226)9r r =+-∴(OCF RT ∆6122121=⨯==∴CD CF ⊥AB OC722=-=DE OD OE cm OE OF EF 8=-=∴.2BF DE = CD222OC CF OF =+解得:是 的中位线132==∴BF DE CDE ∆CBBE =CFDF = 5.6=r FB ∴。
【考点训练】垂径定理-1【考点训练】垂径定理-1一、选择题(共11小题)1.(2008•衢州)如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是()2.(2008•长春)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,那么线段OE的长为()3.(2010•潍坊)已知:如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8cm,OC=5cm,则DC的长为()4.(2008•河北)如图,已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()5.(2008•梅州)如图所示,圆O的弦AB垂直平分半径OC,则四边形OACB()6.(2009•庆阳)如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()7.(2009•临夏州)如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()8.(2010•大田县)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是()10.(2009•黔南州)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()cm C D.11.(2008•荆州)如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴相切于B,与y轴交于C(0,1),D (0,4)两点,则点A的坐标是().C D.二、填空题(共3小题)(除非特别说明,请填准确值)12.(2010•文山州)如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为_________.13.(2011•西藏)如图,AB是⊙O的弦,OC⊥AB于点C,若AB=8cm,OC=3cm,则⊙O的半径为_________cm.14.(2009•安顺)如图,⊙O的半径OA=10cm,设AB=16cm,P为AB上一动点,则点P到圆心O的最短距离为_________cm.三、解答题(共1小题)(选答题,不自动判卷)15.(2007•双柏县)如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.(1)请写出五个不同类型的正确结论;(2)若BC=8,ED=2,求⊙O的半径.【考点训练】垂径定理-1参考答案与试题解析一、选择题(共11小题)1.(2008•衢州)如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是()==4OM=AC=22.(2008•长春)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,那么线段OE的长为()CE=DE=CD=AB=×==63.(2010•潍坊)已知:如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8cm,OC=5cm,则DC的长为()4.(2008•河北)如图,已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()5.(2008•梅州)如图所示,圆O的弦AB垂直平分半径OC,则四边形OACB()6.(2009•庆阳)如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()最短为=37.(2009•临夏州)如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()AB=3=58.(2010•大田县)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是()10.(2009•黔南州)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()cm C D.OA=1cmcmAB=2OA=111.(2008•荆州)如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴相切于B,与y轴交于C(0,1),D (0,4)两点,则点A的坐标是().C D.AM==2)二、填空题(共3小题)(除非特别说明,请填准确值)12.(2010•文山州)如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为5.AM=BM=AB=3,)13.(2011•西藏)如图,AB是⊙O的弦,OC⊥AB于点C,若AB=8cm,OC=3cm,则⊙O的半径为5cm.AC=BC=AO=14.(2009•安顺)如图,⊙O的半径OA=10cm,设AB=16cm,P为AB上一动点,则点P到圆心O的最短距离为6cm.OP==6cm三、解答题(共1小题)(选答题,不自动判卷)15.(2007•双柏县)如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.(1)请写出五个不同类型的正确结论;(2)若BC=8,ED=2,求⊙O的半径.BE=CE= BE=CE=。
中学数学听课记录课题27.3(1) 垂径定理授课教师听课人听课班级初三5班听课时间2014年11月3日教学内容(一)情景引入1300 多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(弧的中点到弦的距离,也叫拱形高)为7.2米,求桥拱的半径(精确到0.1米)说明:通过实际问题引入新课激发学生学习兴趣1、观察与思考:圆是怎样的对称图形?对称轴与对称中心分别是什么?(二)学习新课1、思考如图,CD是⊙O的直径,AB是⊙O的弦,且AB⊥CD,垂足为M,则图中有哪些相等的线段和弧?(半圆除外)为什么?(学生观察,猜想,并得出以下结论)①CO=DO(同圆的半径相等)②AM=BM,弧AD=弧BD,弧AC=弧BC(如何证明?)(学生讨论,并得出推导过程,教师板书)联结OA、OB,则OA=OB.∵ AB⊥CD,∴ AM=BM(等腰三角形三线合一),∠AOD=∠BOD,∴弧AD=弧BD(同圆中,相等的圆心角所对的弧相等).∵∠AOC=∠BOC,∴弧AC=弧BC.1.定理:如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,且平分这条弦所对的弧.结合图形写成符号语言:∵直径CD⊥弦AB,垂足为M∴ AM=BM∴弧AD=弧BD(同圆中,相等的圆52DC BAO心角所对的弧相等). 弧AC=弧BC.例2(赵州桥桥拱问题)1300 多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(弧的中点到弦的距离,也叫拱形高)为7.2米,求桥拱的半径(精确到0.1米) 分析:首先将实际问题转化为数学图形。
如图,假设弧AB 表示赵州桥的桥拱,桥拱的跨度为37.4米,拱高为7.2米,求桥拱所在圆的半径.(精确到0.1米) 1、结合图形解释桥拱的跨度、拱高及弓形的含义.2、图中哪些表示圆O 的半径?3、如何建立等量关系?解:设圆O 的半径为R ,则OA=OB=OC=R 根据题意,AB=37.4,CD=7.2,则OD=2.7-R ∵ 半径OC ⊥AB ,垂足为D ∴ AD=21AB=18.7 在Rt △AOD 中,∠ADO=90° ∵ AD 2+OD 2=OA 2 ∴ 18.72+2)2.7(-R =2R 9.27≈R答:桥拱所在圆的半径约为27.9米. (三)巩固练习1、已知⊙O 的弦AB 长为10,半径长R 为7,OC 是弦AB 的弦心距,求OC 的长.2、已知⊙O 的半径长为50cm ,弦AB 长50cm , 求:(1)点O 到AB 的距离;(2)∠AOB 的大小.1.如图,已知P 是⊙O 内一点,画一条弦AB ,使AB 经过经过点P,并且AP=PB.。
垂径定理一、教材分析:(1)教材的地位和作用:本节选自人教版数学九年级第二十四章第一节,本节研究的是圆的轴对称性与垂径定理及简单应用,垂径定理既是前面圆的性质的重要体现,是圆的轴对称性的具体化,也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据,同时也是为进行圆的计算、作图、证明提供了方法和依据,所以它在教材中处于非常重要的位置。
因此,这节课无论在知识上,还是在对学生能力的培养及情感教育方面都起着十分重要的作用。
(2)教学重点、难点与关键:本节课的教学重点是:垂径定理及其应用。
由于垂径定理的题设与结论比较复杂,很容易混淆遗漏,所以,对垂径定理的题设与结论区分是难点之一;本节课的难点是:对垂径定理题设与结论的区分及定理的证明方法。
理解垂径定理的关键是圆的轴对称性。
二、目标分析:(板书并用投影仪显示教学目标)1、认知目标:首先使学生理解圆的轴对称性,进而掌握垂径定理,最终学会运用垂径定理解决有关的证明、计算和作图问题。
2、能力目标:培养学生观察能力、分析能力及联想能力。
3、情感目标:通过联系、发展、对立与统一的思考方法对学生进行辩证唯物主义观点及美育教育。
三、教学方法与教材处理:鉴于教材特点,根据教学目标及我所教班级学生的知识基础,我选用引导发现法和直观演示法。
让学生在课堂上多活动、多观察、多合作、多交流,主动参与到整个教学活动中来,组织学生参与“实验---观察---猜想---证明”的活动,最后得出定理,这符合新课程理念下的“要把学生学习知识当作认识事物的过程来进行教学”的观点,也符合教师的主导作用与学生的主体地位相统一的原则。
同时,在教学中,我充分利用教具和课件,提高教学效果,在实验、演示、操作、观察、练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力,这符合新课程理念下的直观性与可接受性原则。
关于教材的处理:(1)对于圆的轴对称性及垂径定理的发现、证明,采用师生共同演示的方法。
垂径定理的判定垂径定理是以三角形的垂径来判定三角形的关系的一种定理,主要涉及三角形的内角和外角的知识点,这也是判定三角形的一种简单形式,并且可用于解决实际问题,所以在数学中使用广泛。
一、垂径定理的定义垂径定理的核心是三角形的垂径,即以三角形的边长和角度为基础构建的一种关系,其定义如下:在任意一个三角形中,当给定A角的夹角,则其余两个角按照以下关系判定:A角的余边(另外两条边)分别对应B角和C角,并且其关系如下:A角的余边平方之和等于B 角的余边乘以C角的余边的总和。
二、垂径定理的应用垂径定理可以用来解决一些常见的实际问题,比如可以用来计算三角形内角和外角之间的关系,例如:有一个三角形,其中A角的夹角为60°,B角的夹角为90°,那么根据垂径定理,C角的夹角就可以用下面的公式来计算:C角的夹角 = 180° - B角的夹角 - A角的夹角 = 180° - 90° - 60° = 30°,从而可以计算出三角形所有角度的值。
垂径定理也可以用来计算三角形的边长,例如:若A角的夹角为60°,B角的夹角为90°,且A角的余边为2,那么根据垂径定理,可以求得B角的余边 =(2 + 2) - 2 = 4,即B角的余边为4,从而可以得出三角形的边长。
三、垂径定理的表达垂径定理可以表达为数学式:a +b = c其中a为A角的余边,b为B角的余边,c为C角的余边,从根本上讲,就是三角形三条边长之和的平方等于第三条边长的平方加上夹角的余边的平方,因此从数学上可以看到,垂径定理是一种判定三角形关系的有效手段。
四、垂径定理的结论综上所述,垂径定理可以用来判断三角形的关系,是判定三角形的一种简单形式,而且可用于解决实际问题,所以在数学中使用广泛,因此其实质就是三角形内角和外角之间的关系,以及三角形三边之和的平方等于第三边长的平方加上夹角的余边的平方,这也是垂径定理最主要的表达方式。
BB24.1.2 垂直于弦的直径——垂径定理(第一课时)一、知识探究1、圆既是 图形,又是 图形。
对称轴是 ,对称中心是 。
2、按要求作图(1)作⊙O 的任意一条弦AB ;(2)过圆心O ,作垂直于弦AB 的直径CD ,交AB 于点E 。
观察并回答:问题1:通过观察,在该图中有没有相等的线段:问题2:通过观察,在该图中有没有相等的弧: 证明过程:已知:CD 是⊙O 的直径,且CD ⊥AB 。
求证:AE=BE结论:垂径定理: 的直径 ,并且 。
几何语言的写法:∵ ∴强调:(1) ;(2) ;(3) (4) ;(5) 二、例题解析例1:在⊙O 中,弦AB 长8cm ,圆心O 到AB 的距离为3cm ,则⊙O 半径为例2:⊙O 的半径为5,M 是⊙O 内一点,OM=3,则过M 点的最短弦的长为例3:如图:已知线段AB 交⊙O 于C 、D 两点,若AC=BD ,求证:OA=OB 。
三、课堂练习:1、在⊙O 中,弦AB 长8cm ,⊙O 半径为5cm ,圆心O 到AB 的距离为2、在⊙O 中,⊙O 半径为5cm ,圆心O 到弦AB 的距离3cm ,则弦AB 的长为3、在半径为R 的⊙O 中,有长为R 的弦AB ,那么O 到AB 的距离为4、如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆与C 、D 两点。
求证:AC=BD 。
5、如图,AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD=10cm ,AP ∶PB=1∶5 ,求的⊙O 半径。
24.1.2 垂直于弦的直径——垂径定理的推论(第二课时)一、知识回顾垂径定理: 的直径 ,并且 。
按要求作图(1)在⊙O (2)作弦(3)连接问题1:⊙O 的直径CD 与弦AB 有怎样的位置关系: 问题2:该图中有没有相等的弧 证明过程:已知:CD 是⊙O 的直径,并且平分弦AB ,求证:CD ⊥AB 。
结论:垂径定理的推论: 的直径 ,并且 三、例题解析例1:已知⊙O 的半径OA=10㎝,弦AB=16㎝,P 为弦AB 上的一个动点,则OP 的最短距离为典型练习:1、下面四个命题中正确的一个是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2、下列命题中,正确的是( ).A .过弦的中点的直线平分弦所对的弧B .过弦的中点的直线必过圆心C .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧3、⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( ) (A )5OM 3≤≤ (B )5OM 4≤≤ (C )5OM 3<< (D )5OM 4<<4、如图所示,若⊙O 的半径为13cm ,点P 是弦AB 上一动点,且到圆心的最短距离5cm ,则弦AB 的长为______________ . 四、课堂练习1、已知:如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8m ,OC=5m ,则DC 的长为(1) (2) (3)2、如图,在⊙O 中,直径AB 丄弦CD 于点M ,AM=18,BM=8,则CD 的长为__________ . 3、如图,∠PAC=30°,在射线AC 上顺次截取AD=3cm ,DB=10cm ,以DB 为直径作⊙O 交射线AP 于E 、F 两点,则线段EF 的长是_________ cm .4、已知圆的半径为5cm ,一弦长为8cm ,则弦的中点到弦所对弧的中点的距离为__ _____。
垂径定理判定
垂径定理是指,如果一个三角形的某一边的垂线(或称高线)与另一边相交于垂足,那么这个垂线的长度就等于对应边上的点到垂足的距离。
而垂径定理的判定方式,则取决于问题的具体形式和所给的条件。
以下是一些可能的情况:
- 已知三角形的三边长,判断三角形是否直角三角形:如果三边构成的三角形中,最长边的平方等于另外两边平方之和,则这个三角形是一个直角三角形,且最长边所对应的角为直角。
此时,垂足就是斜边上距离最长的点。
- 已知三角形的三个顶点坐标,判断三角形是否直角三角形:计算三个顶点之间的距离即可,如果存在一对边的长度平方之和等于第三边长度平方,则这个三角形是一个直角三角形。
此时,可以用两个顶点作为边上的点,然后计算该边上的垂足的坐标。
- 已知三角形的一边和与该边垂直的高线长度,判断三角形是哪种类型:计算高线长度是否等于对应边上的点到垂足的距离,若相等,则这个三角形是一个直角三角形;如果高线长度小于对应边上的点到垂足的距离,则这个三角形是一个锐角三角形;如果高线长度大于对应边上的点到垂足的距离,则这个三角形是一个钝角三角形。
- 已知三角形的两个角度和一边或两边,判断三角形是否直角三角形:通过三角函数(正弦、余弦、正切等)求出所有边长,然后判断是否满足勾股定理。
若满足,则这个三角形是一个直角三角形。
《垂径定理(1)》教学反思如皋市九华初中蒋洁丽学生已经知道,在同圆或等圆中,圆心角、圆心角所对的弧和弦及其弦心距这四组量之间有着密切的联系。
本节课利用圆的轴对称性,进一步得到圆的直径与弦及弦所对的弧之间也存在着密切的关联。
因为圆是轴对称图形,且任意一条直径所在直线都是它的对称轴,所以课本对于这些量之间关系的讨论,从垂直于弦的直径的性质开始展开,并加以推理证明。
垂径定理及其推论揭示了垂直于弦的直径和这条弦及这条弦所对的弧之间的内在关系,是圆的轴对称性的具体化,也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据,同时也为进行圆的有关计算和作图提供了方法和依据。
在垂径定理得出的过程中,要让学生体现从感性到理性、从具体到抽象的思维变化过程,有助于培养学生的思维严谨性。
反思之一:培养学生会用数学知识解决实际问题数学来源于生活,又服务于生活。
在实际生活中,数、形随处可见,无处不在。
好的实际问题容易引起学生的兴趣,激发学生探索和发现问题的欲望,使学生感到数学课很熟悉,数学知识离我们很近。
不过,学生在解决实际问题的过程中,主要存在几点困难,一是学生见到实际问题就畏惧,根本不想读题;二是学生对实际问题背景不熟悉,熟悉问题背景花费一定时间;三是对于实际问题,学生不知如何下手解决,所用知识是什么,用什么思想方法解决。
为了克服这种困难,本节课专门设计了一个较为熟悉的实际问题,这样做的好处,一是体现问题具有现实的用途---数学的有用性,二是与本节课的知识内容及数学思想方法有直接关系。
这个问题解决了,以后学生再见到类似的实际问题时,就不会感到陌生。
我们知道,每种教学模式都有其优劣,如果一味的按一种教学模式贯穿于整个教学过程,并不能达到最好的教学效果。
教学中,应根据不同的教学内容,选择不同的教学模式来教学,这样效果会更好。
本节课,由于学生的差异较大,所以选择小组合作的教学模式,发挥小组合作学习的优势,给学生创造一个宽松的学习环境,使学生消除畏惧怕错的心理压力,激发学生的创新精神,帮助学生树立学好数学的信心和勇气。
圆部分知识点总结垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为: 过圆心 垂直于弦直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧弧、弦、弦心距、圆心角之间的关系定理1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
2:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们 所对应的其余各组量都分别相等。
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
点和圆的位置关系设⊙O 的半径是r ,点P 到圆心O 的距离为d ,则有: d<r ⇔点P 在⊙O 内;d=r ⇔点P 在⊙O 上; d>r ⇔点P 在⊙O 外。
过三点的圆1、不在同一直线上的三个点确定一个圆。
2、经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, (3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O 的半径为r ,圆心O 到直线L 的距离为d,那么:直线L 与⊙O 相交⇔d<r ;直线L 与⊙O 相切⇔d=r ; 直线L 与⊙O 相离⇔d>r ;圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。