多变量线性系统解耦控制中极点配置问题的一种简便解法
- 格式:pdf
- 大小:165.01 KB
- 文档页数:5
多变量解耦极点配置自校正PID控制器
邓自立;黄先日
【期刊名称】《信息与控制》
【年(卷),期】1990(19)2
【摘要】本文提出了一种新颖的多变量解耦极点配置自校正 PID 控制器,它不仅具有消除静差、抗干扰和在弱的条件下实现静态解耦控制的优点,而且工程直观意义强、计算简单、便于工程应用.仿真例子说明了其有效性.
【总页数】4页(P18-21)
【关键词】多变量系统;解耦;PID控制器;自校正
【作者】邓自立;黄先日
【作者单位】黑龙江大学应用数学研究所
【正文语种】中文
【中图分类】TP271.7
【相关文献】
1.多变量双线性广义预测极点配置自校正解耦控制器 [J], 吴汉生;胡绍济;吴芳华
2.多变量双线性广义预测极点配置自校正解耦控制器(续) [J], 吴汉生;胡绍济;吴芳华
3.多变量解耦极点配置组合自校正前馈控制器 [J], 邓自立;黄先日
4.未知或变时滞系统的多变量解耦极点配置自校正PID调节器 [J], 邓自立;黄先日
5.具有极点配置的多变量自校正前馈解耦控制器 [J], 柴天佑;马孜
因版权原因,仅展示原文概要,查看原文内容请购买。
现代控制理论实验(一)线性系统的状态反馈及极点配置——09级自动化本科一.实验目的1.了解和掌握状态反馈及极点配置的原理。
2.了解和掌握利用矩阵法及传递函数法计算状态反馈及极点配置的原理与方法。
3.掌握在被控系统中如何进行状态反馈及极点配置,构建一个性能满足指标要求的新系统的方法。
二.实验原理及说明一个控制系统的性能是否满足要求,要通过解的特征来评价,也就是说,当传递函数是有理函数时,它的全部信息几乎都集中表现为它的极点、零点及传递函数。
因此若被控系统完全能控,则可以通过状态反馈任意配置极点,使被控系统达到期望的时域性能指标。
若有被控系统如图3-3-61所示,它是一个Ⅰ型二阶闭环系统。
图3-3-61 被控系统如图3-3-61所示的被控系统的传递函数为:12021S 11)1(1)(a S a S b T TS T TS S T S i i i ++=++=++=φ (3-3-51) 采用零极点表达式为:))(()(210λλφ--=S S b S (3-3-52)进行状态反馈后,如图3-3-62所示,图中“输入增益阵”L 是用来满足静态要求。
图3-3-62 状态反馈后被控系统设状态反馈后零极点表达式为:))(()(21**--=λλφS S b S (3-3-53)1.矩阵法计算状态反馈及极点配置1)被控系统被控系统状态系统变量图见图3-3-63。
图3-3-63 被控系统状态系统变量状态反馈后的被控系统状态系统变量图见图3-3-64。
图3-3-64 状态反馈后的被控系统状态系统变量图图3-3-61的被控系统的状态方程和输出方程为:状态方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=+-=••1i 1i 2211X Y u T 1X T 1X X T 1X T 1X (3-3-54)⎪⎩⎪⎨⎧=+==•∑CxY u Ax X B C B A 0),,(式中[]01,T 10B 0T 1T 1T 1A ,i i 21=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=C x x x , 被控系统的特征多项式和传递函数分别为:12010a a b S b )(+++=S S S φB A)C(SI 1--=)(A -SI det a a )(f 0120=++=S S S 可通过如下变换(设P 为能控标准型变换矩阵): —x P X =将∑0C B A ),,(化为能控标准型 ),,(————C B A ∑,即: ⎪⎩⎪⎨⎧=+=•——————x C Y u x A B X 式中 ⎥⎦⎤⎢⎣⎡-==-101a -a 10AP P A — , ⎥⎦⎤⎢⎣⎡==-10B P B 1— , []10b b CP C ==— 2)被控系统针对能控标准型),,(————C B A ∑引入状态反馈:⎥⎦⎤⎢⎣⎡=-=—————式中10k k k xk u ν (3-3-55)可求得对—x 的闭环系统),,—————C B k B A (-∑的状态空间表达式: 仍为能控标准型,即: ⎪⎩⎪⎨⎧=+-=•————————)(x C Y u x B k B A X 式中 ⎥⎦⎤⎢⎣⎡+-+-=-)()(—————1100k a k a 10k B A则闭环系统),,(——————C B k B A -∑的特征多项式和传递函数分别为: )()(—————00112k k a k a k)B (A SI det )(f ++++=⎥⎦⎤⎢⎣⎡--=S S S )k a (k a b S b B )k B A (SI C )(00112011k ———————)(+++++=⎥⎦⎤⎢⎣⎡--=-S S S φ3)被控系统如图3-3-61所示:其中:05.01==T T i则其被控系统的状态方程和输出方程为:[]XY uX X 0110012020=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=期望性能指标为:超调量M P ≤20%;峰值时间t P ≤0.5秒。
频域解耦控制与多变量系统的优化控制器设计频域解耦控制(Frequency Domain Decoupling Control)是一种通过对多变量系统进行频域分析和控制的方法。
多变量系统指的是具有多个输入和输出的系统,这些输入和输出之间可能存在耦合关系。
优化控制器设计是指根据系统的特性和性能要求,设计出最优的控制器来实现系统的稳定和性能优化。
频域解耦控制的基本思想是通过设计合适的频域控制器,将多变量系统分解为多个单变量回路,从而实现对系统的解耦。
解耦后的子系统可以通过独立的单变量控制器进行控制,简化了系统的控制问题。
频域解耦控制的关键是通过适当的频域设计方法将多变量系统转化为多个单变量系统,并采用合适的控制策略将其稳定和优化。
频域解耦控制的具体实现过程包括以下几个步骤:1. 确定系统的输入输出关系:首先需要建立系统的输入与输出之间的数学模型,可以采用传递函数或状态空间模型表示。
通过确定系统的参数和互关系,得到多变量系统的传递函数矩阵或状态空间矩阵。
2. 进行频域分析:利用频域分析方法,对多变量系统的传递函数矩阵或状态空间矩阵进行分析,得到系统的频域响应特性。
包括振荡频率、衰减系数、相位等参数。
3. 进行解耦设计:根据系统的输入输出关系和频域分析结果,设计相应的频域解耦器。
解耦器用于分解多变量系统成为多个单变量回路,并通过合适的耦合矩阵来减弱或消除不同回路之间的耦合影响。
4. 设计单变量控制器:根据解耦后的子系统,针对单个回路设计相应的单变量控制器。
可以采用PID控制器、模糊控制器、自适应控制器等不同的控制策略。
5. 完整系统的控制:将设计好的解耦器和单变量控制器结合起来,形成完整的频域解耦控制系统。
通过对每个单变量回路的控制,实现对整个多变量系统的控制和优化。
多变量系统的优化控制器设计是在频域解耦控制的基础上进行的。
优化控制器的设计目标是在系统稳定的前提下,通过合适的控制策略来优化系统的性能指标。
多变量解耦控制方法研究多变量解耦控制是现代控制理论中的重要分支,也是工业过程控制的关键技术之一、在实际工程应用中,往往需要同时控制多个输入输出变量,而这些变量之间往往存在相互影响和耦合关系。
多变量解耦控制方法旨在消除这种耦合,实现多变量系统的分离控制和单变量控制。
多变量解耦控制方法主要应用于工业过程控制、化工过程控制、电力系统控制等领域。
其核心思想是通过对系统进行建模和分析,利用现代控制理论中的方法和技术,将多变量系统转化为多个单变量的子系统,从而实现系统的解耦控制。
多变量解耦控制方法通常包括模型预测控制(MPC)、广义预测控制(GPC)、自适应控制等。
模型预测控制(MPC)是一种基于优化理论和动态系统模型的先进控制方法,广泛应用于工业过程控制领域。
MPC通过建立系统的数学模型,根据系统状态的变化进行预测,并在每个控制周期内进行优化求解,以实现对系统变量的控制。
在多变量系统中,MPC通过对多个子系统进行分析和建模,将多变量控制问题转化为多个单变量的优化控制问题,然后采用协调控制策略来实现解耦控制。
广义预测控制(GPC)是一种通过在线参数估计和模型预测来实现多变量控制的方法。
GPC通过对系统建立动态模型,利用过去时刻的控制输入和输出数据,通过在线参数估计来更新模型的参数,实现对系统的预测和控制。
与MPC相比,GPC更加适用于动态环境下的多变量系统控制,具有良好的鲁棒性和自适应性。
自适应控制是一种利用自适应算法和参数估计方法来实现多变量解耦控制的方法。
自适应控制能够根据系统的变化和模型的误差,自动调整控制器的参数,以实现对系统的自适应控制。
在多变量系统中,自适应控制方法可以通过在线参数估计和优化算法,实现对多个子系统的解耦控制和优化控制。
总之,多变量解耦控制方法是实现多变量系统控制的重要技术,对于提高系统的性能和稳定性具有重要意义。
未来,随着控制理论的不断发展和应用领域的扩大,多变量解耦控制方法将得到进一步的研究和应用,并在各个领域中发挥更大的作用。
极点配置的原理今天来聊聊极点配置的原理。
我不是一开始就接触到极点配置这个概念的,之前做项目的时候遇到了控制系统的性能优化问题,就开始研究起它来了。
极点配置就像是给控制系统这个大机器调音一样。
咱们先从生活现象说起,想象一下开车。
汽车有个速度控制系统,我们想要汽车的速度按照我们期望的方式变化,比如说快速稳定地达到一个设定速度,并且在遇到一些小干扰(像路面有点小坡度)的时候还能保持稳定。
这个时候极点配置就像调整汽车的“脾气秉性”的工具一样。
在控制系统里,系统的特性跟极点的位置密切相关。
从原理上讲呢,极点就是系统传递函数分母等于零的根。
我记得第一次接触这个理论公式的时候,觉得满脑袋都是浆糊。
比如说一个简单的二阶系统,它的极点会影响系统的响应速度和稳定性,就像一个跷跷板,两个极点要处于一个合适的位置,系统才会又快又稳。
这可是我琢磨了好久才有点理解的地方。
说到这里,你可能会问,这个极点怎么才能配置到我们想要的位置呢?这就要用到反馈控制理论了。
就像我们在训练宠物一样,通过反馈(知道宠物做的好不好,然后奖惩)来让系统的特性符合我们的要求。
比如说,通过调整反馈增益,就可以改变极点的位置。
老实说,我一开始也不明白极点配置到底为啥这么重要。
后来遇到好多实际例子才恍然大悟。
实际在航空航天领域,飞行器的姿态控制系统要很精确才行,极点配置就大有用武之地。
合理的极点配置能让飞行器快速准确地调整姿态且保持稳定,就像杂技演员总能在高空钢丝上保持平衡一样。
再讲讲相关的注意事项吧。
极点配置虽然很强大,但并不是随心所欲的,要考虑系统的物理可实现性以及对于外部干扰和不确定性的鲁棒性。
比如说,不能要求汽车做到像火箭那样的加速能力,因为汽车有它的物理限制。
这就像我们人一样,虽然有潜力可以挖掘,但是也有自身的极限。
我觉得极点配置这个原理还有很多可以延伸思考的地方。
比如如何在更加复杂多变的环境下进行适当地极点配置,这就像在不断变化的天气下管理一个大农场,要根据不同情况调整策略。
多变量解耦控制方法多变量解耦控制(Multivariable Decoupling Control)是一种用于多变量控制系统的控制方法,旨在解决多变量系统中变量之间相互影响的问题,以实现对个别变量的独立控制。
本文将重点介绍多变量解耦控制的基本原理、应用领域以及实现方法。
多变量解耦控制的基本原理是将多变量控制系统转化为一组耦合度相对较小的单变量子系统,从而能够实现对这些单变量子系统的相对独立控制。
在多变量控制系统中,由于变量之间存在相互耦合的影响,当控制一些变量时,其他变量的变化也会受到影响,导致控制效果不理想。
多变量解耦控制通过重新设计系统的控制结构,使得系统中的耦合影响尽可能减小,从而实现对每个变量的独立控制。
多变量解耦控制在许多工业领域中得到广泛应用,如化工过程控制、能源系统控制、飞行器控制等。
这些系统通常由多个变量组成,变量之间存在耦合关系。
例如,在化工过程控制中,系统的温度、压力、流量等变量相互影响,为了实现对每个变量的独立控制,需要采用多变量解耦控制方法。
多变量解耦控制的实现方法有多种,其中最常用的方法是基于传递函数模型的解耦控制设计。
这种方法通常包括两个步骤:模型建立和解耦控制器设计。
首先,通过系统辨识方法获得多变量系统的传递函数模型,然后根据系统的传递函数模型设计解耦控制器。
在解耦控制器设计中,通常采用频域设计方法,通过对系统的传递函数进行频域分析,确定解耦控制器的参数。
除了基于传递函数模型的解耦控制方法,还有一些其他的多变量解耦控制方法,如基于状态空间模型的解耦控制、模型预测控制、自适应控制等。
这些方法基于不同的控制原理和数学模型来实现多变量系统的解耦控制,可以根据实际需要选择适当的方法。
总结起来,多变量解耦控制是一种用于多变量控制系统的控制方法,通过重新设计系统的控制结构,实现对每个变量的独立控制。
它在工业领域中得到广泛应用,可以通过基于传递函数模型、状态空间模型、模型预测控制、自适应控制等方法来实现。