第九章 振动
- 格式:pdf
- 大小:238.55 KB
- 文档页数:21
⼤学物理第九章振动第9章振动本章要点:1. 简谐振动的定义及描述⽅法.2. 简谐振动的能量3. 简谐振动的合成物体在⼀定位置附近作周期性的往返运动,如钟摆的摆动,⼼脏的跳动,⽓缸活塞的往复运动,以及微风中树枝的摇曳等,这些都是振动。
振动是⼀种普遍⽽⼜特殊的运动形式,它的特殊性表现在作振动的物体总在某个位置附近,局限在⼀定的空间范围内往返运动,故这种振动⼜被称为机械振动。
除机械振动外,⾃然界中还存在着各式各样的振动。
今⽇的物理学中,振动已不再局限于机械运动的范畴,如交流电中电流和电压的周期性变化,电磁波通过的空间内,任意点电场强度和磁场强度的周期性变化,⽆线电接收天线中,电流强度的受迫振荡等,都属于振动的范畴。
⼴义地说,凡描述物质运动状态的物理量,在某个数值附近作周期性变化,都叫振动。
9.1 简谐振动9.1.1 简谐振动实例在振动中,最简单最基本的是简谐振动,⼀切复杂的振动都可以看作是由若⼲个简谐振动合成的结果。
在忽略阻⼒的情况下,弹簧振⼦的⼩幅度振动以及单摆的⼩⾓度振动都是简谐振动。
1. 弹簧振⼦质量为m的物体系于⼀端固定的轻弹簧(弹簧的质量相对于物体来说可以忽略不计)的⾃由端,这样的弹簧和物体系统就称为弹簧振⼦。
如将弹簧振⼦⽔平放置,如图9-1所⽰,当弹簧为原长时,物体所受的合⼒为零,处于平衡状态,此时物体所在的位置O就是其平衡位置。
在弹簧的弹性限度内,如果把物体从平衡位置向右拉开后释放,这时由于弹簧被拉长,产⽣了指向平衡位置的弹性⼒,在弹性⼒的作⽤下,物体便向左运动。
当通过平衡位置时,物体所受到的弹性⼒减⼩到零,由于物体的惯性,它将继续向左运动,致使弹簧被压缩。
弹簧因被压缩⽽出现向右的指向平衡位置的弹性⼒,该弹性⼒将阻碍物体向左运动,使物体的运动速度减⼩直到为零。
之后物体⼜将在弹性⼒的作⽤下向右运动。
在忽略⼀切阻⼒的情况下,物体便会以平衡位置O为中⼼,在与O点等距离的两边作往复运动。
图中,取物体的平衡位置O为坐标原点,物体的运动轨迹为x轴,向右为正⽅向。
高二物理第九章机械振动第一、二、三节人教版【本讲教育信息】一. 教学内容:第九章 机械振动第一节 简谐振动 第二节振幅、周期和频率 第三节 简谐运动的图象二. 知识要点: 〔一〕简谐振动1. 机械振动的定义:物体在某一中心位置两侧所做的往复运动。
2. 回复力的概念:使物体回到平衡位置的力。
注意:回复力是根据力的效果来命名的,可以是各种性质的力,也可以是几个力的合力或某个力的分力。
3. 简谐运动概念:物体在跟位移大小成正比,并且总是指向平衡位置的力作用下的振动。
特征是:kx F -=;m kx a /-=。
〔特例:弹簧振子〕4. 简谐运动中位移、回复力、速度、加速度的变化规律。
〔参看课本〕〔1〕振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置、大小为这两位置间的直线距离,在两个“端点〞最大,在平衡位置为零。
〔2〕加速度a 的变化与回F 的变化是一致的,在两个“端点〞最大,在平衡位置为零,方向总是指向平衡位置。
〔3〕速度大小v 与加速度a 的变化恰好相反,在两个“端点〞为零,在平衡位置最大。
除两个“端点〞外任一个位置的速度方向都有两种可能。
〔二〕振幅、周期、频率1. 振幅A 的概念:振动物体离开平衡位置的最大距离称为振幅。
它是描述振动强弱的物理量。
2. 周期和频率的概念:振动的物体完成一次全振动所需的时间称为振动周期,单位是秒;单位时间内完成的全振动的次数称为振动频率,单位是赫兹。
周期和频率都是描述振动快慢的物理量。
注意:全振动是指物体先后两次运动状态........〔位移和速度〕完全一样....所经历的过程。
振动物体在一个全振动过程通过的路程等于4个振幅。
3. 周期和频率的关系:fT 1=4. 固有频率和固有周期:物体的振动频率,是由振动物体本身的性质决定的,与振幅的大小无关,所以叫固有频率。
振动周期也叫固有周期。
〔三〕简谐运动的图象 1. 简谐运动的图象:〔1〕作法:以横轴表示时间,纵轴表示位移,根据实际数据取单位,定标度,描点。
第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。
解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。
(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。
解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。
(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。
现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。
(1)证明此质点的运动是谐振动;(2)计算其振动周期。
解:以球心为原点建立坐标轴Ox 。
质点距球心x 时所受力为324433x mF G G mx x πρπρ=-=-令43k G m πρ=,则有F kx =-,即质点做谐振动。
(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T s 。
当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x ×10-2m 处,向负方向运动;(4)物体在x =-×10-2 m 处,向正方向运动。
求以上各种情况的振动方程。
解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭(3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭(4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。
第9章 机械振动习题详解9-1下列说法正确的是: ( A )A )谐振动的运动周期与初始条件无关B )一个质点在返回平衡位置的力作用下,一定做谐振动。
C )已知一个谐振子在t =0时刻处在平衡位置,则其振动周期为π/2。
D )因为谐振动机械能守恒,所以机械能守恒的运动一定是谐振动。
9-2一质点做谐振动。
振动方程为x=A cos (φω+t ),当时间t=21T (T 为周期)时,质点的速度为 ( B )A )-A ωsin φ;B )A ωsin φ;C )-A ωcos φ;D )A ωcos φ; 9-3一谐振子作振幅为A 的谐振动,当它的动能与势能相等时,它的相位和坐标分别为 ( C ) A )3π±和32π±,;21A ± B )6π±和65π±,;23A ±C )4π±和43π±,A 22±; D )3π±和32π±,;23A ± 9-4已知一简谐振动⎪⎭⎫ ⎝⎛+=531041πt x cos ,另有一同方向的简谐振动()φ+=t x 1062cos ,则φ为何值时,合振幅最小。
( D )A )π/3;B )7π/5;C )π;D )8π/59-5有两个谐振动,x 1t A x ,t A ωωsin cos 221==,A 1>A 2,则其合振动振幅为( A )A )21A A A +=;B )21A A A -=;C )A=2221A A +;D )A=2221A A -9-6一质点作简谐振动,其运动速度与时间的曲线如图所示,若质点的振动规律用余弦函数作描述,则其初相位应为 ( C )A )π/6;B )5π/6;C )-5π/6;D )-π/69-7质量为 m =1.27×10-3kg 的水平弹簧振子,运动方程为x =0.2cos (2πt +4π)m ,则t =0.25s 时的位移为m 102-,速度为s m /52π-,加速度为2/522s m π,恢复力为N 31008.7-⨯,振动动能为J 4105-⨯,振动势能为J 4105-⨯。
第9章振动信号的处理和分析飞行器的振动现象,表现为结构振动量的时间和空间的函数。
人们希望通过对飞行器结构振动信号的测量和分析,来了解飞行器结构本身的物理特性,建立适宜的数学模型,从而预测飞行器在工作条件或所处环境中的运行行为及其对结构的强度、刚度,以及运行安全乃至相关人员的舒适性的影响。
简言之,飞行器结构的振动特性是通过振动信号的测量、处理和分析确定的。
在确定结构动特性时,数据采集应归于测量,而出于分析的需要,将信号进行数据离散(变换)、截断(加窗)、滤波等则可狭义地归为处理。
传统地看法将变换视为分析,其实这也是一种处理。
但广义地说,处理也是一种分析手段。
因此,本章内容在阐述时并不严格地区分哪些是处理,哪些是分析,而是把处于处理和分析的每一个环节都作为一种方法来阐述。
§9.1 振动信号的分类不同类型的信号将有不同的分析方法和选定不同的分析参数,按照信号本身的特性,最基本的分类可概括为稳态信号和非稳态信号两类,如图9.1.1所示。
图 9.1.1 振动信号的类型稳态信号是其统计特性不随时间而变化的信号,它可以分为稳态确定性信号和稳态随机信号。
其中稳态随机信号可认为是一种其平均特性不随时间变化,因而可以用任意一条样本记录来决定的随机信号。
这也是所谓稳态的一般含义,无论对于确定性信号或是对于随机性信号皆是如此。
但对于随机信号来说,稳态不是理解为从不同的记录样本所得到的结果都必须完全一样,而只意味着它们是等价的。
稳态确定性信号对于任意稳定的时刻,其信号值是可以预知的。
而对于稳态随机信号,只能确知其统计特性,如平均值、方差等。
非稳态信号可粗略地分为连续性非稳态信号和瞬态信号,语言信号是典型的连续性非稳态信号。
两者最基本的区别是,瞬态信号可以作整体处理,而连续非稳态信号一般可分成若干短时信号段来处理,每一段常常可以看成是拟稳态的。
稳态确定性信号是完全由具有离散频率成分的正弦信号组成的信号,又可分为周期性信号和拟周期性信号。
第九章 弹性体振动的准确解9.1 引言在引论中我们曾经提到,实际的振动系统都是弹性体系统。
弹性体具有分布的物理参数(质量,阻尼,刚度)。
它可以看做由无数个质点借弹性联系组成的连续系统,其中每个质点都具有独立的自由度。
所以,一个弹性体的空间位置需要用无数个点的独立空间坐标来确定。
也就是说,弹性体具有无限多个自由度。
在数学上,弹性体的运动需要用偏微分方程来描述。
前面我们论述的多自由度系统只是弹性体的近似力学模型。
本章讨论理想弹性体的振动,所谓理想弹性体.....是指满足以下三个条件的连续系统模型:(1)匀质分布;(2)各向同性;(3)服从虎克定律。
通过对一些简单形状的弹性体的振动分析,着重说明弹性体振动的特点,弄清它与多自由度系统振动的共同点与不同点。
我们将看到,任何一个弹性体具有无限多个固有频率以及无限多个与之相应的主振型;而且这些主振型之间也存在着关于质量与刚度的正交性;弹性体的自由振动也可以表示为各个主振动的线性叠加;而且对于弹性体的动响应分析,主振型叠加法仍然是适用的。
所以说,弹性体振动与多自由度系统的振动,二者有着一系列共同的特性,这就是它们的共性。
而二者的差别仅在于数量上弹性体有无限多个固有频率与主振型,而多自由度系统只有有限多个。
我们还将看到,对于一些简单情形下的弹性体振动问题,可以很方便地找到它们的准确解。
尽管实际问题往往是复杂的,很少可以归结为这些简单情形;但是了解这些简单情形下准确解的特征,对于处理复杂问题是有帮助的。
为了避免用到弹性力学的知识,而仅以材料力学作为基础,我们将限于讨论一维弹性体(梁,轴,杆等)。
9.2弦的振动设有理想柔软的细弦张紧于两个固定支点之间,张力为T ,跨长为l ,弦单位长度的质量为ρ。
两支点连线方向取为x 轴(向右为正),与x 轴垂直的方向取为y 轴(向上为正),如图9.2-1(a )。
设弦的振动发生在xoy 平面内,弦的运动可表示为y=y (x,t ).还假设弦的振动幅度是微小的,即 y 与xy∂∂均为小量;在这假设下弦的张力T 可近似地看做常量。
第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。
解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略 9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。
(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。
解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。
(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。
现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。
(1)证明此质点的运动是谐振动;(2)计算其振动周期。
解:以球心为原点建立坐标轴Ox 。
质点距球心x 时所受力为324433x m F G G mx x πρπρ=-=- 令43k G m πρ=,则有F kx =-,即质点做谐振动。
(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s 。
当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x =1.0×10-2m 处,向负方向运动;(4)物体在x =-1.0×10-2 m 处,向正方向运动。
求以上各种情况的振动方程。
解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭ (3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭ (4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。
三、单摆1、单摆:在细线的一端拴一小球,另一端固定在悬点上,如果悬挂小球的细线的伸缩和质量可以忽略,线长又比球的直径大得多,这样的装置就叫做单摆2、单摆是实际摆的理想化模型3摆长:摆球重心到摆动圆弧圆心的距离 L=L0+R4偏角:摆球摆到最高点时,细线与竖直方向的夹角(偏角一般小于5°) 2、单摆的回复力:平衡位置是最低点 ,kx F -=回回复力是重力沿切线方向的分力,大小为mg sin θ,方向沿切线指向平衡位置单摆的周期只与重力加速度g 以及摆长L 有关。
所以,同一个单摆具有等时性 重力加速度g:由单摆所在的空间位置决定。
纬度越低,高度越高,g 值就越小。
不同星球上g 值也不同。
单摆作简谐运动时的动能和重力势能在发生相互转化,但机械能的总量保持不变,即机械能守恒。
小球摆动到最高点时的重力势能最大,动能最小;平衡位置时的动能最大,重力势能最小。
若取最低点为零势能点,小球摆动的机械能等于最高点时的重力势能,也等于平衡位置时的动能。
例一:用下列哪些材料能做成单摆( AF )悬线:细、长、伸缩可以忽略摆球:小而重(即密度大) A.长为1米的细线 B 长为1米的细铁丝 C.长为0.2米的细丝线D.长为1米的麻绳E.直径为5厘米的泡沫塑料球F.直径为1厘米的钢球G.直径为1厘米的塑料球H.直径为5厘米的钢球例2.一摆长为L 的单摆,在悬点正下方5L/9处有一钉子,则这个单摆的周期是多少?例3、有人利用安装在气球载人舱内的单摆来确定气球的高度。
已知该单摆在海平面处的周期是T 0,当气球停在某一高度时,测得该单摆周期为T 。
求该气球此时离海平面的高度h 。
把地球看作质量均匀分布的半径为R 的球体。
gL T π35=例7.如图所示为一单摆的共振曲线,求:1。
该单摆的摆长约为多少?(近似认为g=2m/s 2)2共振时摆球的最大速度大小是多少?③若摆球的质量为50克,则摆线的最大拉力是多少?例11.如图所示,在一根张紧的水平绳上,悬挂有 a 、b 、c 、d 、e 五个单摆,让a 摆略偏离平衡位置后无初速释放,在垂直纸面的平面内振动;接着其余各摆也开始振动。