工程力学32 静定平面桁架结构的内力计算
- 格式:pptx
- 大小:2.79 MB
- 文档页数:38
习题课3静定平面桁架的内力计算一、找出桁架的零杆(1)F P000000(2)8根零杆5根零杆F P000(3)12根零杆F PF P 00000000000F P 12根零杆(4)A 000000000006根零杆(5)a aaaS 1S 2F P 2F P F P F N 2F N 1AB C DⅡⅡⅠⅠ00000由于荷载反对称,该桁架除下部水平链杆AB 外,其余杆件受力反对称,故。
0=NCD F 1S F=∑I-I 右:20S F =∑II-II 右:12220222N P P F F F +⋅−⋅=10N F =22220222N P P F F F −+⋅+⋅=22N P F F =F PF P(7)(6)F P0附属部分6根零杆7根零杆F P0000000二、用简捷方法求桁架指定杆轴力150+II-II 左:(1)ABC DE FGHa /2a /2ⅡⅡⅠⅠ12解:CM=∑11 1.51.5()N P N P F a F a F F ⋅⋅==−压220/200.5Dy P y PMF a F a F F =+==−∑I-I 下:250.5 1.118()1N P P F F F =−⋅=−压简单桁架1.5F PF P F P F Pa a /2aa /2 1.5F P125(2)F NF yB =2F P dd dd F PAC DB dⅡⅡⅠⅠ1F yC =F PF yA =F PF xA =2F P 323F P2F P331)020()2)0()3)0()C N P P N P x N P y yC P M F d F d F d F F F F F F F F =+−======↑∑∑∑拉拉I-I 右:联合桁架解:F NF yB =2F P dd ddF PAC DB dⅡⅡⅠⅠ1F yC =F PF yA =F PF xA =2F P 323F P2F P1210()()032()D N P P yN P P P M F F d F dF F F F F ==−⋅=−==−=−∑∑压压II-II 左:整体平衡:10(322)()2ByA P P P P P MF F d F d F d F d F d==+⋅−−=↑∑(3)F P0A -F P-F P-F PF DEC 12F PF PPF 2F N F Pa /2aⅠⅠ00B 0EN MF ==∑1)I-I 右:02=N F 2)结点C :1102()yy PN P FF F F F ===∑拉3)结点F :aa /2aa /2联合桁架解:(4)F P 4m4mF P F P F P 4F P6.67F P6.67F P AB FC F N 2134ⅡⅠEⅡD GH 4m4m3m3mⅠ解:1220()0()33DN P xN P MF F FF F ====−∑∑拉压1) I-I 右:2) 结点E :2222550()346xx PN x P FF F F F F ====∑拉简单桁架F PF N 2E 23PF F P 4m4mF P F P F P 4F P6.67F P6.67F P AB FC F N 2134ⅡⅠEⅡD G H4m4m3m3mⅠ553434343x Py P PN F F F F F F ==⋅==4) 结点D :F PFN 3F N 5D2F P2F P /3410(48)2()6F N P P P M F F F F −==+=−∑压3) II-II 右:xF=∑(5)F PCA B dⅠ1 1.5F P 1.5F P02F P F Pd 0复杂桁架1)结点C:结构与荷载均对称,两斜杆轴力为零。
25您的位置:在线学习—>在线教程—>教学内容上一页返回目录下一页3.4 静定平面桁架教学要求掌握静定平面桁架结构的受力特点和结构特点,熟练掌握桁架结构的内力计算方法——结点法、截面法、联合法3.4.1 桁架的特点和组成3.4.1.1 静定平面桁架桁架结构是指若干直杆在两端铰接组成的静定结构。
这种结构形式在桥梁和房屋建筑中应用较为广泛,如南京长江大桥、钢木屋架等。
实际的桁架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。
但根据对桁架的实际工作情况和对桁架进行结构实验的结果表明,由于大多数的常用桁架是由比较细长的杆件所组成,而且承受的荷载大多数都是通过其它杆件传到结点上,这就使得桁架结点的刚性对杆件内力的影响可以大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯矩和剪力很小,可以忽略不计。
因此,为了简化计算,在取桁架的计算简图时,作如下三个方面的假定:(1)桁架的结点都是光滑的铰结点。
(2)各杆的轴线都是直线并通过铰的中心。
(3)荷载和支座反力都作用在铰结点上。
通常把符合上述假定条件的桁架称为理想桁架。
3.4.1.2 桁架的受力特点桁架的杆件只在两端受力。
因此,桁架中的所有杆件均为二力杆。
在杆的截面上只有轴力。
3.4.1.3 桁架的分类(1)简单桁架:由基础或一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。
(图3-14a)(2)联合桁架:由几个简单桁架联合组成的几何不变的铰接体系。
(图3-14b))3-14c复杂桁架:不属于前两类的桁架。
(图)3(.3.4.2 桁架内力计算的方法桁架结构的内力计算方法主要为:结点法、截面法、联合法结点法――适用于计算简单桁架。
截面法――适用于计算联合桁架、简单桁架中少数杆件的计算。
联合法――在解决一些复杂的桁架时,单独应用结点法或截面法往往不能够求解结构的内力,这时需要将这两种方法进行联合应用,从而进行解题。
桁架内力的计算3.4 静定平面桁架教学要求掌握静定平面桁架结构的受力特点和结构特点,熟练掌握桁架结构的内力计算方法——结点法、截面法、联合法3.4.1 桁架的特点和组成3.4.1.1 静定平面桁架桁架结构是指若干直杆在两端铰接组成的静定结构。
这种结构形式在桥梁和房屋建筑中应用较为广泛,如南京长江大桥、钢木屋架等。
实际的桁架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。
但根据对桁架的实际工作情况和对桁架进行结构实验的结果表明,由于大多数的常用桁架是由比较细长的杆件所组成,而且承受的荷载大多数都是通过其它杆件传到结点上,这就使得桁架结点的刚性对杆件内力的影响可以大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯矩和剪力很小,可以忽略不计。
因此,为了简化计算,在取桁架的计算简图时,作如下三个方面的假定:(1)桁架的结点都是光滑的铰结点。
(2)各杆的轴线都是直线并通过铰的中心。
(3)荷载和支座反力都作用在铰结点上。
通常把符合上述假定条件的桁架称为理想桁架。
3.4.1.2 桁架的受力特点桁架的杆件只在两端受力。
因此,桁架中的所有杆件均为二力杆。
在杆的截面上只有轴力。
3.4.1.3 桁架的分类(1)简单桁架:由基础或一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。
(图3-14a)(2)联合桁架:由几个简单桁架联合组成的几何不变的铰接体系。
(图3-14b)(3)复杂桁架:不属于前两类的桁架。
(图3-14c)3.4.2 桁架内力计算的方法桁架结构的内力计算方法主要为:结点法、截面法、联合法结点法――适用于计算简单桁架。
截面法――适用于计算联合桁架、简单桁架中少数杆件的计算。
联合法――在解决一些复杂的桁架时,单独应用结点法或截面法往往不能够求解结构的内力,这时需要将这两种方法进行联合应用,从而进行解题。
解题的关键是从几何构造分析着手,利用结点单杆、截面单杆的特点,使问题可解。
第二节平面静定桁架的内力计算桁架是工程中常见的一种杆系结构,它是由若干直杆在其两端用铰链连接而成的几何形状不变的结构。
桁架中各杆件的连接处称为节点。
由于桁架结构受力合理,使用材料比较经济,因而在工程实际中被广泛采用。
房屋的屋架(见图3-10)、桥梁的拱架、高压输电塔、电视塔、修建高层建筑用的塔吊等便是例子。
图3-10房屋屋架杆件轴线都在同一平面内的桁架称为平面桁架(如一些屋架、桥梁桁架等),否则称为空间桁架(如输电铁塔、电视发射塔等)。
本节只讨论平面桁架的基本概念和初步计算,有关桁架的详细理论可参考“结构力学”课本。
在平面桁架计算中,通常引用如下假定:1)组成桁架的各杆均为直杆;2)所有外力(载荷和支座反力)都作用在桁架所处的平面内,且都作用于节点处;3)组成桁架的各杆件彼此都用光滑铰链连接,杆件自重不计,桁架的每根杆件都是二力杆。
满足上述假定的桁架称为理想桁架,实际的桁架与上述假定是有差别的,如钢桁架结构的节点为铆接(见图3-11)或焊接,钢筋混凝土桁架结构的节点是有一定刚性的整体节点,图3-11 钢桁架结构的节点它们都有一定的弹性变形,杆件的中心线也不可能是绝对直的,但上述三点假定已反映了实际桁架的主要受力特征,其计算结果可满足工程实际的需要。
分析静定平面桁架内力的基本方法有节点法和截面法,下面分别予以介绍。
一、节点法因为桁架中各杆都是二力杆,所以每个节点都受到平面汇交力系的作用,为计算各杆内力,可以逐个地取节点为研究对象,分别列出平衡方程,即可由已知力求出全部杆件的内力,这就是节点法。
由于平面汇交力系只能列出两个独立平衡方程,所以应用节点法往往从只含两个未知力的节点开始计算。
例3-8 平面桁架的受力及尺寸如图3-12a所示,试求桁架各杆的内力。
图3-12 例3-8图解:(1)求桁架的支座反力以整体桁架为研究对象,桁架受主动力2F 以及约束反力YA F 、xB F 、YB F 作用,列平衡方程并求解:1=∑=ni ixF,xB F =0)(1=∑=ni i BmF , 2F ×2l-Y A F l =0, Y A F=F1=∑=ni iyF,YA F +YB F -2F =0,YB F =2F -YA F =F(2)求各杆件的内力设各杆均承受拉力,若计算结果为负,表示杆实际受压力。
主题:计算静定平面桁架内力的两种基本方法随着现代建筑工程的发展,计算静定平面桁架内力成为了结构分析中的重要问题。
在计算静定平面桁架内力时,有两种基本的方法,即力法和位移法。
本文将分别介绍这两种方法的基本原理和应用,以及它们的优缺点。
一、力法1. 基本原理力法是通过平衡节点上的受力来计算静定平面桁架内力的一种方法。
在力法中,首先要对整个桁架进行受力分析,确定各个节点上的受力情况,然后根据节点受力的平衡条件,计算出每根构件的内力。
2. 应用力法广泛应用于静定平面桁架内力的计算中。
通过力法可以清晰地了解每根构件受力的情况,对于设计师来说具有很大的实用价值。
3. 优缺点优点:力法计算简单、直观,适用于多种不同类型的静定平面桁架。
缺点:力法在计算过程中需要考虑节点受力平衡的条件,当桁架节点较多时,计算过程较为繁琐,且容易出错。
二、位移法1. 基本原理位移法是通过分析节点的位移来计算静定平面桁架内力的一种方法。
在位移法中,首先需要假设桁架中的某个节点发生位移,然后根据位移引起的构件变形情况,计算出每根构件的内力。
2. 应用位移法在计算静定平面桁架内力时具有一定的优势,特别是在复杂结构的分析中,位移法可以更加直观地反映构件的变形情况,对于设计师来说具有较大的帮助。
3. 优缺点优点:位移法对于复杂结构的分析更加直观,能够清晰地揭示构件的内力分布情况。
缺点:位移法在计算过程中需要假设节点发生位移,这种假设可能与实际情况不符,导致计算结果存在一定误差。
三、综合比较1. 适用范围力法和位移法各有其适用范围,力法适用于简单桁架的受力分析,而位移法适用于复杂结构的受力分析。
2. 精度和准确性在计算静定平面桁架内力时,力法的结果相对准确,而位移法的结果受到假设位移的影响,精度较低。
3. 计算复杂度力法在计算过程中相对简单直观,适用于简单结构的分析;而位移法在复杂结构的分析中可以更加直观地反映构件的变形情况。
四、结论力法和位移法是计算静定平面桁架内力的两种基本方法,各自具有自身的优势和不足。
平行梁桁架内力计算
平行梁桁架是一种常见的结构形式,通常用于支撑建筑物或桥梁。
在设计和分析平行梁桁架结构时,了解内力的计算是至关重要的。
内力是指杆件或梁在结构内部受到的力的分布情况,通过计算内力可以帮助工程师评估结构的稳定性和安全性。
在平行梁桁架结构中,通常会出现拉力和压力两种内力。
拉力是指杆件或梁受到的拉伸力,而压力则是指受到的压缩力。
这两种内力的大小和方向对于结构的稳定性具有重要影响。
内力的计算通常通过静力学的方法来进行。
首先需要确定结构的受力情况,包括外部荷载以及支座的约束。
然后可以利用平衡方程和梁的几何性质来计算各个杆件或梁上的内力。
在平行梁桁架中,一般会有水平和竖直方向的内力。
水平方向的内力通常是由于横向风荷载或地震荷载引起的,而竖直方向的内力则是由于结构自重和垂直荷载引起的。
通过计算这些内力,可以评估结构在各种荷载情况下的受力状态。
在平行梁桁架中,还需要考虑节点的内力传递问题。
节点是连接杆件的地方,通常会受到多个杆件的受力作用。
通过分析节点的受力平衡条件,可以计算出节点处的内力分布情况,进而评估节点的稳定性。
除了静力学的方法,有限元分析也可以用于计算平行梁桁架结构的
内力。
有限元分析是一种数值计算方法,可以更精确地模拟结构的受力情况,但需要借助计算机来进行复杂的计算。
总的来说,平行梁桁架内力计算是结构工程中的重要内容之一,通过合理的计算和分析,可以确保结构在各种荷载情况下的安全性和稳定性。
工程师在设计和施工过程中需要充分考虑内力的计算,以确保结构的可靠性和持久性。