过程控制系统-多变量解耦控制系统!!
- 格式:ppt
- 大小:588.50 KB
- 文档页数:22
多变量解耦控制方法随着被控系统越来越复杂,如不确定性、多干扰、非线性、滞后、非最小相位等,需要控制的变量往往不只一个,且多个变量之间相互关联,即耦合,传统的单变量控制系统设计方法显然无法满足要求,工程中常常引入多变量的解耦设计........。
其思想早在控制科学发展初期就已形成,其实质是通过对一个具有耦合的多输入多输出控制系统,配以适当的补偿器,将耦合程度限制在一定程度或解耦为多个独立的单输入单输出系统。
其发展主要以Morgan于1964年提出的基于精确对消的全解耦状态空间法........及Rosenbrock于20世纪60年代提出的基于对角优势化的现代频率法.....为代表,但这两种方法都要求被控对象精确建模,在应用上受到一定的限制。
近年来,随着控制理论的发展,如特征结构配置解耦、自校正解耦、线性二次型解耦、奇异摄动解耦、自适应解耦、智能解耦、模糊解耦等等。
解耦控制一直是一个充满活力、富有挑战性的问题。
本文针对解耦方法进行了概述,并分析了其应用现状。
一、解耦控制的现状及问题1.1 传统解耦控制传统解耦方法包括前置补偿法和现代频率法。
前者包括矩阵求逆解耦、不变性解耦和逆向解耦;后者包括时域方法,其核心和基础是对角优势,奈氏(Nyquist)稳定判据是其理论基础,比较适合于线性定常MIMO系统。
主要包括:1)逆奈氏阵列法逆奈氏阵列法是对控制对象进行预先补偿,使传统函数的逆成为具有对角优势和正规性的矩阵。
由于正规阵特征值对摄动不敏感,因而有较强的鲁棒性,其应用广泛。
当然,当正规阵的上(下)三角元素明显大于下(上)三角元素时,可采用非平衡补偿法进行修正来提高鲁棒性,同时由于利用逆奈氏判据选择反馈增益时并不能保证闭环传递函数本身的对角优势,因此需反复调整补偿器的参数,使设计结果真正符合对角优势。
2)特征轨迹法特征轨迹法是一种分析MIMO系统性态的精确方法。
当采用其中的增益平衡法和特征向量配正法对补偿器进行近似处理时,其精确性难以得到保证,因而工程应用有限。
过程控制系统多变量解耦控制系统过程控制系统多变量解耦控制系统(Multivariable Decoupling Control System)是一种能够同时控制多个相关变量的控制系统。
在传统的控制系统中,通常只有一个控制回路,而多变量解耦控制系统则可以通过多个回路同时对多个变量进行控制,从而实现变量之间的解耦。
在实际的工程应用中,往往需要控制多个相关的变量。
这些变量之间可能存在交互作用,控制其中一个变量可能会对其他变量产生影响。
传统的单变量控制系统无法有效地解决这个问题,因为它们无法考虑到变量之间的相互关系。
多变量解耦控制系统通过建立多个独立的控制回路,每个回路分别控制一个相关变量,从而实现变量之间的解耦。
解耦的目标是使每个回路的输出变量不再受到其他变量的影响,即通过调整每个回路的控制器参数,使得系统变得稳定并能够达到预期的控制效果。
多变量解耦控制系统的设计一般包括两个主要步骤:解耦器设计和控制器设计。
解耦器的作用是抑制变量之间的相互干扰,从而实现变量的解耦。
解耦器通常根据系统的数学模型来设计,通过调整解耦器的参数,可以实现变量之间的解耦效果。
在解耦器设计的基础上,需要设计每个回路的控制器。
控制器的设计一般采用传统的控制方法,如PID控制器或者先进的控制算法。
控制器的目标是为每个回路选择合适的控制参数,使得系统的稳定性和控制精度得到保证。
多变量解耦控制系统在实际应用中具有广泛的应用。
例如,在化工过程中,需要控制多个过程变量,如温度、压力和流量等。
传统的单变量控制方法无法满足工艺的需求,而多变量解耦控制系统可以通过解耦变量之间的相互作用,实现高效的过程控制。
总之,多变量解耦控制系统是一种用于控制多个相关变量的控制系统。
它通过建立多个独立的控制回路,实现变量之间的解耦,并通过调整控制器参数,使得系统达到稳定和预期的控制效果。
在工程应用中,多变量解耦控制系统具有广泛的应用前景,可以提高工艺的控制精度和稳定性,从而实现更高效的过程控制。
多变量解耦控制方法随着被控系统越来越复杂,如不确定性、多干扰、非线性、滞后、非最小相位等,需要控制的变量往往不只一个,且多个变量之间相互关联,即耦合,传统的单变量控制系统设计方法显然无法满足要求,工程中常常引入多变量的解耦设计........。
其思想早在控制科学发展初期就已形成,其实质是通过对一个具有耦合的多输入多输出控制系统,配以适当的补偿器,将耦合程度限制在一定程度或解耦为多个独立的单输入单输出系统。
其发展主要以Morgan于1964年提出的基于精确对消的全解耦状态空间法........及Rosenbrock于20世纪60年代提出的基于对角优势化的现代频率法.....为代表,但这两种方法都要求被控该方法是将补偿器逐个串入回路构成反馈,易于编程实现。
从解耦的角度看,类似三角解耦,但其补偿器的确定方法并不明确,不能实现完全解耦。
4)奇异值分解法包括奇异值带域法和逆结构正则化法。
主要是先绘制开环传递函数的奇异值图,采用主增益、主相位分析法,或者广义奈氏定理来确定主带域与临界点的关系,从而判别系统的鲁棒稳定性,特别适于无法特征分解或并矢分解的系统。
它是近年来普遍使用的方法之一。
此外,还有一些比较成功的频率方法,包括相对增益法、逆曲线法、特征曲线分析法。
以上解耦方法中,补偿器严重依赖被控对象的精确建模,在现代的工业生产中不具有适应性,难以保证控制过程品质,甚至导致系统不稳定。
即使采用这些方法进行部分解耦或者单向解耦,也不能实现完全解耦,而且辅助设计的工作量很大,不易实现动态解耦。
1.2自适应解耦控制的解耦、控制和辨识结合起来,以此实现参数未知或时变系统的在线精确解耦控制。
它的实质是.....将耦合项视为可测干扰,采用自校正前馈控制的方法,对耦合进行动、静态补偿,对补偿器的参数进行寻优。
它是智能解耦理论的基础,适于时变对象。
对于最小相位系统,自适应解耦控制采用最小方差....控.制律..可以抑制交联,对于非最小相位系统,它可采用广义最小方差控制律,只要性能指标函数中含有耦合项,就可达到消除耦合的目的,但需求解Diophantine方法,得到的解往往是最小二乘解。
本科毕业设计论文题目多变量解耦控制方法研究专业名称学生姓名指导教师毕业时间毕业一、题目多变量解耦控制方法研究二、指导思想和目的要求通过毕业设计,使学生对所学自动控制原理、现代控制原理、控制系统仿真、电子技术等的基本理论和基本知识加深理解和应用;培养学生设计计算、数据处理、文件编辑、文字表达、文献查阅、计算机应用、工具书使用等基本事件能力以及外文资料的阅读和翻译技能;掌握常用的多变量解耦控制方法,培养创新意识,增强动手能力,为今后的工作打下一定的理论和实践基础。
要求认真复习有关基础理论和技术知识,认真对待每一个设计环节,全身心投入,认真查阅资料,仔细分析被控对象的工作原理、特性和控制要求,按计划完成毕业设计各阶段的任务,重视理论联系实际,写好毕业论文。
三、主要技术指标设计系统满足以下要求:每一个输出仅受相应的一个输入控制,每一个输入也仅能控制相应的一个输出。
四、进度和要求1、搜集中、英文资料,完成相关英文文献的翻译工作,明确本课题的国内外研究现状及研究意义;(第1、2周)2、完成总体设计方案的论证并撰写开题报告;(第3、4周)3、分析控制系统解耦;(第5、6周)4、应用前馈补偿法进行解耦;(第7、8周)5、应用反馈补偿法进行解耦;(第9、10周)6、利用MATLAB对控制系统进行仿真;(第11周)7、整理资料撰写毕业论文;(1)初稿;(第12、13周)(2)二稿;(第14周)8、准备答辩和答辩。
(第15周)五、主要参考书及参考资料[1]卢京潮.《自动控制原理》,西北工业大学出版社,2010.6[2]胡寿松.《自动控制原理》,科学2008,6出版社,2008.6[3]薛定宇.陈阳泉,《系统仿真技术与应用》,清华大学出版社,2004.4[4]王正林.《MATLAB/Simulink与控制系统仿真》,电子工业出版社,2009.7[5]刘豹.《现代控制理论》,机械工业出版社,2004.9[6]古孝鸿.周立群.线性多变量系统领域法[M].上海:上海交通大学出版社,1990.[7]李帆.不确定系统的解耦控制与稳定裕度分析[D].西安:西北工业大学,2001.[8]柴天佑.多变量自适应解耦控制及应用[M].北京:科学出版社,2001.[9]张晓婕.多变量时变系统CARMA模型近似解耦法[J].中国计量学院学报,2004,15(4):284-286.学生指导教师系主任摘要随着被控系统越来越复杂,如不确定性、多干扰、非线性、滞后、非最小相位等,需要控制的变量往往不只一个,且多个变量之间相互关联,即耦合,传统的单变量控制系统设计方法显然无法满足要求,工程中常常引入多变量的解耦设计。