不动点法(特征根法)求数列通项的原理教案资料
- 格式:doc
- 大小:89.00 KB
- 文档页数:2
求递推数列通项的特征根法与不动点法一、形如21(,n n n a pa qa p q ++=+是常数)的数列形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特征根法求得通项n a ,其特征方程为2x px q =+…①若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数) 再利用1122,,a m a m ==可求得12,c c ,进而求得n a .例1.已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a . 解:其特征方程为232x x =-,解得121,2x x ==,令1212n n n a c c =⋅+⋅,由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩, 112n n a -∴=+.例2.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a .解:其特征方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭, 由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩, 1322n n n a --∴=. 二、形如2n n n Aa B a Ca D++=+的数列 对于数列2n n n Aa B a Ca D ++=+,*1,(,,,a m n N A B C D =∈是常数且0,0C AD BC ≠-≠) 其特征方程为Ax B x Cx D+=+,变形为2()0Cx D A x B +--=…②若②有二异根,αβ,则可令11n n n n a a c a a ααββ++--=⋅--(其中c 是待定常数),代入12,a a 的值可求得c 值. 这样数列n n a a αβ⎧⎫-⎨⎬-⎩⎭是首项为11a a αβ--,公比为c 的等比数列,于是这样可求得n a . 若②有二重根αβ=,则可令111n n c a a αα+=+--(其中c 是待定常数),代入12,a a 的值可求得c 值. 这样数列1n a α⎧⎫⎨⎬-⎩⎭是首项为1n a α-,公差为c 的等差数列,于是这样可求得n a . 此方法又称不动点法.例3.已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a . 解:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令111111n n n n a a c a a ++--=⋅++ 由12,a =得245a =,可得13c =-, ∴数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=+为首项,以13-为公比的等比数列,1111133n n n a a --⎛⎫∴=⋅- ⎪+⎝⎭,3(1)3(1)n nn n na --∴=+-.例4.已知数列{}n a 满足*11212,()46n n n a a a n N a +-==∈+,求数列{}n a 的通项n a . 解:其特征方程为2146x x x -=+,即24410x x ++=,解得1212x x ==-,令1111122n n c a a +=+++ 由12,a =得2314a =,求得1c =, ∴数列112n a ⎧⎫⎪⎪⎨⎬⎪⎪+⎩⎭是以112152a =+为首项,以1为公差的等差数列,123(1)11552n n n a ∴=+-⋅=-+, 135106n n a n -∴=-.。
用不动点法求数列的通项定义:方程x x f =)(的根称为函数)(x f 的不动点.利用递推数列)(x f 的不动点,可将某些递推关系)(1-=n n a f a 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.定理1:若),1,0()(≠≠+=a a b ax x f p 是)(x f 的不动点,n a 满足递推关系)1(),(1>=-n a f a n n ,则)(1p a a p a n n -=--,即}{p a n -是公比为a 的等比数列.证明:因为 p 是)(x f 的不动点p b ap =+∴ap p b -=-∴由b a a a n n +⋅=-1得)(11p a a p b a a p a n n n -=-+⋅=---所以}{p a n -是公比为a 的等比数列. 定理2:设)0,0()(≠-≠++=bc ad c dcx bax x f ,}{n a 满足递推关系1),(1>=-n a f a n n ,初值条件)(11a f a ≠(1):若)(x f 有两个相异的不动点q p ,,则q a p a k q a p a n n n n --⋅=----11 (这里qca pca k --=)(2):若)(x f 只有唯一不动点p ,则k p a p a n n +-=--111 (这里da c k +=2)证明:由x x f =)(得x dcx bax x f =++=)(,所以0)(2=--+b x a d cx(1)因为q p ,是不动点,所以⎪⎩⎪⎨⎧=--+=--+0)(0)(22b q a d cq b p a d cp ⇒⎪⎪⎩⎪⎪⎨⎧--=--=qc a b qd q pc a b pd p ,所以 q a pa qc a pc a qc ab qd a pc a bpd a qca pc a qdb a qc a pd b a pc a qdca b aa p d ca b aa q a p a n n n n n n n n n n n n --⋅--=------⋅--=-+--+-=-++-++=------------1111111111)()(令qc a pca k --=,则q a p a k q a p a n n n n --=----11(2)因为p 是方程0)(2=--+b x a d cx 的唯一解,所以0)(2=--+b p a d cp 所以ap cp pd b -=-2,cda p 2-=所以 dca p a cp a d ca ap cp a cp a d ca pd b a cp a p d ca b aa p a n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111))(()()(所以da c p a p a cp a cp d cp a c p a cp d p a c cp a p a d ca cp a p a n n n n n n n ++-=-⋅-++-=-++-⋅-=-+⋅-=-------211)(111111111令da ck +=2,则k p a p a n n +-=--111 例1:设}{n a 满足*11,2,1N n a a a a nn n ∈+==+,求数列}{n a 的通项公式 解:作函数xx x f 2)(+=,解方程x x f =)(求出不动点1,2-==q p ,于是 12212221211+-⋅-=++-+=+-++n n n n n n n n a a a a a a a a ,逐次迭代得n n n na a a a )21(12)21(12111-=+-⋅-=+-- 由此解得nn n n n a )1(2)1(21---+=+ 例2:数列}{n a 满足下列关系:0,2,2211≠-==+a a a a a a a nn ,求数列}{n a 的通项公式解:作函数xa a x f 22)(-=,解方程x x f =)(求出不动点a p =,于是a a a a a a a a aa a a a a aa n n n nn n 11)(1211221+-=-=-=--=-+ 所以}1{a a n -是以a a a 111=-为首项,公差为a1的等差数列 所以a n a n a a n a a a a n =⋅-+=⋅-+-=-1)1(11)1(111,所以naa a n +=定理3:设函数)0,0()(2≠≠+++=e a fex cbx ax x f 有两个不同的不动点21,x x ,且由)(1n n u f u =+确定着数列}{n u ,那么当且仅当a e b 2,0==时,2212111)(x u x u x u x u n n n n --=--++证明: k x 是)(x f 的两个不动点∴fex c bx ax x k k k k +++=2即k k k bx x a e f x c --=-2)()2,1(=k∴222221211222211222122111)()()()()()()()(bx x a e u ex b au bx x a e u ex b au f x c u ex b au f x c u ex b au f eu x c bu au f eu x c bu au x u x u n n n n n n n n n n n n n n n n --+-+--+-+=-+-+-+-+=+-+++-++=--++于是,2212111)(x u x u x u x u n n n n --=--++⇔22222112222221211222)()()()(x u x u x u x u bx x a e u ex b au bx x a e u ex b au n n n n n n n n +-+-=--+-+--+-+ ⇔22222112222221211222)()(x u x u x u x u abx x a e u a ex b u a bx x a e u a ex b u n n n n n n n n +-+-=--+-+--+-+ ⇔⎪⎪⎩⎪⎪⎨⎧-=--=-221122x aex b x aex b ⇔⎩⎨⎧=-+=-+0)2(0)2(21x e a b x e a b 11 21x x 0≠ ∴方程组有唯一解a e b 2,0== 例3:已知数列}{n a 中,*211,22,2N n a a a a nn n ∈+==+,求数列}{n a 的通项.解:作函数为xx x f 22)(2+=,解方程x x f =)(得)(x f 的两个不动点为2±2222211)22(22222222222222+-=++-+=++-+=+-++n n nn n n nn n n n n a a a a a a a a a a a a再经过反复迭代,得1122211222211)2222()22()22()22(22--+-=+-=⋅⋅⋅⋅⋅⋅=+-=+-=+-----n n a a a a a a a a n n n n n n由此解得11112222)22()22()22()22(2------+-++⋅=n n n n n a其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题: 例4:已知1,011≠>a a 且)1(4162241+++=+n n n n n a a a a a ,求数列}{n a 的通项.解: 作函数为)1(416)(224+++=x x x x x f ,解方程x x f =)(得)(x f 的不动点为 i x i x x x 33,33,1,14321=-==-=.取1,1-==q p ,作如下代换: 423423422422411)11(146414641)1(4161)1(41611-+=+-+-++++=-+++++++=-+++n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a 逐次迭代后,得:111141414141)1()1()1()1(------+-++=n n n n a a a a a n。
用不动点法求数列的通项定义:方程x x f =)(的根称为函数)(x f 的不动点.利用递推数列)(x f 的不动点,可将某些递推关系)(1-=n n a f a 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.定理1:若),1,0()(≠≠+=a a b ax x f p 是)(x f 的不动点,n a 满足递推关系)1(),(1>=-n a f a n n ,则)(1p a a p a n n -=--,即}{p a n -是公比为a 的等比数列.证明:因为 p 是)(x f 的不动点p b ap =+∴ap p b -=-∴由b a a a n n +⋅=-1得)(11p a a p b a a p a n n n -=-+⋅=---所以}{p a n -是公比为a 的等比数列. 定理2:设)0,0()(≠-≠++=bc ad c dcx bax x f ,}{n a 满足递推关系1),(1>=-n a f a n n ,初值条件)(11a f a ≠(1):若)(x f 有两个相异的不动点q p ,,则q a p a k q a p a n n n n --⋅=----11 (这里qca pca k --=)(2):若)(x f 只有唯一不动点p ,则k p a p a n n +-=--111 (这里da c k +=2)证明:由x x f =)(得x dcx bax x f =++=)(,所以0)(2=--+b x a d cx(1)因为q p ,是不动点,所以⎪⎩⎪⎨⎧=--+=--+0)(0)(22b q a d cq b p a d cp ⇒⎪⎪⎩⎪⎪⎨⎧--=--=qc a b qd q pc a b pd p ,所以 q a pa qc a pc a qc ab qd a pc a bpd a qca pc a qdb a qc a pd b a pc a qdca b aa p d ca b aa q a p a n n n n n n n n n n n n --⋅--=------⋅--=-+--+-=-++-++=------------1111111111)()(令qca pca k --=,则q a p a k q a p a n n n n--=----11(2)因为p 是方程0)(2=--+b x a d cx 的唯一解,所以0)(2=--+b p a d cp 所以ap cp pd b -=-2,cda p 2-=所以 dca p a cp a d ca ap cp a cp a d ca pd b a cp a p d ca b aa p a n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111))(()()(所以da c p a p a cp a cp d cp a c p a cp d p a c cp a p a d ca cp a p a n n n n n n n ++-=-⋅-++-=-++-⋅-=-+⋅-=-------211)(111111111令da ck +=2,则k p a p a n n +-=--111 例1:设}{n a 满足*11,2,1N n a a a a nn n ∈+==+,求数列}{n a 的通项公式 解:作函数xx x f 2)(+=,解方程x x f =)(求出不动点1,2-==q p ,于是 12212221211+-⋅-=++-+=+-++n n n n n n n n a a a a a a a a ,逐次迭代得n n n na a a a )21(12)21(12111-=+-⋅-=+-- 由此解得nn n n n a )1(2)1(21---+=+ 例2:数列}{n a 满足下列关系:0,2,2211≠-==+a a a a a a a nn ,求数列}{n a 的通项公式解:作函数xa a x f 22)(-=,解方程x x f =)(求出不动点a p =,于是a a a a a a a a aa a a a a aa n n n nn n 11)(1211221+-=-=-=--=-+ 所以}1{a a n -是以a a a 111=-为首项,公差为a1的等差数列 所以a n a n a a n a a a a n =⋅-+=⋅-+-=-1)1(11)1(111,所以naa a n +=定理3:设函数)0,0()(2≠≠+++=e a fex cbx ax x f 有两个不同的不动点21,x x ,且由)(1n n u f u =+确定着数列}{n u ,那么当且仅当a e b 2,0==时,2212111)(x u x u x u x u n n n n --=--++证明: k x 是)(x f 的两个不动点∴fex c bx ax x k k k k +++=2即k k k bx x a e f x c --=-2)()2,1(=k∴222221211222211222122111)()()()()()()()(bx x a e u ex b au bx x a e u ex b au f x c u ex b au f x c u ex b au f eu x c bu au f eu x c bu au x u x u n n n n n n n n n n n n n n n n --+-+--+-+=-+-+-+-+=+-+++-++=--++于是,2212111)(x u x u x u x u n n n n --=--++⇔22222112222221211222)()()()(x u x u x u x u bx x a e u ex b au bx x a e u ex b au n n n n n n n n +-+-=--+-+--+-+ ⇔22222112222221211222)()(x u x u x u x u abx x a e u a ex b u a bx x a e u a ex b u n n n n n n n n +-+-=--+-+--+-+ ⇔⎪⎪⎩⎪⎪⎨⎧-=--=-221122x aex b x aex b ⇔⎩⎨⎧=-+=-+0)2(0)2(21x e a b x e a b 11 21x x 0≠ ∴方程组有唯一解a e b 2,0== 例3:已知数列}{n a 中,*211,22,2N n a a a a nn n ∈+==+,求数列}{n a 的通项.解:作函数为xx x f 22)(2+=,解方程x x f =)(得)(x f 的两个不动点为2±2222211)22(22222222222222+-=++-+=++-+=+-++n n nn n n nn n n n n a a a a a a a a a a a a再经过反复迭代,得1122211222211)2222()22()22()22(22--+-=+-=⋅⋅⋅⋅⋅⋅=+-=+-=+-----n n a a a a a a a a n n n n n n由此解得11112222)22()22()22()22(2------+-++⋅=n n n n n a其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题: 例4:已知1,011≠>a a 且)1(4162241+++=+n n n n n a a a a a ,求数列}{n a 的通项.解: 作函数为)1(416)(224+++=x x x x x f ,解方程x x f =)(得)(x f 的不动点为 i x i x x x 33,33,1,14321=-==-=.取1,1-==q p ,作如下代换: 423423422422411)11(146414641)1(4161)1(41611-+=+-+-++++=-+++++++=-+++n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a 逐次迭代后,得:111141414141)1()1()1()1(------+-++=n n n n a a a a a n(本资料素材和资料部分来自网络,仅供参考。
数列特征根和不动点法解题原理一、数列特征根法。
1. 原理。
- 对于二阶线性递推数列a_n + 2=pa_n+1+qa_n(p,q为常数,n∈ N^*),其特征方程为x^2=px + q。
- 设特征方程的两个根为x_1,x_2。
- 当x_1≠ x_2时,数列a_n的通项公式为a_n=C_1x_1^n+C_2x_2^n,其中C_1,C_2由初始条件a_1,a_2确定。
- 当x_1 = x_2时,数列a_n的通项公式为a_n=(C_1+C_2n)x_1^n,同样C_1,C_2由初始条件确定。
2. 例题。
- 例1:已知数列{a_n}满足a_n + 2=3a_n+1-2a_n,且a_1=1,a_2=3,求数列{a_n}的通项公式。
- 解:特征方程为x^2=3x - 2,即x^2-3x + 2=0。
- 分解因式得(x - 1)(x - 2)=0,解得x_1=1,x_2=2。
- 所以a_n=C_1×1^n+C_2×2^n=C_1+C_2×2^n。
- 由a_1=1,a_2=3可得C_1+2C_2=1 C_1+4C_2=3。
- 用第二个方程减去第一个方程得2C_2=2,解得C_2 = 1。
- 把C_2=1代入C_1+2C_2=1得C_1=-1。
- 所以a_n=-1 + 2^n。
- 例2:已知数列{a_n}满足a_n + 2=2a_n+1-a_n,a_1=1,a_2=2,求a_n。
- 解:特征方程为x^2=2x - 1,即x^2-2x + 1 = 0。
- 解得x_1=x_2=1。
- 所以a_n=(C_1+C_2n)×1^n=C_1+C_2n。
- 由a_1=1,a_2=2可得C_1+C_2=1 C_1+2C_2=2。
- 用第二个方程减去第一个方程得C_2=1。
- 把C_2=1代入C_1+C_2=1得C_1=0。
- 所以a_n=n。
二、数列不动点法。
1. 原理。
- 对于一阶分式递推数列a_n + 1=frac{pa_n+q}{ra_n+s}(p,q,r,s为常数,r≠0),令x=(px + q)/(rx + s),这个方程称为不动点方程。
用“不动点法”求数列的通项公式用“不动点法”求数列的通项公式对于一个函数f(x),我们把满足f(m)=m的值x=m称为函数f(x)的“不动点”.利用“不动点法”可以构造新数列,求数列的通项公式.例(1)在数列{an}中,a1=1,an+1=an+1,求数列{an}的通项公式.解设f(x)=x+1,令f(x)=x,即x+1=x,得x=2,∴x=2是函数f(x)=x+1的不动点,∴an+1-2=(an-2),∴数列{an-2}是以-1为首项,以为公比的等比数列,∴an-2=-1×n-1,∴an=2-n-1,n∈N.(2)已知数列{an}满足a1=3,an+1=,求该数列的通项公式.解由方程x=,得数列{an}的不动点为1和2,===·,所以是首项为=2,公比为的等比数列,所以=2·n-1,解得an=+2=,n∈N.(1)若f(x)=ax+b(a≠0,1),p 是f(x)的不动点.数列{an}满足an+1=f(an),则an+1-p=a(an-p),即{an-p}是公比为a的等比数列.(2)设f(x)=(c≠0,ad-bc≠0),数列{an}满足an+1=f(an),a1≠f(a1).若f(x)有两个相异的不动点p,q,则=k·.1.已知数列{an}满足an+1=-an-2,a1=4,求数列{an}的通项公式.解设f(x)=-x -2,由f(x)=x,得x=-.∴an+1+=-,又a1=4,∴是以为首项,以-为公比的等比数列,∴an+=×n-1,∴an=-+·n-1,n∈N.2.已知数列{an}满足a1=2,an=(n≥2),求数列{an}的通项公式.解解方程x=,化简得2x2-2=0,解得x1=1,x2=-1,令=c·,由a1=2,得a2=,可得c=-,∴数列是以=为首项,以-为公比的等比数列,∴=·n-1,∴an=.3.设数列{an}满足8an+1an-16an+1+2an+5=0(n≥1,n∈N),且a1=1,记bn=(n≥1).求数列{bn}的通项公式.解由已知得an+1=,由方程x=,得不动点x1=,x2=.所以==·,所以数列是首项为-2,公比为的等比数列,所以=-2×n-1=-,解得an=.故bn==,n∈N.。
不动点法求数列通项详细推导过程不动点法求数列通项详细推导过程:不动点法是一种用于求解数列的方法,它要求找出一个函数,使得该函数的图像在某一区间上是“不动的”(不随x的变化而变化)。
也就是说,函数的图像在这个区间上以某一点作为中心,不断地向外扩张或收缩,但其形状不会变化。
首先,我们来看看如何使用不动点法求数列通项。
首先,我们需要找出一个函数f(x),使得它的图像在某一区间上是“不动的”。
然后,我们将该函数的图像画出来,以确定该函数在某一特定点的不动点(即该函数的图像在这个点上不再发生变化)。
根据不动点的定义,当函数的图像在某一点上不再变化时,以该点为中心,函数的图像会以相同的形状、大小和位置无限重复。
接下来,我们可以利用这种“不动”的性质,来证明f(x)是数列的通项公式。
首先,我们需要利用微积分原理,求出f(x)的导数。
具体而言,我们假设,f(x)的导数是g(x),并且我们最终可以得出g(x)=0,这意味着f(x)在某一点上是“不动的”。
接着,我们可以使用定积分法,将g(x)带入原函数f(x),从而求出f(x)的极限。
此时,我们可以发现,f(x)的极限正好是数列的通项公式。
最后,我们进一步证明,f(x)的极限就是数列的通项公式。
为了这样做,我们需要将f(x)的极限代入数列的前n项,并对其进行求和,以确定求和的结果是否与数列的通项公式相等。
如果求和结果与数列的通项公式相等,则说明f(x)就是数列的通项公式。
总之,不动点法求数列通项详细推导过程便是:首先,找出一个函数f(x),使得它的图像在某一区间上是“不动的”;然后,利用微积分原理求出f(x)的导数,并用定积分法将g(x)带入原函数f(x),从而求出f(x)的极限;最后,将f(x)的极限代入数列的前n项,并对其进行求和,以确定求和的结果是否与数列的通项公式相等。
如果求和结果与数列的通项公式相等,则说明f(x)就是数列的通项公式。
用特征根法与不动点法求递推数列的通项公式一、形如21(,n n n a pa qa p q ++=+是常数)的数列形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特征根法求得通项n a ,其特征方程为2x px q =+…①若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数)若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数)再利用1122,,a m a m ==可求得12,c c ,进而求得n a .例1. 已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a .解:其特征方程为232x x =-,解得121,2x x ==,令1212n n n a c c =⋅+⋅,由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩, 112n n a -∴=+.例2.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a .解:其特征方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩, 1322n n n a --∴=.二、形如2n n n Aa B a Ca D++=+的数列 对于数列2n n n Aa B a Ca D ++=+,*1,(,,,a m n N A B C D =∈是常数且0,0C AD BC ≠-≠)其特征方程为Ax B x Cx D +=+,变形为2()0Cx D A x B +--=…② 若②有二异根,αβ,则可令11n n n n a a c a a ααββ++--=⋅--(其中c 是待定常数),代入12,a a 的值可求得c 值. 这样数列n n a a αβ⎧⎫-⎨⎬-⎩⎭是首项为11a a αβ--,公比为c 的等比数列,于是这样可求得n a .若②有二重根αβ=,则可令111n n c a a αα+=+--(其中c 是待定常数),代入12,a a 的值可求得c 值. 这样数列1n a α⎧⎫⎨⎬-⎩⎭是首项为1n a α-,公差为c 的等差数列,于是这样可求得n a .此方法又称不动点法.例3.已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a .解:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令111111n nn n a a c a a ++--=⋅++ 由12,a =得245a =,可得13c =-,∴数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=+为首项,以13-为公比的等比数列,1111133n n n a a --⎛⎫∴=⋅- ⎪+⎝⎭,3(1)3(1)n n n n n a --∴=+-.例4.已知数列{}n a 满足*11212,()46n n n a a a n N a +-==∈+,求数列{}n a 的通项n a .解:其特征方程为2146x x x -=+,即24410x x ++=,解得1212x x ==-,令1111122n n c a a +=+++ 由12,a =得2314a =,求得1c =,∴数列112n a ⎧⎫⎪⎪⎨⎬⎪⎪+⎩⎭是以112152a =+为首项,以1为公差的等差数列,123(1)11552n n n a ∴=+-⋅=-+,135106n na n -∴=-.。
用不动点法求数列的通项定义:方程x x f =)(的根称为函数)(x f 的不动点.利用递推数列)(x f 的不动点,可将某些递推关系)(1-=n n a f a 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.定理1:若),1,0()(≠≠+=a a b ax x f p 是)(x f 的不动点,n a 满足递推关系)1(),(1>=-n a f a n n ,则)(1p a a p a n n -=--,即}{p a n -是公比为a 的等比数列.证明:因为p 是)(x f 的不动点pb ap =+∴ap p b -=-∴由b a a a n n +⋅=-1得)(11p a a p b a a p a n n n -=-+⋅=---所以}{p a n -是公比为a 的等比数列.定理2:设)0,0()(≠-≠++=bc ad c dcx bax x f ,}{n a 满足递推关系1),(1>=-n a f a n n ,初值条件)(11a f a ≠(1):若)(x f 有两个相异的不动点q p ,,则qa pa k q a p a n n n n --⋅=----11(这里qca pca k --=)(2):若)(x f 只有唯一不动点p ,则k pa p a n n +-=--111(这里da ck +=2)证明:由x x f =)(得x dcx bax x f =++=)(,所以0)(2=--+b x a d cx (1)因为q p ,是不动点,所以⎪⎩⎪⎨⎧=--+=--+0)(0)(22b q a d cq b p a d cp ⇒⎪⎪⎩⎪⎪⎨⎧--=--=qc a b qd q pc a b pd p ,所以q a pa qc a pc a qc ab qd a pc a bpd a qca pc a qdb a qc a pd b a pc a qdca b aa p d ca b aa q a p a n n n n n n n n n n n n --⋅--=------⋅--=-+--+-=-++-++=------------1111111111)()(令qca pca k --=,则q a p a k q a p a n n n n --=----11(2)因为p 是方程0)(2=--+b x a d cx 的唯一解,所以0)(2=--+b p a d cp 所以ap cp pd b -=-2,cda p 2-=所以dca p a cp a d ca ap cp a cp a d ca pd b a cp a p d ca b aa p a n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111))(()()(所以da c p a p a cp a cp d cp a c p a cp d p a c cp a p a d ca cp a p a n n n n n n n ++-=-⋅-++-=-++-⋅-=-+⋅-=-------211)(111111111令d a c k +=2,则k pa p a n n +-=--111例1:设}{n a 满足*11,2,1N n a a a a nn n ∈+==+,求数列}{n a 的通项公式例2:数列}{n a 满足下列关系:0,2,2211≠-==+a a a a a a a nn ,求数列}{n a 的通项公式定理3:设函数)0,0()(2≠≠+++=e a f ex cbx ax x f 有两个不同的不动点21,x x ,且由)(1n n u f u =+确定着数列}{n u ,那么当且仅当a e b 2,0==时,2212111)(x u x u x u x u n n n n --=--++证明: k x 是)(x f 的两个不动点∴f ex c bx ax x k k kk +++=2即k k k bx x a e f x c --=-2)()2,1(=k ∴222221211222211222122111)()()()()()()()(bx x a e u ex b au bx x a e u ex b au f x c u ex b au f x c u ex b au f eu x c bu au f eu x c bu au x u x u n n n n n n n n n n n n n n n n --+-+--+-+=-+-+-+-+=+-+++-++=--++于是,2212111(x u x u x u x u n n n n --=--++⇔22222112222221211222)()()()(x u x u x u x u bx x a e u ex b au bx x a e u ex b au n n n n n n n n +-+-=--+-+--+-+⇔22222112222221211222)()(x u x u x u x u abx x a e u a ex b u a bx x a e u a ex b u n n n n n n n n +-+-=--+-+--+-+⇔⎪⎪⎩⎪⎪⎨⎧-=--=-221122x aex b x a ex b ⇔⎩⎨⎧=-+=-+0)2(0)2(21x e a b x e a b 1121x x 0≠∴方程组有唯一解ae b 2,0==例3:已知数列}{n a 中,*211,22,2N n a a a a nn n ∈+==+,求数列}{n a 的通项.其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题:例4:已知1,011≠>a a 且)1(4162241+++=+n n n n n a a a a a ,求数列}{n a 的通项.解:作函数为)1(416)(224+++=x x x x x f ,解方程x x f =)(得)(x f 的不动点为i x i x x x 33,33,1,14321=-==-=.取1,1-==q p ,作如下代换:42342342242241111(146414641)1(4161)1(41611-+=+-+-++++=-+++++++=-+++n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a 逐次迭代后,得:111141414141)1()1()1()1(------+-++=n n n n a a a a a n 已知曲线22:20(1,2,)n C x nx y n -+== .从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(,)n n n P x y .(1)求数列{}{}n n x y 与的通项公式;(2)证明:13521nn nxx x x x y -⋅⋅⋅⋅<< 设p q ,为实数,αβ,是方程20x px q -+=的两个实根,数列{}n x 满足1x p =,22x p q =-,12n n n x px qx --=-(34n =,,…).(1)证明:p αβ+=,q αβ=;(2)求数列{}n x 的通项公式;(3)若1p =,14q =,求{}n x 的前n 项和n S .已知函数2()1f x x x =+-,αβ,是方程()0f x =的两个根(αβ>),()f x '是()f x 的导数,设11a =,1()(12)()n n n n f a a a n f a +=-=' ,,.(1)求αβ,的值;(2)证明:对任意的正整数n ,都有n a α>;(3)记ln(12)n n n a b n a βα-==- ,,,求数列{}n b 的前n 项和nS 13陕西文21.(本小题满分12分)已知数列{}n a 满足,*11212,,2n n n a a a a a n N ++=∈’+2==.()I 令1n n n b a a +=-,证明:{}n b 是等比数列;(Ⅱ)求{}n a 的通项公式。
巧用不动点法求数列的通项公式不动点法是解决函数方程和递归式问题的一种有效方法。
在数学中,如果一个函数f(x) 恰好等于x,那么x 就是这个函数的不动点。
巧用不动点法,我们也可以用来求解数列的通项公式。
通过这种方法,我们可以更加轻松地理解与求解数列的通项公式。
一、不动点法的概念及定理:不动点法早在古希腊数学家Euclid时代就已经被使用,但真正的发展是在20世纪50年代,康托尔和斯考特对其进行了重要的发展。
不动点法主要应用于非线性方程及函数不动点领域。
在数学中,一个函数的不动点是指一个值x,满足f(x) = x。
这个概念的重要性体现在不动点存在定理上。
这个定理告诉我们,任何连续、紧、单调的函数都有一个不动点。
这个定理的应用范围极广,包括了不少基本的方程难题。
二、利用不动点法求解数列的通项公式的思路:利用不动点法求解数列的通项公式,我们首先要找到数列中存在的不动点。
对于一个数列{a1, a2, a3, ...} ,我们可以对其进行递推求解,得到{a1, a2, a3, ...} 的确切关系式(称为递推式),然后你可以进行转化以便寻找不动点。
我们要利用某些方法来确定这个递推式的不动点,即一个数x等于这个数列中每一项。
(即满足a(x)=x)。
最终我们可以得到一个只含有x的方程,此方程就是这个数列的通项公式。
三、一个示例:举一个最简单的例子。
有一个数列{1, 2, 3, 4, 5, ...},这个数列的递推式为an = an-1 + 1,即每一项是前一项加1。
我们尝试用不动点法来计算这个数列的通项公式。
首先对这个数列进行递推,我们可以得到an = a1 + (n - 1),即第n项等于首项加上公差乘以n-1。
到这里我们已经成功地将递推式从" an = an-1 + 1 " 修改为" an = a1 + (n-1) "。
接下来,我们要寻找这个递推式的不动点。
将an+1 = a1 + n 代入an = a1 + (n - 1) 中,可以得到a1 + n = a1 + (n - 1) + 1 ,消去a1 ,我们可以得到n =n。
特征根法在求数列通项公式中的应用吴继崟 杨成武山东省滨州市邹平县黄山中学各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈.本文结合几个例题进行展示 、探讨,重点强调求解数列通项公式过程中——特征根法的运用,希望能对喜欢研究高中数学的朋友有所帮助.一、不动点法当(x)x f =时,x 的取值成为不动点,不动点是在较高要求测试中解决递推式的基本方法。
下面通过几个例题,展示不同情况下的不动点的用法.类型一、已知a 1=b ,a n+1=ca n +d (,1,0≠≠c c )求数列}{n a 的通项公式.例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a 解:作方程.23,2310-=--=x x x 则10a x ≠ 则 1313()(2)()232n n a a +--=---- ,整理得1313++)232n n a a +=-( 即数列3+2n a {}是以1311+=22a 为首项,13-为公比的等比数列 所以 1131111113+(),()223232n n n n a a --=-=--. 类型二、已知1a =λ,对于N n Î,都有1n n n pa q a ra h ++=+,求数列}{n a 的通项公式。
可作特征方程px q x rx h +=+, (Ⅰ)当特征方程有且仅有一根0x 时,(1)如果10a x =则0n a x =;(2)如果10a x ¹则01na x 禳镲镲睚镲-镲铪是等差数列。
(Ⅱ)当特征方程有两个相异的根1x 、2x 时,则12n n a x a x 禳镲-镲睚镲-镲铪是等比数列。
例2.已知数列}{n a 满足:对于N,n Î都有11325.3n n n a a a +-=+(1)若15,a =求;n a (2)若13,a =求;n a (3)若16,a =求;n a (4)当1a 取哪些值时,无穷数列}{n a 不存在? 解:作特征方程1325.3x x x -=+变形得210250,x x -+= 特征方程有两个相同的特征根 5.l = (1)∵115,.a a l =\=\对于N,n Î都有5;n a l ==(2)∵113,.a a l =\?,1132584055.33n n n n n a a a a a +--∴-=-=++ 111(3)(58)31118858405558n n n n n n n n a a a a a a a a ++-++∴====+----- 111,528n a ∴-数列{}是首项为-公差为的等差数列111=-(n 1)528n a +--; 5175n n a n -=-(3)∵16,5,a l ==∴1.a l ¹ ∴1132584055.33n n n n n a a a a a +---=-=++ 111(3)(58)31118858405558n n n n n n n n a a a a a a a a ++-++∴====+----- 111,58n a ∴-数列{}是首项为公差为的等差数列11n+7543=1(n 1)=5887n n n a a n ++-=-+, (4)、显然当13a =-时,数列从第2项开始便不存在.由本题的第(1)小题的解答过程知,51=a 时,数列}{n a 是存在的,当15a l ?时,则有111111(1),N.58n n n d n a a a λλ-=+-=+∈---令10,n a λ=-则得1513,N 1n a n n -=?-且n ≥2.∴当15131n a n -=-(其中N n Î且N ≥2)时,数列}{n a 从第n 项开始便不存在。
用不动点法求数列的通项之马矢奏春创作时间:二O 二一年七月二十九日定义:方程x x f =)(的根称为函数)(x f 的不动点.运用递推数列)(x f 的不动点,可将某些递推关系)(1-=n n a f a 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.定理1:若),1,0()(≠≠+=a a b ax x f p 是)(x f 的不动点,n a 知足递推关系)1(),(1>=-n a f a n n ,则)(1p a a p a n n -=--,等于}{p a n -公比为a 的等比数列.证实:因为 p 是)(x f 的不动点ap p b -=-∴由b a a a n n +⋅=-1得)(11p a a p b a a p a n n n -=-+⋅=---所所以}{p a n -公比为a 的等比数列. 定理2:设)0,0()(≠-≠++=bc ad c dcx bax x f ,}{n a 知足递推关系1),(1>=-n a f a n n ,初值前提)(11a f a ≠(1):若有)(x f 两个相异的不动点q p ,,则qa pa k q a p a n n n n --⋅=----11(这里qca pca k --=)(2):若)(x f 只有独一不动点p ,则k pa p a n n +-=--111 (这里da ck +=2)证实:由x x f =)(得x dcx bax x f =++=)(,所以0)(2=--+b x a d cx(1)因为q p ,是不动点,所以⎪⎩⎪⎨⎧=--+=--+0)(0)(22b q a d cq b p a d cp ⇒⎪⎪⎩⎪⎪⎨⎧--=--=qc a bqd q pc a b pd p ,所以 q a pa qc a pc a qc ab qd a pc a bpd a qca pc a qdb a qc a pd b a pc a qdca b aa p d ca b aa q a p a n n n n n n n n n n n n --⋅--=------⋅--=-+--+-=-++-++=------------1111111111)()(令qc a pca k --=,则qa p a k q a p a n n n n --=----11(2)因为p是方程0)(2=--+b x a d cx 的独一解,所以0)(2=--+b p a d cp所以ap cp pd b -=-2,cda p 2-=所以dca p a cp a d ca ap cp a cp a d ca pd b a cp a p d ca b aa p a n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111))(()()(所以da c p a p a cp a cp d cp a c p a cp d p a c cp a p a d ca cp a p a n n n n n n n ++-=-⋅-++-=-++-⋅-=-+⋅-=-------211)(111111111令da ck +=2,则k pa p a n n +-=--111例1:设}{n a 知足*11,2,1N n a a a a nn n ∈+==+,求数列}{n a 的通项公式 例2:数列}{n a 知足下列关系:0,2,2211≠-==+a a a a a a a nn ,求数列}{n a 的通项公式 定理3:设函数)0,0()(2≠≠+++=e a fex c bx ax x f 有两个不合的不动点21,x x ,且由)(1n n u f u =+确定着数列}{n u ,那么当且仅当ae b 2,0==时,2212111)(x u x u x u x u n n n n --=--++证实: k x 是)(x f 的两个不动点∴fex cbx ax x k k kk +++=2即k k k bx x a e f x c --=-2)()2,1(=k ∴222221211222211222122111)()()()()()()()(bx x a e u ex b au bx x a e u ex b au f x c u ex b au f x c u ex b au f eu x c bu au f eu x c bu au x u x u n n n n n n n n n n n n n n n n --+-+--+-+=-+-+-+-+=+-+++-++=--++于是,1121x x 0≠∴方程组有独一解a e b 2,0== 例3:已知数列}{n a 中,*211,22,2N n a a a a nn n ∈+==+,求数列}{n a 的通项.其实不动点法除理解决上面所推敲的求数列通项的几种情形,还可以解决如下问题:例4:已知1,011≠>a a 且)1(4162241+++=+n n n n n a a a a a ,求数列}{n a 的通项.解: 作函数为)1(416)(224+++=x x x x x f ,解方程x x f =)(得)(x f 的不动点为 i x i x x x 33,33,1,14321=-==-=.取1,1-==q p ,作如下代换: 逐次迭代后,得:111141414141)1()1()1()1(------+-++=n n n n a a a a a n已知曲线22:20(1,2,)n C x nx y n -+==.从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(,)n n n P x y .(1)求数列{}{}n n x y 与的通项公式;(2)证实:13521n n nxx x x x y -⋅⋅⋅⋅<<设p q ,为实数,αβ,是方程20x px q -+=的两个实根,数列{}n x 知足1x p =,22x p q =-,12n n n x px qx --=-(34n =,,…).(1)证实:p αβ+=,q αβ=;(2)求数列{}n x 的通项公式;(3)若1p =,14q =,求{}n x 的前n 项和n S .已知函数2()1f x x x =+-,αβ,是方程()0f x =的两个根(αβ>),()f x '是()f x 的导数,设11a =,1()(12)()n n n n f a a a n f a +=-=',,. (1)求αβ,的值;(2)证实:对随便率性的正整数n ,都有n a α>; (3)记ln(12)n n n a b n a βα-==-,,,求数列{}n b 的前n 项和n S13陕西文21.(本小题满分12分)已知数列{}n a 知足,*11212,,2n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证实:{}n b 是等比数列; (Ⅱ)求{}n a 的通项公式.山东文20.(本小题满分12分)等比数列{n a }的前n 项和为n S , 已知对随便率性的n N +∈ ,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值;(11)当b=2时,记1()4n nn b n N a ++=∈ 求数列{}n b 的前n 项和n T。
数列通项公式的求法之不动点法一、内容分析本节课是高三年级针对数列求通项公式的复习课,主要讲解运用不动点法灵活求解数列的通项公式,纵观每年高考试题,无论在选择题还是大题中数列求通项公式都是必考内容,所占的分值也很高,所以熟练掌握求数列通项公式的方法是非常重要的。
二、学情分析上一节课学生已经系统的学习数列求通项公式的七种方式(公式法、叠加法、叠乘法、待定系数法、迭代法、对数变换法、数学归纳法、换元法), 通过学习这些方法,大部分学生能够求解常规数列的通项公式,但是对于复杂一点的数列的求解还是存在一定困难,所以本节课更深入地讲解运用不定点法求解数列通项公式,让学生更加深入、系统地掌握求解数列通项公式的方法和技巧。
三、教学目标1、知识与技能(1)知道什么是不动点;(2)掌握运用不动点求解数列的通项公式的方法;(3)明白运用不动点法求解数列通项公式的条件。
2、过程和方法(1)通过分析类比,引入不动点的概念及运用不动点法如何构造数列;(2)通过教师的演算分析,运用不动点法构造数列的一般步骤;(3)通过使学生合作思考,以不断尝试错误的方式口己归纳总结运用不动点法求解的限制条件。
3、情感态度和价值观通过木节课的学生使学生感受运用不动点法求解数列通项公式的便捷性和灵活性,同时在归纳分析的过程中使学生形成化归、类比的数学意识,养成严谨的逻辑思维习惯。
四、教学重难点1、教学重点(1)明白什么是不动点;(2)熟练掌握不动点法求解数列的通项公式及使用条件。
2、教学难点(1)灵活运用不动点法快速求解数列的通项公式;(2)针对不同的数列灵活选择其求解方法。
五、教学策略与方法分析类比法、尝试错误法、归纳总结法、合作探究法、讲解演算法六、教学过程教学时教师活动学生活动设计意图间(一)分析类比,讲授新课大家首先回顾一下上节课我们学习了求解数列通项公式的七种方法,分别是哪些?回答:公式法、叠加法、叠乘法、待定系数法、迭代学生思考在之前已学知识的基础上,通过类比法、对数变换法、数学归纳法、换元法。
用不动点法求数列的通项定义:方程x x f =)(的根称为函数)(x f 的不动点.利用递推数列)(x f 的不动点,可将某些递推关系)(1-=n n a f a 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.定理1:若),1,0()(≠≠+=a a b ax x f p 是)(x f 的不动点,n a 满足递推关系)1(),(1>=-n a f a n n ,则)(1p a a p a n n -=--,即}{p a n -是公比为a 的等比数列.证明:因为 p 是)(x f 的不动点ap p b -=-∴由b a a a n n +⋅=-1得)(11p a a p b a a p a n n n -=-+⋅=---所以}{p a n -是公比为a 的等比数列.定理2:设)0,0()(≠-≠++=bc ad c dcx b ax x f ,}{n a 满足递推关系1),(1>=-n a f a n n ,初值条件)(11a f a ≠(1):若)(x f 有两个相异的不动点q p ,,则q a p a k q a p a n n n n --⋅=----11 (这里qca pc a k --=) (2):若)(x f 只有唯一不动点p ,则k p a p a n n +-=--111 (这里da c k +=2) 证明:由x x f =)(得x dcx b ax x f =++=)(,所以0)(2=--+b x a d cx (1)因为q p ,是不动点,所以⎪⎩⎪⎨⎧=--+=--+0)(0)(22b q a d cq b p a d cp ⇒⎪⎪⎩⎪⎪⎨⎧--=--=qc a b qd q pc a b pd p ,所以 q a p a qc a pc a qc a b qd a pc a b pd a qc a pc a qd b a qc a pd b a pc a q dca b aa p d ca b aa q a p a n n n n n n n n n n n n --⋅--=------⋅--=-+--+-=-++-++=------------1111111111)()(令qca pc a k --=,则q a p a k q a p a n n n n --=----11 (2)因为p 是方程0)(2=--+b x a d cx 的唯一解,所以0)(2=--+b p a d cp所以ap cp pd b -=-2,cd a p 2-=所以 dca p a cp a d ca ap cp a cp a d ca pd b a cp a p d ca b aa p a n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111))(()()(所以da c p a p a cp a cp d cp a c p a cp d p a c cp a p a d ca cp a p a n n n n n n n ++-=-⋅-++-=-++-⋅-=-+⋅-=-------211)(111111111令da c k +=2,则k p a p a n n +-=--111 例1:设}{n a 满足*11,2,1N n a a a a n n n ∈+==+,求数列}{n a 的通项公式 例2:数列}{n a 满足下列关系:0,2,2211≠-==+a a a a a a a nn ,求数列}{n a 的通项公式 定理3:设函数)0,0()(2≠≠+++=e a fex c bx ax x f 有两个不同的不动点21,x x ,且由)(1n n u f u =+确定着数列}{n u ,那么当且仅当a e b 2,0==时,2212111)(x u x u x u x u n n n n --=--++ 证明: k x 是)(x f 的两个不动点 ∴fex c bx ax x k k k k +++=2即k k k bx x a e f x c --=-2)()2,1(=k ∴222221211222211222122111)()()()()()()()(bx x a e u ex b au bx x a e u ex b au f x c u ex b au f x c u ex b au f eu x c bu au f eu x c bu au x u x u n n n n n n n n n n n n n n n n --+-+--+-+=-+-+-+-+=+-+++-++=--++于是, 11 21x x 0≠ ∴方程组有唯一解a e b 2,0== 例3:已知数列}{n a 中,*211,22,2N n a a a a nn n ∈+==+,求数列}{n a 的通项. 其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题:例4:已知1,011≠>a a 且)1(4162241+++=+n n n n n a a a a a ,求数列}{n a 的通项.解: 作函数为)1(416)(224+++=x x x x x f ,解方程x x f =)(得)(x f 的不动点为 i x i x x x 33,33,1,14321=-==-=.取1,1-==q p ,作如下代换: 逐次迭代后,得:111141414141)1()1()1()1(------+-++=n n n n a a a a a n已知曲线22:20(1,2,)n C x nx y n -+==.从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(,)n n n P x y .(1)求数列{}{}n n x y 与的通项公式;(2)证明:13521n n nx x x x x y -⋅⋅⋅⋅<< 设p q ,为实数,αβ,是方程20x px q -+=的两个实根,数列{}n x 满足1x p =,22x p q =-,12n n n x px qx --=-(34n =,,…).(1)证明:p αβ+=,q αβ=;(2)求数列{}n x 的通项公式;(3)若1p =,14q =,求{}n x 的前n 项和n S . 已知函数2()1f x x x =+-,αβ,是方程()0f x =的两个根(αβ>),()f x '是()f x 的导数,设11a =,1()(12)()n n n n f a a a n f a +=-=',,. (1)求αβ,的值;(2)证明:对任意的正整数n ,都有n a α>; (3)记ln (12)n n n a b n a βα-==-,,,求数列{}n b 的前n 项和n S 13陕西文21.(本小题满分12分)已知数列{}n a 满足,*11212,,2n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列; (Ⅱ)求{}n a 的通项公式。