坡度、坡角 课件
- 格式:ppt
- 大小:1.58 MB
- 文档页数:10
解直角三角形(坡度和坡角)一、知识点讲解1、坡角:坡面与水平面的夹角叫做坡角,记作α。
2、坡度(或坡比):坡面的铅垂高度(h )和水平长度(l )的比叫做坡面的坡度(或坡比),记作i ,即 lh i =,坡度通常写成1∶m 的形式。
3、坡度与坡角的关系: αtan ==lh i 坡度等于坡角的正切值二、典例分析题型一:利用解直角三角形解决坡度、坡角问题例1 水库大坝的横断面是梯形,坝顶宽6m ,坝高23m ,斜坡AB 的坡度i =1∶3,斜坡CD 的坡度i =1∶2.5,求:(1)坝底AD 与斜坡AB 的长度(精确到0.1m );(2)斜坡CD 的坡角α(精确到 1°)。
变式练习:1、如图,一人滑雪沿坡度为1:2斜坡滑下,下滑了距离s =100米,则此人下降的高度为( )A 、50米B 、350米C 、520米D 、550米第1题 第2题 第3题2、如图是人民广场到重百地下通道的手扶电梯示意图,其中AB 、CD 分别表示地下通道、人发广场电梯口处地面的水平线,已知∠ABC =135°,BC 的长约为25m ,则乘电梯从点B 到点C 上升的高度h 是。
3、如图,某拦河坝截面的原设计方案为:AH ∥BC ,坡角∠ABC =74°,坝顶到坝脚的距离AB =6 m .为了提高拦河坝的安全性,现将坡角改为55°,由此,点A 需向右平移至点D ,请你计算AD 的长(精确到0.1 m ).题型二:利用解直角三角形解决其它例2 如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据≈1.414,≈1.732)变式练习:1、如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为cm(参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器).第1题第2题2、小强和小明去测得一座古塔的高度,如图,他们在离古塔60m处(A)用测角仪测得塔顶的仰角为30°,已知测角仪高AD=1.5m,则古塔的高BE为。