光检测器(APD 特性表征公式)
- 格式:ppt
- 大小:1.18 MB
- 文档页数:36
PIN:positive-intrinsic-negative(P型半导体-杂质-N型半导体)APD:avalanche photodiode(雪崩二极管)饱和光功率又称饱和光功率即指最大负载。
指在一定的传输速率下,维持一定的误码率(10-10~10-12)时的光模块接收端最大可以探测到的输入光功率。
当光探测器在强光照射下会出现光电流饱和现象,当出现此现象后,探测器需要一定的时间恢复,此时接收灵敏度下降,接收到的信号有可能出现误判而造成误码现象,而且还非常容易损坏接收端探测器,在使用操作中应尽量避免超出其饱和光功率。
因此对于发射光功率大的光模块不加衰减回环测试会出现误码现象。
当APD输入光功率达到一定强度的时候,输出的光电流将趋于饱和。
随着温度的升高,APD的击穿电压V BR也随着上升,如果APD的工作电压(即高压)不变,APD的光电检测性能会变弱,灵敏度降低。
APD的倍增因子代表倍增后的光电流与首次光电流之比。
如图:由图可知,倍增因子M与反向偏置电压有关(反偏电压越大,斜率越大,M越大。
理论上反偏电压接近击穿电压时,M趋于无穷大。
),所以说他是可调的。
同时可以看到APD雪崩光电二极管还存在一个雪崩电压(击穿电压)V B。
当反偏电压大于击穿电压时,M会急剧增大处于雪崩状态。
但此时产生的倍增噪声会远远大于倍增效应带来的好处。
因此实际使用中,总是把反偏电压调到略小于雪崩电压的地方。
APD倍增因子M的计算公式很多,一个常用的公式为M=1/1-(v/vB)n式中: n 是由P-N 结材料决定的常数; V B 为理想反向偏压; V 为反向偏压的增加值。
对于Si 材料,n =1. 5 ~4 ;对于Ge 材料n = 2. 5~8 。
由式中还可看出,当| V | →| V B | 时, M → ∞, P-N结将发生雪崩击穿。
由公式可知,同样材料的APD管,同样偏置电压情况下,击穿电压越大,倍增因子越小。
三、光电检测器光电检测器是把光信号功率转换成电信号电流的器件。
1再生段光衰耗、色散、光信噪比、Q值、BER值、DGD值计算说明1.1衰耗受限计算采用最坏值法设计:L=(Ps-Pr-C)/a式中:Ps:为光放大器(OAU板)单信道的最小输出功率,单位为dBm。
光功率放大器OAU单信道输出功率取为+1dBm。
Pr:为单信道接收端的最小允许输入功率,单位为dBm。
C:所有光连接器的衰减和,每个光连接器的衰减为0.5dB。
a:为光纤损耗系数(dB/km),包含了光纤衰减、光纤熔接衰减和光纤富裕度,默认值取0.275dB/km 。
衰耗受限距离计算:对于发端配置OAU(+1dB输出)、收端配置OAU(-32dB接收)的33dB的光中继段:L=(Ps-Pr-C)/a=[1-(-32)-2×0.5]/0.275=116km注:DWDM系统是OSNR受限系统,以上数据仅表明光放大器的在此距离内是不受限的。
本次工程站间距离及衰减已经过测试,指标值标注在传输系统配置图中。
1.2色散受限距离计算DCM的补偿方法详见3.1色散容限配置部分。
1.3级联光放大器时的光信噪比OSNR计算(1)、单个放大器产生的ASE噪声功率:一个光放大器产生的自发辐射噪声功率PASEˊ为PASEˊ=2Nsp(G-1)hv·△v(mw)式中:Nsp是放大器自发辐射因子v是光中心频率h是普朗克常数G是放大器的增益(倍数)△v是光接收机的带宽(取0.1nm)。
进而可以推导出,一个光放大器产生的以dBm计的自发辐射噪声功率:PASE = -58 + NFi + Gi(dBm)(1) 其中:NFi为光放大器噪声系数(dB);Gi为光放大器的增益(dB)。
(2)、复用通路光接收机输入端的信噪比①、系统模型包括N个级联光放大器的WDM系统模型如下图所示图中:L1、L2、… Ln-1分别是第1、2、… n-1个区段的衰减(dB);G1、G2、… Gn分别是第1、2、… n个光放大器的增益(dB)。
②、各光放大器产生的ASE噪声功率利用已经推导出的公式,首先分别计算出每个光放大器产生的ASE噪声功率PASEi (dBm)。
PIN与APD介绍PIN:positive-intrinsic-negative(P型半导体-杂质-N型半导体)APD:avalanche photodiode(雪崩⼆极管)饱与光功率⼜称饱与光功率即指最⼤负载。
指在⼀定得传输速率下,维持⼀定得误码率(10-10~10-12)时得光模块接收端最⼤可以探测到得输⼊光功率。
当光探测器在强光照射下会出现光电流饱与现象,当出现此现象后,探测器需要⼀定得时间恢复,此时接收灵敏度下降,接收到得信号有可能出现误判⽽造成误码现象,⽽且还⾮常容易损坏接收端探测器,在使⽤操作中应尽量避免超出其饱与光功率。
因此对于发射光功率⼤得光模块不加衰减回环测试会出现误码现象。
当APD输⼊光功率达到⼀定强度得时候,输出得光电流将趋于饱与。
随着温度得升⾼,APD得击穿电压V BR也随着上升,如果APD得⼯作电压(即⾼压)不变,APD得光电检测性能会变弱,灵敏度降低。
APD得倍增因⼦代表倍增后得光电流与⾸次光电流之⽐。
如图:由图可知,倍增因⼦M与反向偏置电压有关(反偏电压越⼤,斜率越⼤,M越⼤。
理论上反偏电压接近击穿电压时,M趋于⽆穷⼤。
),所以说她就是可调得。
同时可以瞧到APD雪崩光电⼆极管还存在⼀个雪崩电压(击穿电压)V B。
当反偏电压⼤于击穿电压时,M会急剧增⼤处于雪崩状态。
但此时产⽣得倍增噪声会远远⼤于倍增效应带来得好处。
因此实际使⽤中,总就是把反偏电压调到略⼩于雪崩电压得地⽅。
APD倍增因⼦M得计算公式很多,⼀个常⽤得公式为 M=1/1-(v/vB)n式中: n 就是由P-N 结材料决定得常数; V B 为理想反向偏压; V 为反向偏压得增加值。
对于Si 材料,n =1、 5 ~ 4 ;对于Ge 材料n = 2、 5~8 。
由式中还可瞧出,当| V | →| V B | 时, M → ∞, P-N结将发⽣雪崩击穿。
由公式可知,同样材料得APD管,同样偏置电压情况下,击穿电压越⼤,倍增因⼦越⼩。
PIN:positive-intrinsic-negative(P型半导体-杂质-N型半导体)APD:avalanche photodiode(雪崩二极管)饱和光功率又称饱和光功率即指最大负载。
指在一定的传输速率下,维持一定的误码率(10-10~10-12)时的光模块接收端最大可以探测到的输入光功率。
当光探测器在强光照射下会出现光电流饱和现象,当出现此现象后,探测器需要一定的时间恢复,此时接收灵敏度下降,接收到的信号有可能出现误判而造成误码现象,而且还非常容易损坏接收端探测器,在使用操作中应尽量避免超出其饱和光功率。
因此对于发射光功率大的光模块不加衰减回环测试会出现误码现象。
当APD输入光功率达到一定强度的时候,输出的光电流将趋于饱和。
随着温度的升高,APD的击穿电压V BR也随着上升,如果APD的工作电压(即高压)不变,APD的光电检测性能会变弱,灵敏度降低。
APD的倍增因子代表倍增后的光电流与首次光电流之比。
如图:由图可知,倍增因子M与反向偏置电压有关(反偏电压越大,斜率越大,M越大。
理论上反偏电压接近击穿电压时,M趋于无穷大。
),所以说他是可调的。
同时可以看到APD雪崩光电二极管还存在一个雪崩电压(击穿电压)V B。
当反偏电压大于击穿电压时,M会急剧增大处于雪崩状态。
但此时产生的倍增噪声会远远大于倍增效应带来的好处。
因此实际使用中,总是把反偏电压调到略小于雪崩电压的地方。
APD倍增因子M的计算公式很多,一个常用的公式为 M=1/1-(v/vB)n式中: n 是由P-N 结材料决定的常数; V B 为理想反向偏压; V 为反向偏压的增加值。
对于Si 材料,n =1. 5 ~ 4 ;对于Ge 材料n = 2. 5~8 。
由式中还可看出,当| V | →| V B | 时, M → ∞, P-N结将发生雪崩击穿。
由公式可知,同样材料的APD管,同样偏置电压情况下,击穿电压越大,倍增因子越小。
三、光电检测器光电检测器是把光信号功率转换成电信号电流的器件。
光电探测器响应度公式
光电探测器的响应度(Responsivity)是衡量光电探测器探测效率的物理量之一,定义为光电流与入射光功率之比。
响应度公式通常表达为R=Iph/Pin,其中Iph为净光电流,Pin为光功率。
单位为A/W。
此外,响应度R也可以表示为光电转换器(又称光检测器)的平均输出电流Ip与光电转换器(又称光检测器)的平均输入功率Po的比值,即R=Ip/Po。
在PIN管中,光电流Ip和入射光功率Po、电子电荷e、普朗克常数h以及入射光频率f之间有关系,公式为Ip=(e Poη)/(h f),其中η为量子效率。
因此,响应度R也可以写为R=η/(h f/e)。
PIN:positive-intrinsic-negative(P型半导体-杂质-N型半导体)APD:avalanche photodiode(雪崩二极管)饱和光功率又称饱和光功率即指最大负载。
指在一定的传输速率下,维持一定的误码率(10-10~10-12)时的光模块接收端最大可以探测到的输入光功率。
当光探测器在强光照射下会出现光电流饱和现象,当出现此现象后,探测器需要一定的时间恢复,此时接收灵敏度下降,接收到的信号有可能出现误判而造成误码现象,而且还非常容易损坏接收端探测器,在使用操作中应尽量避免超出其饱和光功率。
因此对于发射光功率大的光模块不加衰减回环测试会出现误码现象。
当APD输入光功率达到一定强度的时候,输出的光电流将趋于饱和。
随着温度的升高,APD的击穿电压V BR也随着上升,如果APD的工作电压(即高压)不变,APD的光电检测性能会变弱,灵敏度降低。
APD的倍增因子代表倍增后的光电流与首次光电流之比。
如图:由图可知,倍增因子M与反向偏置电压有关(反偏电压越大,斜率越大,M越大。
理论上反偏电压接近击穿电压时,M趋于无穷大。
),所以说他是可调的。
同时可以看到APD雪崩光电二极管还存在一个雪崩电压(击穿电压)V B。
当反偏电压大于击穿电压时,M会急剧增大处于雪崩状态。
但此时产生的倍增噪声会远远大于倍增效应带来的好处。
因此实际使用中,总是把反偏电压调到略小于雪崩电压的地方。
APD倍增因子M的计算公式很多,一个常用的公式为 M=1/1-(v/vB)n式中: n 是由P-N 结材料决定的常数; V B 为理想反向偏压; V 为反向偏压的增加值。
对于Si 材料,n =1. 5 ~ 4 ;对于Ge 材料n = 2. 5~8 。
由式中还可看出,当| V | →| V B | 时, M →∞, P-N结将发生雪崩击穿。
由公式可知,同样材料的APD管,同样偏置电压情况下,击穿电压越大,倍增因子越小。
三、光电检测器光电检测器是把光信号功率转换成电信号电流的器件。
P I N和A P D介绍(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除PIN:positive-intrinsic-negative(P型半导体-杂质-N型半导体)APD:avalanche photodiode(雪崩二极管)饱和光功率又称饱和光功率即指最大负载。
指在一定的传输速率下,维持一定的误码率(10-10~10-12)时的光模块接收端最大可以探测到的输入光功率。
当光探测器在强光照射下会出现光电流饱和现象,当出现此现象后,探测器需要一定的时间恢复,此时接收灵敏度下降,接收到的信号有可能出现误判而造成误码现象,而且还非常容易损坏接收端探测器,在使用操作中应尽量避免超出其饱和光功率。
因此对于发射光功率大的光模块不加衰减回环测试会出现误码现象。
当APD输入光功率达到一定强度的时候,输出的光电流将趋于饱和。
随着温度的升高,也随着上升,如果APDAPD的击穿电压VBR的工作电压(即高压)不变,APD的光电检测性能会变弱,灵敏度降低。
APD的倍增因子代表倍增后的光电流与首次光电流之比。
如图:由图可知,倍增因子M与反向偏置电压有关(反偏电压越大,斜率越大,M越大。
理论上反偏电压接近击穿电压时,M趋于无穷大。
),所以说他是可调的。
同时可以看到APD雪崩光电二极管还存在一个雪。
当反偏电压大于击穿电压时,M会急剧增大处于雪崩状崩电压(击穿电压)VB态。
但此时产生的倍增噪声会远远大于倍增效应带来的好处。
因此实际使用中,总是把反偏电压调到略小于雪崩电压的地方。
APD倍增因子M的计算公式很多,一个常用的公式为 M=1/1-(v/vB)n式中: n 是由P-N 结材料决定的常数; V B 为理想反向偏压; V 为反向偏压的增加值。
对于Si 材料,n =1. 5 ~ 4 ;对于Ge 材料n = 2. 5~8 。
由式中还可看出,当| V | →| V B | 时, M → ∞, P-N结将发生雪崩击穿。
P I N:p o s i t i v e-i n t r i n s i c-n e g a t i v e(P型半导体-杂质-N型半导体)APD:avalanchephotodiode(雪崩二极管)饱和光功率又称饱和光功率即指最大负载。
指在一定的传输速率下,维持一定的误码率(10-10~10-12)时的光模块接收端最大可以探测到的输入光功率。
当光探测器在强光照射下会出现光电流饱和现象,当出现此现象后,探测器需要一定的时间恢复,此时接收灵敏度下降,接收到的信号有可能出现误判而造成误码现象,而且还非常容易损坏接收端探测器,在使用操作中应尽量避免超出其饱和光功率。
因此对于发射光功率大的光模块不加衰减回环测试会出现误码现象。
当APD输入光功率达到一定强度的时候,输出的光电流将趋于饱和。
随着温度的升高,APD的击穿电压V BR也随着上升,如果APD的工作电压(即高压)不变,APD的光电检测性能会变弱,灵敏度降低。
APD的倍增因子代表倍增后的光电流与首次光电流之比。
如图:由图可知,倍增因子M与反向偏置电压有关(反偏电压越大,斜率越大,M越大。
理论上反偏电压接近击穿电压时,M趋于无穷大。
),所以说他是可调的。
同时可以看到APD雪崩光电二极管还存在一个雪崩电压(击穿电压)V B。
当反偏电压大于击穿电压时,M会急剧增大处于雪崩状态。
但此时产生的倍增噪声会远远大于倍增效应带来的好处。
因此实际使用中,总是把反偏电压调到略小于雪崩电压的地方。
APD倍增因子M的计算公式很多,一个常用的公式为M=1/1-(v/vB)n式中:n是由P-N结材料决定的;VB为理想反向;V为反向偏压的。
对于Si材料,n=~4;对于Ge材料n=~8。
由式中还可看出,当|V|→|VB|时,M→∞,P-N结将发生。
由公式可知,同样材料的APD管,同样偏置电压情况下,击穿电压越大,倍增因子越小。
三、光电检测器光电检测器是把光信号功率转换成电信号电流的器件。
P I N:p o s i t i v e-i n t r i n s i c-n e g a t i v e(P型半导体-杂质-N型半导体)APD:avalanche photodiode(雪崩二极管)饱和光功率又称饱和光功率即指最大负载。
指在一定的传输速率下,维持一定的误码率(10-10~10-12)时的光模块接收端最大可以探测到的输入光功率。
当光探测器在强光照射下会出现光电流饱和现象,当出现此现象后,探测器需要一定的时间恢复,此时接收灵敏度下降,接收到的信号有可能出现误判而造成误码现象,而且还非常容易损坏接收端探测器,在使用操作中应尽量避免超出其饱和光功率。
因此对于发射光功率大的光模块不加衰减回环测试会出现误码现象。
当APD输入光功率达到一定强度的时候,输出的光电流将趋于饱和。
随着温度的升高,APD的击穿电压V也随着上升,如果APDBR的工作电压(即高压)不变,APD的光电检测性能会变弱,灵敏度降低。
APD的倍增因子代表倍增后的光电流与首次光电流之比。
如图:由图可知,倍增因子M与反向偏置电压有关(反偏电压越大,斜率越大,M越大。
理论上反偏电压接近击穿电压时,M趋于无穷大。
),所以说他是可调的。
同时可以看到APD雪崩光电二极管还存在一个雪崩电压(击穿电压)V。
当反偏电压大于击穿电压时,M会急剧增大处于雪崩状态。
但此时产生的倍增噪B声会远远大于倍增效应带来的好处。
因此实际使用中,总是把反偏电压调到略小于雪崩电压的地方。
APD倍增因子M的计算公式很多,一个常用的公式为 M=1/1-(v/vB)n式中: n 是由P-N 结材料决定的常数; V B 为理想反向偏压; V 为反向偏压的增加值。
对于Si 材料,n =1. 5 ~ 4 ;对于Ge 材料n = 2. 5~8 。
由式中还可看出,当| V | →| V B | 时, M → ∞, P-N结将发生雪崩击穿。
由公式可知,同样材料的APD管,同样偏置电压情况下,击穿电压越大,倍增因子越小。
P I N:p o s i t i v e-in trinsic-negativ e(P型半导体-杂质-N型半导体)APD:avalanche photodiode(雪崩二极管)饱和光功率又称饱和光功率即指最大负载。
指在一定的传输速率下,维持一定的误码率(10-10~10-12)时的光模块接收端最大可以探测到的输入光功率。
当光探测器在强光照射下会出现光电流饱和现象,当出现此现象后,探测器需要一定的时间恢复,此时接收灵敏度下降,接收到的信号有可能出现误判而造成误码现象,而且还非常容易损坏接收端探测器,在使用操作中应尽量避免超出其饱和光功率。
因此对于发射光功率大的光模块不加衰减回环测试会出现误码现象。
当APD输入光功率达到一定强度的也随着上升,时候,输出的光电流将趋于饱和。
随着温度的升高,APD的击穿电压VBR如果APD的工作电压(即高压)不变,APD的光电检测性能会变弱,灵敏度降低。
APD的倍增因子代表倍增后的光电流与首次光电流之比。
如图:由图可知,倍增因子M与反向偏置电压有关(反偏电压越大,斜率越大,M越大。
理论上反偏电压接近击穿电压时,M趋于无穷大。
),所以说他是可调的。
同时可以看到APD雪崩光电二极管还存在一个雪崩电压(击穿电。
当反偏电压大于击穿电压时,M会急剧增大处于雪崩状态。
但此时产生的压)VB倍增噪声会远远大于倍增效应带来的好处。
因此实际使用中,总是把反偏电压调到略小于雪崩电压的地方。
APD倍增因子M的计算公式很多,一个常用的公式为 M=1/1-(v/vB)n式中: n 是由P-N 结材料决定的常数; V B 为理想反向偏压; V 为反向偏压的增加值。
对于Si 材料,n =1. 5 ~ 4 ;对于Ge 材料n = 2. 5~8 。
由式中还可看出,当| V | →| V B | 时, M → ∞, P-N结将发生雪崩击穿。
由公式可知,同样材料的APD管,同样偏置电压情况下,击穿电压越大,倍增因子越小。