- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
垂径定理
垂直于弦的直径平分弦,并且平 分弦所对的两条弧。
C
∵ CD是直径,CD⊥AB
O · A
∴ AE=BE, AC =BC, AD =BD.
B
⌒
⌒
⌒
⌒
E D
垂径定理推论
平分弦(不是直径)的直径垂直 于弦,并且平分弦所对的两条弧。
C
∵ CD是直径, AE=BE
O · A
∴ CD⊥AB,AC =BC, AD =BD.
C
a 2
h d
d+h=r
B
A
r
D O
a r d 2
D
A
F
E O C
B
4.如图,AB是⊙O的弦,∠OCA=300,OB=5cm, OC=8cm,则AB= ;
4
┌
O
5
D
8
30°
A
B
C
练习
已知⊙O的半径为5厘米,弦AB的长为8厘米, 求此弦的中点到这条弦所对的弧的中点的距 离。
E
O
D
A B
O A
E
D
B
某圆直径是10,内有两条平行弦, 长度分别为6和8,求这两条平行 弦间的距离.
B
⌒
⌒
⌒
⌒
E D
练习
C
1.如图所示:
A
└ M
●
B O
(1)若CD⊥AB, CD是直径, ⌒ ⌒ ⌒ ⌒ AD=BD 、AC=BC . 则 AM=BM 、 (2)若AM=MB, CD是直径, ⌒ ⌒ ⌒ ⌒ CD ⊥ AB AC=BC 则 、 AD=BD 、
D
.
(3)若CD⊥AB, AM=MB, ⌒ ⌒ ⌒ ⌒ CD 是直径 AC=BC 则 、 AD=BD 、 . ⌒ ⌒ (4)若AC=BC ,CD是直径, ⌒ ⌒ CD ⊥ AB AM=BM 则 、 、 AD=BD .
如图,AB为⊙O的一条直径,它把⊙O分成上、 下两个半圆,从上半圆上一点C作弦CD⊥AB, ∠OCD的平分线交⊙O于P,当点C在半圆上(不 包括A、B两点)移动时,点P的位置会发生怎样 的变化?试说明理由?
C
A
E
O
B
D P
垂径定理的应用
小
结
运用垂径定理可以解决许多生产、生活实际问 题,其中弓形是最常见的图形(如图),则弦a,弦 心距d,弓形高h,半径r之间有以下关系:
OE AB
1 1 AE AB 8 4 2 2
A
E
B
在Rt AOE中
O
·
AO OE AE
2 2
2
AO OE 2 AE 2 = 32 +42 =5cm
答:⊙O的半径为5cm.
2.如图,在⊙O中,AB、AC为互相垂直且相等的 两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形 ADOE是正方形.
C E F
●
解:连接OC.
O
设弯路的半径为Rm, 则OF ( R 90)m. OE CD, 1 1 D CF CD 600 300(m). 2 2 2 2 2 OC CF OF , 300 2 R 90 . 解这个方程, 得R 545. 这段弯路的半径约为545m.
E
例1:如图,圆O的弦AB=8 ㎝ , DC=2㎝,直径CE⊥AB于D, 求半径OC的长。
A
O
D B
C
练习1:在圆O中,直径CE⊥AB于 D,OD=4 ㎝,弦AC= 10 ㎝ , 求圆O的半径。
D A
E
O
B
C
练习
1.如图,在⊙O中,弦AB的长为8cm,圆心O 到AB的距离为3cm,求⊙O的半径. 解:
O
A
E
F
B
P
如图,⊙O的直径为10,弦AB=8,P为AB上 的一个动点,那么OP长的取值范围 是 3cm≤OP≤5cm 。
5
A
O
4
3
C
P
B
达标检测
一、填空 1、已知AB、CD是⊙O中互相垂直的弦,并且AB把CD分成3cm和7cm 的两部分,则圆心O和弦AB的距离为 2 cm. 2、已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN 和EF之间的距离为14cm或2cm .
3、已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径 为 5cm .
4、在半径为25cm的⊙O中,弦AB=40cm,则此弦和弦所对的弧的中 点的距离是 10cm和40cm . 5、 ⊙O的直径AB=20cm, ∠BAC=30°则弦AC= 10 3 cm .
船能过拱桥吗?
例3.如图,某地有一圆弧形拱桥,桥下水面宽为 7.2米,拱顶高出水面2.4米.现有一艘宽3米、 船舱顶部为长方形并高出水面2米的货船要经 过这里,此货船能顺利通过这座拱桥吗?
巩固训练 一弓形弦长为4 6 cm,弓形所在的圆的半径为
7cm,则弓形的高为____.
C
C A
D
B
O
O
A
D
B
4、如图,点A、B是⊙O上两点,,点P是⊙O 上的动点(P与A、B不重合),连接AP、BP, 过点O分别作OE⊥AP于E,OF⊥BP于F,则EF与 AB有什么关系?为什么?
O
A
E
F
B
P
4、如图,点A、B是⊙O上两点,AB=8,点P 是⊙O上的动点(P与A、B不重合),连接AP、 BP,过点O分别作OE⊥AP于E,OF⊥BP于 F,EF= 4 。
判断下列说法的正误
①平分弧的直径必平分弧所对的弦 ②平分弦的直线必垂直弦 ③垂直于弦的直径平分这条弦 ④平分弦的直径垂直于这条弦 ⑤弦的垂直平分线是圆的直径 ⑥平分弦所对的一条弧的直径必垂直这条弦 ⑦在圆中,如果一条直线经过圆心且平分弦, 必平分此弦所对的弧 ⑧分别过弦的三等分点作弦的垂线,将弦所对 的两条弧分别三等分
1.已知P为⊙O内一点,且OP=2cm, 如果⊙O的半径是3cm,那么过P点的最 短的弦等于 2 5cm .
2.过⊙O内一点M的最长弦长为4厘米,最短 弦长为2厘米,则OM的长是多少?
B
O E C A P D
A O M
垂径定理的应用
例2如图,一条公路的转变处是一段圆弧(即图中弧CD, 点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点, 且OE⊥CD垂足为F,EF=90m.求这段弯路的半径.
证明: OE AC OD AB AB AC
OEA 90
EAD 90
ODA 90
1 1 ∴四边形ADOE为矩形,AE AC,AD AB 2 2 C 又 ∵AC=AB
∴ AE=AD ∴ 四边形ADOE为正方形.
A D B E
·
O
3.如图,CD为圆O的直径,弦 AB交CD于E, ∠ CEB=30°, DE=9㎝,CE=3㎝,求弦AB的长。