高考数学总复习第五讲:应用问题
- 格式:doc
- 大小:1.25 MB
- 文档页数:19
第五讲 导数及其应用变化率导数定义导函数定积分微积分基本定理定积分应用在几何中的应用在物理中的应用导数的计算基本初等函数的导数公式简单复合函数求导导数四则运算导数的应用函数单调性曲线的切线极值与最值优化问题几何意义曲边梯形面积变速运动行程1.(导数的几何意义)若函数f (x )=2xx 2+1在点(2,f (2))处的切线为l ,则直线l 与y 轴的交点坐标为________.【解析】 f ′(x )=2(x 2+1)-2x ·2x (x 2+1)2=-2x 2+2(x 2+1)2,则f ′(2)=-625,又f (2)=45,故直线l 的方程为y -45=-625(x -2),令x =0得y =3225,即直线l 与y 轴的交点坐标为⎝⎛⎭⎫0,3225. 【答案】 ⎝⎛⎭⎫0,3225 2.(导数与单调性的关系)函数y =12x 2-ln x 的单调递减区间为________.【解析】 y ′=x -1x ,且x >0.令y ′=x -1x ≤0,解之得0<x ≤1,∴函数的单调减区间为(0,1]. 【答案】 (0,1]3.(定积分)定积分(x 2+sin x )d x =________.【解析】(x 2+sin x )d x =⎝⎛⎭⎫13x 3-cos x |1-1=⎝⎛⎭⎫13-cos 1-⎣⎡⎦⎤-13-cos (-1)=23. 【答案】 234.(函数的最值)已知f (x )=2x 3-6x 2+m (m 为常数),在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为__________.【解析】 ∵f ′(x )=6x 2-12x =6x (x -2), 由f ′(x )=0,得x =0或x =2.∵f (0)=m ,f (2)=-8+m ,f (-2)=-40+m ,有f (0)>f (2)>f (-2). ∴m =3,最小值为f (-2)=-37. 【答案】 -375.(导数的实际应用)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系.M (t )=M 0·2-t30,其中M 0为t =0时铯137含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=________太贝克.【解析】 由题意,M ′(t )=M 0·2-t 30(-130)ln 2.∴M ′(30)=M 0·2-1(-130)ln 2=-10ln 2,则M 0=600,故M (60)=600×2-2=150.【答案】 150(2013·山东高考)已知函数f (x )=ax 2+bx -ln x (a ,b ∈R ).(1)设a ≥0,求f (x )的单调区间;(2)设a >0,且对任意x >0,f (x )≥f (1),试比较ln a 与-2b 的大小.【思路点拨】 (1)求f ′(x ),分a =0与a >0两种情况求f ′(x )>0与f ′(x )<0的解集.同时注意b 对解集的影响;(2)由f (x )≥f (1)知,f (1)是函数f (x )的最小值,由此可建立等量关系寻找a 、b 的关系,进而构造函数比较大小.【自主解答】 (1)由f (x )=ax 2+bx -ln x ,x ∈(0,+∞),得 f ′(x )=2ax 2+bx -1x .①当a =0时,f ′(x )=bx -1x.a .若b ≤0,当x >0时,f ′(x )<0恒成立, 所以函数f (x )的单调递减区间是(0,+∞).b .若b >0,当0<x <1b 时,f ′(x )<0,函数f (x )单调递减,当x >1b时,f ′(x )>0,函数f (x )单调递增.所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1b ,单调递增区间是⎝⎛⎭⎫1b ,+∞. ②当a >0时,令f ′(x )=0,得2ax 2+bx -1=0. 由Δ=b 2+8a >0,得x 1=-b -b 2+8a 4a ,x 2=-b +b 2+8a4a .显然x 1<0,x 2>0.当0<x <x 2时,f ′(x )<0,函数f (x )单调递减; 当x >x 2时,f ′(x )>0,函数f (x )单调递增.所以函数f (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,-b +b 2+8a 4a ,单调递增区间是⎝ ⎛⎭⎪⎫-b +b 2+8a 4a ,+∞.综上所述,当a =0,b ≤0时,函数f (x )的单调递减区间是(0,+∞);当a =0,b >0时,函数f (x )的单调递减区间是⎝⎛⎭⎫0,1b ,单调递增区间是⎝⎛⎭⎫1b ,+∞; 当a >0时,函数f (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,-b +b 2+8a 4a ,单调递增区间是⎝ ⎛⎭⎪⎫-b + b 2+8a 4a ,+∞.(2)由题意知函数f (x )在x =1处取得最小值.由(1)知-b +b 2+8a4a 是f (x )的唯一极小值点,故-b +b 2+8a 4a =1.整理,得2a +b =1,即b =1-2a .令g (x )=2-4x +ln x ,则g ′(x )=1-4xx .令g ′(x )=0,得x =14.当0<x <14时,g ′(x )>0,g (x )单调递增;当x >14时,g ′(x )<0,g (x )单调递减.因此g (x )≤g ⎝⎛⎭⎫14=1+ln 14=1-ln 4<0. 故g (a )<0,即2-4a +ln a =2b +ln a <0, 即ln a <-2b .1.解答第(2)题的关键是根据b =1-2a ,构造函数g (x )=2-4x +ln x ,再求函数g (x )的最大值.2.根据函数的单调性求参数取值范围的思路. (1)求f ′(x ).(2)将单调性转化为f ′(x )≥0或f ′(x )≤0恒成立问题求解,要注意“=”是否可以取到,应加以检验.变式训练1 (2013·宜昌模拟)已知函数f (x )=a ln x -2ax +3(a ≠0). (1)求函数f (x )的单调增区间;(2)函数y =f (x )的图象在x =2处的切线的斜率为32.若函数g (x )=13x 3+x 2[f ′(x )+m ]在区间(1,3)上不是单调函数.求实数m 的取值范围.【解】 (1)f (x )的定义域为(0,+∞). 又f ′(x )=ax -2a =a (1-2x )x ,∴当a >0时,由f ′(x )>0,得0<x <12.当a <0时,由f ′(x )>0,得x >12,∴当a >0时,f (x )的增区间为(0,12);当a <0时,f (x )的增区间为(12,+∞).(2)∵f (x )在x =2处的切线斜率为32,∴f ′(2)=-32a =32,∴a =-1.此时f ′(x )=2-1x ,因此g (x )=13x 3+x 2(2-1x +m )=13x 3+(2+m )x 2-x . ∴g ′(x )=x 2+2(2+m )x -1. ∵g (x )在区间(1,3)上不是单调函数, 则g ′(x )在(1,3)内有零点. 又g ′(0)=-1,∴结合g ′(x )的图象知⎩⎪⎨⎪⎧g ′(1)<0,g ′(3)>0.即⎩⎪⎨⎪⎧1+2(2+m )-1<0,9+6(2+m )-1>0,解之得-103<m <-2.故实数m 的取值范围为(-103,-2).【命题要点】 ①已知函数,求极值或最值;②已知极值或最值,求参数的取值范围.(2013·广东高考)设函数f (x )=(x -1)e x -kx 2(k ∈R ).(1)当k =1时,求函数f (x )的单调区间;(2)当k ∈⎝⎛⎦⎤12,1时,求函数f (x )在[0,k ]上的最大值M .【思路点拨】 (1)求函数的单调区间,就是求不等式f ′(x )>0和f ′(x )<0的解集.(2)求函数在给定区间上的最大值,要结合函数单调性求出极值,并和区间端点函数值进行比较,因含有参数,故需要分类讨论.【自主解答】 (1)当k =1时,f (x )=(x -1)e x -x 2, f ′(x )=e x +(x -1)e x -2x =x (e x -2). 由f ′(x )=0,解得x 1=0,x 2=ln 2>0. 由f ′(x )>0,得x <0或x >ln 2. 由f ′(x )<0,得0<x <ln 2.所以函数f (x )的单调增区间为(-∞,0)和(ln 2,+∞), 单调减区间为(0,ln 2). (2)因为f (x )=(x -1)e x -kx 2, 所以f ′(x )=x e x -2kx =x (e x -2k ). 令f ′(x )=0,解得x 1=0,x 2=ln(2k ),因为k ∈⎝⎛⎦⎤12,1,所以2k ∈(1,2],所以0<ln(2k )≤ln 2. 设g (k )=k -ln(2k ),k ∈⎝⎛⎦⎤12,1, g ′(k )=1-1k =k -1k ≤0,所以g (k )在⎝⎛⎦⎤12,1上是减函数,所以g (k )≥g (1)=1-ln 2>0,即0<ln(2k )<k . 所以f ′(x ),f (x )随x 的变化情况如下表:f (0)=-1,f (k )=(k -1)e k -k 3,f (k )-f (0)=(k -1)e k -k 3+1=(k -1)e k -(k 3-1) =(k -1)e k -(k -1)(k 2+k +1) =(k -1)[e k -(k 2+k +1)]. 因为k ∈⎝⎛⎦⎤12,1,所以k -1≤0.令h (k )=e k -(k 2+k +1),则h ′(k )=e k -(2k +1).对任意的k ∈⎝⎛⎦⎤12,1,y =e k 的图象恒在y =2k +1的图象的下方,所以e k -(2k +1)<0,即h ′(k )<0,所以函数h (k )在⎝⎛⎦⎤12,1上为减函数,故h (1)≤h (k )<h (12)=e 12-⎝⎛⎭⎫14+12+1=e -74<0, 所以f (k )-f (0)≥0,即f (k )≥f (0).所以函数f (x )在[0,k ]上的最大值M =f (k )=(k -1)e k -k 3.1.解答本题第(2)小题时,需要判断f (0)与f (k )的大小,采用作差比较法,对于不能判断正负的因式,构造函数利用导数求解.2.(1)求闭区间上可导函数的最值,对于极大值还是极小值,可不作判断,只需要将其与端点的函数值比较.(2)本题充分考查分类讨论的数学思想,分类标准要明确,讨论要彻底,这才能有效地避免错误.变式训练2 (2013·浙江高考)已知a ∈R ,函数f (x )=2x 3-3(a +1)x 2+6ax . (1)若a =1,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)若|a |>1,求f (x )在闭区间[0,2|a |]上的最小值.【解】 (1)当a =1时,f ′(x )=6x 2-12x +6,所以f ′(2)=6. 又因为f (2)=4,所以切线方程为y -4=6(x -2), 即6x -y -8=0.(2)记g (a )为f (x )在闭区间[0,2|a |]上的最小值. f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ). 令f ′(x )=0,得x 1=1,x 2=a . 当a >1时,g (a )=⎩⎪⎨⎪⎧0,1<a ≤3,a 2(3-a ),a >3.当a <-1时,综上所述,f (x )在闭区间[0,2|a |]上的最小值为g (a )=⎩⎪⎨⎪⎧3a -1,a <-1,0,1<a ≤3,a 2(3-a ),a >3.(2013·济南模拟)设f (x )=(x +a )ln xx +1,曲线y =f (x )在点(1,f (1))处的切线与直线2x +y +1=0垂直.(1)求a 的值;(2)若∀x ∈[1,+∞),f (x )≤m (x -1)恒成立,求m 的范围.(3)求证:ln 42n +1<∑ni =1i4i 2-1.(n ∈N *).【思路点拨】 (1)利用f ′(1)=12求解.(2)把f (x )≤m (x -1)进行等价转化,构造函数,利用导数判断不等式是否恒成立. (3)根据第(2)题的结论可得ln x <12⎝⎛⎭⎫x -1x ,令x =2k +12k -1可得到ln 2k +12k -1<4k 4k 2-1,即14[ln(2k +1)-ln(2k -1)]<k4k 2-1,k ∈N *,累加求和,可证明结论. 【自主解答】(1)f ′(x )=⎝⎛⎭⎫x +a x +ln x (x +1)-(x +a )ln x (x +1)2,由题设f ′(1)=12,∴2(1+a )4=12.∴1+a =1,∴a =0.(2)f (x )=x ln xx +1,∀x ∈[1,+∞),f (x )≤m (x -1),即ln x ≤m ⎝⎛⎭⎫x -1x . 设g (x )=ln x -m ⎝⎛⎭⎫x -1x ,即∀x ∈[1,+∞),g (x )≤0. g ′(x )=1x -m ⎝⎛⎭⎫1+1x 2=-mx 2+x -m x 2.①若m ≤0,g ′(x )>0,g (x )≥g (1)=0,这与题设g (x )≤0矛盾②若m >0,方程-mx 2+x -m =0的判别式Δ=1-4m 2.当Δ≤0,即m ≥12时,g ′(x )≤0,∴g (x )在(0,+∞)上单调递减,∴g (x )≤g (1)=0,即不等式成立.当0<m <12时,方程-mx 2+x -m =0,其根x 1=1-1-4m 22m >0,x 2=1+1-4m 22m>1,当x ∈(1,x 2),g ′(x )>0,g (x )单调递增,g (x )>g (1)=0,与题设矛盾.综上所述,m ≥12.(3)由(2)知,当x >1时,m =12时,ln x <12⎝⎛⎭⎫x -1x 成立. 不妨令x =2k +12k -1,k ∈N *所以ln 2k +12k -1<12⎝ ⎛⎭⎪⎫2k +12k -1-2k -12k +1=4k4k 2-1, 14[ln(2k +1)-ln(2k -1)]<k4k 2-1,k ∈N * ⎩⎪⎨⎪⎧14(ln 3-ln 1)<14×12-1,14(ln 5-ln 3)<24×22-1,…………14[(ln (2n +1)-ln (2n -1)]<n 4×n 2-1,累加可得14ln(2n +1)<∑ni =1 i 4i 2-1(n ∈N *). 即ln 42n +1<∑ni =1i4i 2-1(n ∈N *).1.本题失分原因主要有:(1)对不等式f (x )≤m (x -1)不能正确转化,或对m 不能进行分类讨论求解.(2)思维能力差,不能根据第(2)题的结论得到ln x <12⎝⎛⎭⎫x -1x ,或不能根据结论,令x =2k +12k -1,从而得不到14[ln(2k +1)-(2k -1)]<k4k 2-1,k ∈N *.2.涉及不等式证明或不等式恒成立问题,常根据题目的特征,恰当构建函数,利用导数研究函数的单调性,转化为求函数的最值、极值问题,解题中要注意转化的等价性.对于含参数的不等式,注意分离参数与分类讨论;必要时,可作出函数图象草图,借助几何直观分析转化.变式训练3 (2013·黄冈模拟)已知函数f (x )=-x 3+x 2,g (x )=a ln x (a ≠0,a ∈R ). (1)若对任意x ∈[1,+∞),使得f (x )+g (x )≥-x 3+(a +2)x 恒成立,求实数a 的取值范围;(2)证明:对n ∈N *,不等式1ln (n +1)+1ln (n +2)+…+1ln (n +2 013)> 2 013n (n +2 013)成立.【解】 (1)f (x )+g (x )≥-x 3+(a +2)x 转化为a (ln x -x )≥2x -x 2,易知ln x <x ,∴a ≤x 2-2x x -ln x ,设φ(x )=x 2-2xx -ln x,φ′(x )=(x -1)(x +2-2ln x )(x -ln x )2,设h (x )=x +2-2ln x ,h ′(x )=1-2x.∵h (x )在(1,2)单调递减,(2,+∞)单调递增, ∴h (x )min =h (2)=4-2ln 2>0.∴φ′(x )≥0,∴φ(x )在[1,+∞)上是增函数, φ(x )min =φ(1)=-1. ∴a ≤-1.(2)由(1)知:a ln x -(a +2)x +x 2≥0对x ≥1恒成立, 令a =-1,则ln x ≤x 2-x , ∴1ln x >1x (x -1)=1x -1-1x. 取x =n +1,n +2,…,n +2 013得1ln (n +1)>1n -1n +1,1ln (n +2)>1n +1-1n +2,…,1ln (n +2 013)>1n +2 012-1n +2 013.相加得:1ln (n +1)+1ln (n +2)+…+1ln (n +2 013)>⎝⎛⎭⎫1n -1n +1+⎝⎛⎭⎫1n +1-1n +2+…+⎝⎛⎭⎫1n +2 012-1n +2 013=1n -1n +2 013= 2 013n (n +2 013).从近两年高考题来看,导数的应用是高考考查的热点,重点考查利用导数判断函数的单调性,证明不等式.解决恒成立等问题,其中利用导数研究方程根的个数问题,2013年山东高考对此做了考查,在复习备考时应高度重视.导数在研究函数图象公共点中的应用(12分)已知f (x )=x 2+3x +1,g (x )=a -1x -1+x .(1)a =2时,求y =f (x )和y =g (x )图象的公共点个数; (2)a 为何值时,y =f (x )和y =g (x )的公共点个数恰为两个.【规范解答】 (1)当a =2时,联立⎩⎪⎨⎪⎧y =f (x ),y =g (x ),得x 2+3x +1=1x -1+x ,2分整理得x 3+x 2-x -2=0(x ≠1),即联立⎩⎪⎨⎪⎧y =0,y =x 3+x 2-x -2(x ≠1), 4分求导得y ′=3x 2+2x -1=0得x 1=-1,x 2=13,得到极值点分别在-1和13处,且极大值、极小值都是负值,图象如图,故交点只有一个.6分(2)联立⎩⎪⎨⎪⎧y =f (x ),y =g (x ),得x 2+3x +1=a -1x -1+x ,整理得a =x 3+x 2-x (x ≠1),8分即联立⎩⎪⎨⎪⎧y =a ,y =h (x )=x 3+x 2-x (x ≠1),对h (x )求导可以得到极值点分别在-1和13处,画出草图如图.h (-1)=1,h ⎝⎛⎭⎫13=-527,10分当a =h (-1)=1时,y =a 与y =h (x )仅有一个公共点(因为(1,1)点不在y =h (x )曲线上), 故a =-527时恰有两个公共点.12分【阅卷心语】易错提示 (1)第(1)小题中不能把两函数图象的交点个数问题转化为函数的零点个数问题求解或不能利用函数的极值及变化趋势画出函数的大致图象,从而无法求解.(2)第(2)小题中,未能分离参数a ,使问题进一步转化,从而无法求解.防范措施 (1)函数图象有公共点⇔方程有解⇔函数有零点,它们之间的相互转化是解决此类问题的关键.(2)分离参数是求参数的值或参数范围的常用方法,应切实掌握.1.若函数f (x )=log a (x 3-ax )(a >0,a ≠1)在区间⎝⎛⎭⎫-12,0内单调递增,则a 的取值范围是( )A.⎣⎡⎭⎫14,1 B.⎣⎡⎭⎫34,1 C.⎝⎛⎭⎫94,+∞D.⎝⎛⎭⎫1,94 【解析】 由x 3-ax >0得x (x 2-a )>0,则有⎩⎪⎨⎪⎧ x >0,x 2-a >0或⎩⎪⎨⎪⎧x <0,x 2-a <0,∴x >a 或-a <x <0,即函数f (x )的定义域为(a ,+∞)∪(-a ,0). 令g (x )=x 3-ax ,则g ′(x )=3x 2-a .由g ′(x )<0得 -3a3<x <0. 从而g (x )在x ∈⎝⎛⎭⎫-3a 3,0上是减函数,又函数f (x )在x ∈⎝⎛⎭⎫-12,0内单调递增, 则有⎩⎨⎧0<a <1,-a ≤-12,-3a 3≤-12,∴34≤a <1. 【答案】 B 2.已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围是________.【解析】 ∵f ′(x )=3x 2+1>0恒成立, ∴函数f (x )在R 上是增函数.又f (-x )=(-x )3+(-x )=-(x 3+x )=-f (x ), ∴函数f (x )是奇函数.由f (mx -2)+f (x )<0得f (mx -2)<-f (x )=f (-x ), ∴mx -2<-x ,即xm -2+x <0在m ∈[-2,2]上恒成立. 记g (m )=xm -2+x ,则⎩⎪⎨⎪⎧ g (-2)<0,g (2)<0,即⎩⎪⎨⎪⎧-2x -2+x <0,2x -2+x <0得-2<x <23.【答案】 ⎝⎛⎭⎫-2,23。
数学应用性问题怎么解数学应用性问题是历年高考命题的主要题型之一, 也是考生失分较多的一种题型. 高考中一般命制一道解答题和两道选择填空题.解答这类问题的要害是深刻理解题意,学会文字语言向数学的符号语言的翻译转化,这就需要建立恰当的数学模型,这当中,函数,数列,不等式,排列组合是较为常见的模型,而三角,立几,解几等模型也应在复课时引起重视.例1某校有教职员工150人,为了丰富教工的课余生活,每天定时开放健身房和娱乐室。
据调查统计,每次去健身房的人有10%下次去娱乐室,而在娱乐室的人有20%下次去健身房.请问,随着时间的推移,去健身房的人数能否趋于稳定?讲解: 引入字母,转化为递归数列模型.设第n 次去健身房的人数为a n ,去娱乐室的人数为b n ,则150=+n n b a .3010730107)150(102109102109111111+=+=-+=+=∴------n n n n n n n n a a a a a b a a 即. )100(1071001-=-∴-n n a a ,于是11)107)(100(100--=-n n a a 即 )100()107(10011-⋅+=-a a n n .100lim =∴∞→n n a .故随着时间的推移,去健身房的人数稳定在100人左右.上述解法中提炼的模型301071+=-n n a a , 使我们联想到了课本典型习题(代数下册P.132第34题)已知数列{}n a 的项满足 ⎩⎨⎧+==+dca a b a n n 11,其中1,0≠≠c c ,证明这个数列的通项公式是.1)(1---+=-c d c b d bc a n n n有趣的是, 用此模型可以解决许多实际应用题, 特别, 2002年全国高考解答题中的应用题(下文例9)就属此类模型.例2 某人上午7时乘摩托艇以匀速V 千米/小时(4≤V ≤20)从A 港出发前往50千米处的B 港,然后乘汽车以匀速W 千米/小时(30≤W ≤100)自B 港向300千米处的C 市驶去,在同一天的16时至21时到达C 市, 设汽车、摩托艇所需的时间分别是x 小时、y 小时,若所需经费)8(2)5(3100y x p -+-+=元,那么V 、W 分别为多少时,所需经费最少?并求出这时所花的经费.讲解: 题中已知了字母, 只需要建立不等式和函数模型进行求解. 由于103,5.125.2,100450≤≤≤≤∴≤≤=x y V Vy 同理及又149≤+≤y x .23),23(131)8(2)5(3100y x z y x y x P +=+-=-+-+=令则z 最大时P 最小.作出可行域,可知过点(10,4)时, z 有最大值38, ∴P 有最小值93,这时V=12.5,W=30. 视y x z 23+=这是整体思维的具体体现, 当中的换元法是数学解题的常用方法.例3 某铁路指挥部接到预报,24小时后将有一场超历史记录的大暴雨,为确保万无一失,指挥部决定在24小时筑一道归时堤坝以防山洪淹没正在紧施工的遂道工程。
第五讲空间角与距离、空间向量及应用1.[2020湖北部分重点中学高三测试]如图8-5-1,E,F分别是三棱锥P-ABC的棱AP,BC的中点,PC=10,AB=6,EF=7,则异面直线AB与PC所成的角为( )图8-5-1A.30°B.60°C.120°D.150°2.[2020湖南长沙市长郡中学模拟]图8-5-2中的三个正方体ABCD-A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G 作正方体的截面.下列各选项中,关于直线BD1与平面EFG的位置关系描述正确的是( )图8-5-2∥平面EFG的有且只有①,BD1⊥平面EFG的有且只有②③1∥平面EFG的有且只有②,BD1⊥平面EFG的有且只有①1∥平面EFG的有且只有①,BD1⊥平面EFG的有且只有②1∥平面EFG的有且只有②,BD1⊥平面EFG的有且只有③13.[多选题]如图8-5-3,正方体ABCD-A1B1C1D1的棱长为1,则以下说法正确的是( )图8-5-31D1所成的角等于π4B.点C到平面ABC1D1的距离为√221C和BC1所成的角为π41D1-BB1C1的外接球的半径为√324.[2019吉林长春质量监测][双空题]已知正方体ABCD-A1B1C1D1的棱长为2,M,N,E,F分别是A1B1,AD,B1C1,C1D1的中点,则过EF且与MN平行的平面截正方体所得截面的面积为,CE 和该截面所成角的正弦值为.5.[2021广州市阶段模拟]如图8-5-4,在四棱锥E-ABCD中,底面ABCD为菱形,BE⊥平面ABCD,G为AC与BD的交点.(1)证明:平面AEC⊥平面BED.(2)若∠BAD=60°,AE⊥EC,求直线EG与平面EDC所成角的正弦值.图8-5-46.[2021晋南高中联考]如图8-5-5,在四棱锥P-ABCD中,平面PAD⊥底面ABCD,其中底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD,PA⊥PD,∠PAD=60°,Q为PD的中点.(1)证明:CQ∥平面PAB.(2)求二面角P-AQ-C的余弦值.图8-5-57.[2021湖南六校联考]如图8-5-6,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=√2a,点E是SD 上的点,且DE=λa(0<λ≤2).(1)求证:对任意的λ∈(0,2],都有AC⊥BE.(2)设二面角C-AE-D的大小为θ,直线BE与平面ABCD所成的角为φ,若sin φ=cos θ,求λ的值.图8-5-68.[2020福建五校联考]图8-5-7是一个半圆柱与多面体ABB1A1C构成的几何体,平面ABC与半圆柱的下底面共面,⏜上的动点(不与B1,A1重合).且AC⊥BC,P为B1A1(1)证明:PA1⊥平面PBB1.,求二面角P-A1B1-C的余弦值.(2)若四边形ABB1A1为正方形,且AC=BC,∠PB1A1=π4图8-5-79.[2020全国卷Ⅱ,12分]如图8-5-8,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F.(2)设O为△A1B1C1的中心.若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.图8-5-810.[2021黑龙江省六校联考]如图8-5-9,正方形ABCD和ABEF所在的平面互相垂直,且边长都是1,M,N,G分别为线段AC,BF,AB上的动点,且CM=BN,AF∥平面MNG,记BG=a(0<a<1).(1)证明:MG⊥平面ABEF.(2)当MN的长度最小时,求二面角A-MN-B的余弦值.图8-5-911.[2021蓉城名校联考]如图8-5-10(1),AD是△BCD中BC边上的高,且AB=2AD=2AC,将△BCD沿AD翻折,使得平面ACD⊥平面ABD,如图8-5-10(2)所示.(1)求证:AB⊥CD.时,求直线AE与平面BCE (2)在图8-5-10(2)中,E是BD上一点,连接AE,CE,当AE与底面ABC所成角的正切值为12所成角的正弦值.图8-5-1012.[2020洛阳市联考]如图8-5-11,底面ABCD是边长为3的正方形,平面ADEF⊥平面ABCD,AF∥DE,AD⊥DE,AF=2√6,DE=3√6.(1)求证:平面ACE⊥平面BED.(2)求直线CA与平面BEF所成角的正弦值.的值;若不存在,请说明理由. (3)在线段AF上是否存在点M,使得二面角M-BE-D的大小为60°?若存在,求出AMAF图8-5-1113.如图8-5-12,三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,平面α经过棱PC的中点E,与棱PB,AC分别交于点F,D,且BC∥平面α,PA∥平面α.(1)证明:AB⊥平面α.(2)若AB=BC=PA=2,点M在直线EF上,求平面MAC与平面PBC所成锐二面角的余弦值的最大值.图8-5-1214.[2021安徽江淮十校第一次联考]如图8-5-13(1),已知圆O的直径AB的长为2,上半圆弧上有一点C,∠COB=60°,点P是弧AC上的动点,点D是下半圆弧的中点.现以AB为折痕,使下半圆所在的平面垂直于上半圆所在的平面,连接PO,PD,PC,CD,如图8-5-13(2)所示.(1)当AB∥平面PCD时,求PC的长;(2)当三棱锥P-COD体积最大时,求二面角D-PC-O的余弦值.图8-5-13答案第四讲直线、平面垂直的判定及性质1.B 如图D 8-5-8,取AC的中点D,连接DE,DF,因为D,E,F分别为AC,PA,BC的中点,所以DF∥AB,DF=12AB,DE∥PC,DE=12PC,所以∠EDF或其补角为异面直线PC与AB所成的角.因为PC=10,AB=6,所以在△DEF中,DE=5,DF=3,EF=7,由余弦定理得cos∠EDF=DE2+DF2-EF22DE×DF =25+9−492×5×3=-12,所以∠EDF=120°,所以异面直线PC与AB所成的角为60°.故选B.图D 8-5-82.A 对于题图①,连接BD,因为E,F,G均为所在棱的中点,所以BD∥GE,DD1∥EF,又BD⊄平面EFG,DD1⊄平面EFG,从而可得BD∥平面EFG,DD1∥平面EFG,又BD∩DD1=D,所以平面BDD1∥平面EFG,所以BD1∥平面EFG.对于题图②,连接DB,DA 1,设正方体的棱长为1,因为E,F,G 均为所在棱的中点,所以BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·GE ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(12DA 1⃗⃗⃗⃗⃗⃗⃗⃗ )=12(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ )=12(1×√2×cos 45°-√2×√2×cos 60°)=0, 即BD 1⊥EG.连接DC 1,则BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EF ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(12DC 1⃗⃗⃗⃗⃗⃗⃗ )=12(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·DC 1⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ ·DC 1⃗⃗⃗⃗⃗⃗⃗ )=12(1×√2×cos 45°-√2×√2×cos 60°)=0,即BD 1⊥EF. 又EG ∩EF=E,所以BD 1⊥平面EFG.对于题图③,设正方体的棱长为1,连接DB,DG,因为E,F,G 均为所在棱的中点,所以BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EG ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DG ⃗⃗⃗⃗⃗ -DE ⃗⃗⃗⃗⃗ )=(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DC ⃗⃗⃗⃗⃗ +12DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -12DA ⃗⃗⃗⃗⃗ )=12DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 2-DB ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ +12DB ⃗⃗⃗⃗⃗⃗ ·DA ⃗⃗⃗⃗⃗ =12-√2×1×√22+12×√2×1×√22=0, 即BD 1⊥EG.连接AF,则BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EF ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(AF ⃗⃗⃗⃗⃗ -AE ⃗⃗⃗⃗⃗ )=(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ +12DC ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ )=DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 2-12DB ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ -12DB ⃗⃗⃗⃗⃗⃗ ·DA ⃗⃗⃗⃗⃗ =1-12×√2×1×√22-12×√2×1×√22=0, 即BD 1⊥EF.又EG ∩EF=E,所以BD 1⊥平面EFG.故选A.3.ABD 正方体ABCD-A 1B 1C 1D 1的棱长为1,对于A,直线BC 与平面ABC 1D 1所成的角为∠CBC 1=π4,故A 正确;对于B,点C 到平面ABC 1D 1的距离为B 1C 长度的一半,即距离为√22,故B 正确;对于C,连接AC,因为BC 1∥AD 1,所以异面直线D 1C 和BC 1所成的角即直线D 1C 和AD 1所成的角,又△ACD 1是等边三角形,所以异面直线D 1C 和BC 1所成的角为π3,故C 错误;对于D,三棱柱AA 1D 1-BB 1C 1的外接球就是正方体ABCD-A 1B 1C 1D 1的外接球,正方体ABCD-A 1B 1C 1D 1的外接球半径r=√12+12+122=√32,故D 正确.故选ABD.√2√1010如图D 8-5-9,正方体ABCD-A 1B 1C 1D 1中,设CD,BC 的中点分别为H,G,连接HE,HG,GE,HF,ME,NH.图D 8-5-9易知ME ∥NH,ME=NH,所以四边形MEHN 是平行四边形,所以MN ∥HE.因为MN ⊄平面EFHG,HE ⊂平面EFHG,所以MN ∥平面EFHG,所以过EF 且与MN 平行的平面为平面EFHG,易知平面EFHG 截正方体所得截面为矩形EFHG,EF=√2,FH=2,所以截面EFHG 的面积为2×√2=2√2.连接AC,交HG 于点I,易知CI ⊥HG,平面EFHG ⊥平面ABCD,平面EFHG ∩平面ABCD=HG,所以CI ⊥平面EFHG,连接EI,因为EI ⊂平面EFHG,所以CI ⊥EI,所以∠CEI 为直线CE 和截面EFHG 所成的角.在Rt △CIE 中,易知CE=√1+22=√5,CI=14AC=2√24=√22,所以sin ∠CEI=CICE=√1010. 5.(1)因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD,AC ⊂平面ABCD,所以AC ⊥BE.又BE ∩BD=B,所以AC ⊥平面BED.又AC ⊂平面AEC,所以平面AEC ⊥平面BED.(2)解法一 设AB=1,在菱形ABCD 中,由∠BAD=60°,可得AG=GC=√32,BG=GD=12.因为AE ⊥EC,所以在Rt △AEC 中可得EG=AG=√32.由BE ⊥平面ABCD,得△EBG 为直角三角形,则EG 2=BE 2+BG 2,得BE=√22.如图D 8-5-10,过点G 作直线Gz ∥BE,因为BE ⊥平面ABCD, 所以Gz ⊥平面ABCD,又AC ⊥BD,所以建立空间直角坐标系 G-xyz.G(0,0,0),C(0,√32,0),D(-12,0,0),E(12,0,√22),图D 8-5-10所以GE ⃗⃗⃗⃗⃗ =(12,0,√22),DE ⃗⃗⃗⃗⃗ =(1,0,√22),CE ⃗⃗⃗⃗⃗ =(12,-√32,√22). 设平面EDC 的法向量为n=(x,y,z),由{DE ⃗⃗⃗⃗⃗ ·n =0,CE ⃗⃗⃗⃗⃗ ·n =0,得{x +√22z =0,12x -√32y +√22z =0,取x=1,则z=-√2,y=-√33,所以平面EDC 的一个法向量为n=(1,-√33,-√2).设直线EG 与平面EDC 所成的角为θ,则sin θ=|cos<GE⃗⃗⃗⃗⃗ ,n>|=|12+0−1√14+12×√1+13+2|=|-12√32×√103|=√1010. 所以直线EG 与平面EDC 所成角的正弦值为√1010. 解法二 设BG=1,则GD=1,AB=2,AG=√3.设点G 到平面EDC 的距离为h,EG 与平面EDC 所成角的大小为θ.因为AC ⊥平面EBD,EG ⊂平面EBD,所以AC ⊥EG.因为AE ⊥EC,所以△AEC 为等腰直角三角形.因为AC=2AG=2√3,所以AE=EC=√6,EG=AG=√3.因为AB=BD=2,所以Rt △EAB ≌Rt △EDB,所以EA=ED=√6.在△EDC 中,ED=EC=√6,DC=2,则S △EDC =√5.在Rt △EAB 中,BE=√EA 2-AB 2=√(√6)2-22=√2.V E-GDC =13BE ·12S △CBD =16×√2×S △ABD =16×√2×12×2×√3=√66.由V G-EDC =13h ·√5=V E-GDC =√66,得h=√62√5=√3010.所以sin θ=ℎEG =√1010.所以直线EG 与平面EDC 所成角的正弦值为√1010.解法三 如图D 8-5-11,以点B 为坐标原点,建立空间直角坐标系B-xyz.图D 8-5-11不妨设AB=2,在菱形ABCD 中,由∠BAD=60°,可得AG=GC=√3,BG=GD=1.因为AE ⊥EC,所以在Rt △AEC 中可得EG=AG=√3.由BE ⊥平面ABCD,得△EBG 为直角三角形,则EG 2=BE 2+BG 2,得BE=√2.则C(2,0,0),E(0,0,√2),D(1,√3,0),G(12,√32,0), 所以EG ⃗⃗⃗⃗⃗ =(12,√32,-√2),ED ⃗⃗⃗⃗⃗ =(1,√3,-√2),EC ⃗⃗⃗⃗⃗ =(2,0,-√2). 设平面EDC 的法向量为n=(x,y,z), 则{n ·ED ⃗⃗⃗⃗⃗ =0,n ·EC ⃗⃗⃗⃗⃗ =0,得{x +√3y -√2z =0,2x -√2z =0,令x=√3,则z=√6,y=1.所以平面EDC 的一个法向量为n=(√3,1,√6).设EG 与平面EDC 所成的角为θ,则sin θ=|cos<EG⃗⃗⃗⃗⃗ ,n>|=|√32+√32-2√3|√1+2×√3+1+6=√1010. 所以直线EG 与平面EDC 所成角的正弦值为√1010. 6.(1)如图D 8-5-12,取PA 的中点N,连接QN,BN.图D 8-5-12∵Q,N 分别是PD,PA 的中点,∴QN ∥AD,且QN=12AD. ∵PA ⊥PD,∠PAD=60°,∴PA=12AD, 又PA=BC,∴BC=12AD,∴QN=BC,又AD ∥BC,∴QN ∥BC,∴四边形BCQN 为平行四边形,∴BN ∥CQ.又BN ⊂平面PAB,CQ ⊄平面PAB,∴CQ ∥平面PAB.(2)在图D 8-5-12的基础上,取AD 的中点M,连接BM,PM,取AM 的中点O,连接BO,PO,如图D 8-5-13.图D 8-5-13设PA=2,由(1)得PA=AM=PM=2,∴△APM 为等边三角形,∴PO ⊥AM,同理BO ⊥AM.∵平面PAD ⊥平面ABCD,平面PAD ∩平面ABCD=AD,PO ⊂平面PAD,∴PO ⊥平面ABCD.以O 为坐标原点,分别以OB ⃗⃗⃗⃗⃗ ,OD⃗⃗⃗⃗⃗⃗ ,OP ⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O-xyz, 则A(0,-1,0),C(√3,2,0),P(0,0,√3),Q(0,32,√32), ∴AC⃗⃗⃗⃗⃗ =(√3,3,0),AQ ⃗⃗⃗⃗⃗ =(0,52,√32), 设平面ACQ 的法向量为m=(x,y,z),则{m ·AC⃗⃗⃗⃗⃗ =0,m ·AQ ⃗⃗⃗⃗⃗ =0,∴{√3x +3y =0,52y +√32z =0,取y=-√3,得m=(3,-√3,5)是平面ACQ 的一个法向量,又平面PAQ 的一个法向量为n=(1,0,0),∴cos<m,n>=m ·n|m|·|n|=3√3737, 由图得二面角P-AQ-C 的平面角为钝角,∴二面角P-AQ-C 的余弦值为-3√3737. 7.(1)由题意SD ⊥平面ABCD,AD ⊥DC,以D 为原点,DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DS ⃗⃗⃗⃗⃗ 的方向分别作为x,y,z 轴的正方向建立如图D 8-5-14所示的空间直角坐标系,图D 8-5-14则D(0,0,0),A(√2a,0,0),B(√2a,√2a,0),C(0,√2a,0),E(0,0,λa), ∴AC ⃗⃗⃗⃗⃗ =(-√2a,√2a,0),BE ⃗⃗⃗⃗⃗ =(-√2a,-√2a,λa), ∴AC ⃗⃗⃗⃗⃗ ·BE⃗⃗⃗⃗⃗ =2a 2-2a 2+0×λa=0, 即AC ⊥BE.(2)解法一 由(1)得EA ⃗⃗⃗⃗⃗ =(√2a,0,-λa),EC ⃗⃗⃗⃗⃗ =(0,√2a,-λa),BE ⃗⃗⃗⃗⃗ =(-√2a,-√2a,λa). 设平面ACE 的法向量为n=(x,y,z),则由n ⊥EA ⃗⃗⃗⃗⃗ ,n ⊥EC ⃗⃗⃗⃗⃗ 得 {n ·EA ⃗⃗⃗⃗⃗ =0,n ·EC ⃗⃗⃗⃗⃗ =0,得{√2x -λz =0,√2y -λz =0,取z=√2,得n=(λ,λ,√2)为平面ACE 的一个法向量,易知平面ABCD 与平面ADE 的一个法向量分别为DS⃗⃗⃗⃗⃗ =(0,0,2a)与DC ⃗⃗⃗⃗⃗ =(0,√2a,0), ∴sin φ=|DS ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ ||DS⃗⃗⃗⃗⃗ |·|BE ⃗⃗⃗⃗⃗ |=√λ2+4,易知二面角C-AE-D 为锐二面角,∴cos θ=|DC⃗⃗⃗⃗⃗ ·n||DC⃗⃗⃗⃗⃗ |·|n|=√2λ2+2,由sin φ=cos θ得√λ2+4=√2λ2+2,解得λ2=2,又λ∈(0,2],∴λ=√2.解法二 如图D 8-5-15,连接BD,由SD ⊥平面ABCD 知,∠DBE=φ.图D 8-5-15由(1)易知CD ⊥平面SAD.过点D 作DF ⊥AE 于点F,连接CF,则∠CFD 是二面角C-AE-D 的平面角,即∠CFD=θ.在Rt △BDE 中,BD=2a,DE=λa,∴BE=√4a 2+λ2a 2,sin φ=DEBE =√λ2+4,在Rt △ADE 中,AD=√2a,DE=λa,∴AE=a √λ2+2,∴DF=AD ·DE AE=√2λa√λ2+2, 在Rt △CDF 中,CF=√DF 2+CD 2=2√λ2+1√λ2+2a,∴cos θ=DFCF =√2λ2+2,由sin φ=cos θ得√λ2+4=√2λ2+2,解得λ2=2,又λ∈(0,2],∴λ=√2.8.(1)在半圆柱中,BB 1⊥平面PA 1B 1,PA 1⊂平面PA 1B 1,所以BB 1⊥PA 1.因为A 1B 1是上底面对应圆的直径,所以PA 1⊥PB 1.因为PB 1∩BB 1=B 1,PB 1⊂平面PBB 1,BB 1⊂平面PBB 1,所以PA 1⊥平面PBB 1.(2)根据题意,以C 为坐标原点建立空间直角坐标系C-xyz,如图D 8-5-16所示.图D 8-5-16设CB=1,则C(0,0,0),A 1(0,1,√2),B 1(1,0,√2), 所以CA 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,√2),CB 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,√2).易知n 1=(0,0,1)为平面PA 1B 1的一个法向量. 设平面CA 1B 1的法向量为n 2=(x,y,z),则{n 2·CA 1⃗⃗⃗⃗⃗⃗⃗ =0,n 2·CB 1⃗⃗⃗⃗⃗⃗⃗ =0,即{y +√2z =0,x +√2z =0,令z=1,则x=-√2,y=-√2,所以n 2=(-√2,-√2,1)为平面CA 1B 1的一个法向量.所以cos<n 1,n 2>=1×√5=√55.由图可知二面角P-A 1B 1-C 为钝角,所以所求二面角的余弦值为-√55.9.(1)因为M,N 分别为BC,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN.因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 11C 1⊥MN,故B 1C 1⊥平面A 1AMN.所以平面A 1AMN ⊥平面EB 1C 1F.(2)由已知得AM ⊥BC.以M 为坐标原点,MA ⃗⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|MB ⃗⃗⃗⃗⃗⃗ |为单位长度,建立如图D 8-5-17所示的空间直角坐标系M-xyz,则AB=2,AM=√3.图D 8-5-17连接NP,则四边形AONP 为平行四边形,故PM=2√33,E(2√33,13,0).由(1)知平面A 1AMN ⊥平面ABC.作NQ ⊥AM,垂足为Q,则NQ ⊥平面ABC.设Q(a,0,0),则NQ=(2√331(a,1,(2√33故B 1E ⃗⃗⃗⃗⃗⃗⃗ =(2√33-a,-23,-√4−(2√33-a)2),|B 1E ⃗⃗⃗⃗⃗⃗⃗ |=2√103. 又n=(0,-1,0)是平面A 1AMN 的一个法向量,故 sin(π2- n,B 1E ⃗⃗⃗⃗⃗⃗⃗ )=cos n,B 1E ⃗⃗⃗⃗⃗⃗⃗ =n ·B 1E⃗⃗⃗⃗⃗⃗⃗⃗ |n|·|B 1E ⃗⃗⃗⃗⃗⃗⃗⃗ |=√1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为√1010. 10.(1)因为AF ∥平面MNG,且AF ⊂平面ABEF,平面ABEF ∩平面MNG=NG,所以AF ∥NG,所以CM=BN=√2a,所以AM=√2(1-a),所以AMCM =AGBG =1−a a,所以MG ∥BC,所以MG ⊥AB.又平面ABCD ⊥平面ABEF,且MG ⊂平面ABCD,平面ABCD ∩平面ABEF=AB,所以MG ⊥平面ABEF.(2)由(1)知,MG ⊥NG,MG=1-a,NG=a,所以MN=√a 2+(1−a)2=√2a 2-2a +1=√2(a -12)2+12≥√22,当且仅当a=12时等号成立,即当a=12时,MN 的长度最小.以B 为坐标原点,分别以BA,BE,BC 所在的直线为x 轴、y 轴、z 轴建立如图D 8-5-18所示的空间直角坐标系B-xyz,则A(1,0,0),B(0,0,0),M(12,0,12),N(12,12,0),图D 8-5-18设平面AMN 的法向量为m=(x 1,y 1,z 1),因为AM ⃗⃗⃗⃗⃗⃗ =(-12,0,12),MN⃗⃗⃗⃗⃗⃗⃗ =(0,12,-12), 所以{m ·AM ⃗⃗⃗⃗⃗⃗ =−x12+z12=0,m ·MN⃗⃗⃗⃗⃗⃗⃗ =y 12-z 12=0,取z 1=1,得m=(1,1,1)为平面AMN 的一个法向量.设平面BMN 的法向量为n=(x 2,y 2,z 2),因为BM ⃗⃗⃗⃗⃗⃗ =(12,0,12),MN ⃗⃗⃗⃗⃗⃗⃗ =(0,12,-12), 所以{n ·BM ⃗⃗⃗⃗⃗⃗ =x22+z22=0,n ·MN ⃗⃗⃗⃗⃗⃗⃗ =y 22-z 22=0,取z 2=1,得n=(-1,1,1)为平面BMN 的一个法向量.所以cos<m,n>=m ·n|m||n|=13, 又二面角A-MN-B 为钝二面角,所以二面角A-MN-B 的余弦值为-13.11.(1)由题图(1)知,在题图(2)中,AC ⊥AD,AB ⊥AD.∵平面ACD ⊥平面ABD,平面ACD ∩平面ABD=AD,AB ⊂平面ABD,∴AB ⊥平面ACD,又CD ⊂平面ACD,∴AB ⊥CD.(2)以A 为坐标原点,AC,AB,AD 所在的直线分别为x,y,z 轴建立如图D 8-5-19所示的空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),AD ⃗⃗⃗⃗⃗ =(0,0,1),BC ⃗⃗⃗⃗⃗ =(1,-2,0),DB⃗⃗⃗⃗⃗⃗ =(0,2,-1).图D 8-5-19设E(x,y,z),由DE ⃗⃗⃗⃗⃗ =λDB ⃗⃗⃗⃗⃗⃗ (0<λ<1),得(x,y,z-1)=(0,2λ,-λ), 得E(0,2λ,1-λ),∴AE⃗⃗⃗⃗⃗ =(0,2λ,1-λ),又平面ABC 的一个法向量为AD ⃗⃗⃗⃗⃗ =(0,0,1),AE 与底面ABC 所成角的正切值为12, 所以|tan AD ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ |=2,于是|cos AD ⃗⃗⃗⃗⃗ ,AE⃗⃗⃗⃗⃗ |=√5=√55, 即|√(2λ)2+(1−λ)2|=√55,解得λ=12,则E(0,1,12),AE ⃗⃗⃗⃗⃗ =(0,1,12),BE⃗⃗⃗⃗⃗ =(0,-1,12). 设平面BCE 的法向量为n=(x,y,z),则{n ·BC⃗⃗⃗⃗⃗ =0,n ·BE ⃗⃗⃗⃗⃗ =0,即{x -2y =0,-y +12z =0, 令y=1,得x=2,z=2,则n=(2,1,2)是平面BCE 的一个法向量,设直线AE 与平面BCE 所成的角是θ,则sin θ=|cos AE ⃗⃗⃗⃗⃗ ,n |=|AE⃗⃗⃗⃗⃗ ·n||AE ⃗⃗⃗⃗⃗ ||n|=√52×3=4√515, 故直线AE 与平面BCE 所成角的正弦值为4√515.12.(1)因为平面ADEF ⊥平面ABCD,平面ADEF ∩平面ABCD=AD,DE ⊂平面ADEF,DE ⊥AD,所以DE ⊥平面ABCD.因为AC ⊂平面ABCD,所以DE ⊥AC.又四边形ABCD 是正方形,所以AC ⊥BD.因为DE ∩BD=D,DE ⊂平面BED,BD ⊂平面BED,所以AC ⊥平面BED.又AC ⊂平面ACE,所以平面ACE ⊥平面BED.(2)因为DA,DC,DE 两两垂直,所以以D 为坐标原点,建立如图D 8-5-20所示的空间直角坐标系D-xyz. 则A(3,0,0),F(3,0,2√6),E(0,0,3√6),B(3,3,0),C(0,3,0),所以CA⃗⃗⃗⃗⃗ =(3,-3,0),BE ⃗⃗⃗⃗⃗ =(-3,-3,3√6),EF ⃗⃗⃗⃗⃗ =(3,0,-√6).图D 8-5-20设平面BEF 的法向量为n=(x,y,z), 则{n ·BE ⃗⃗⃗⃗⃗ =−3x -3y +3√6z =0,n ·EF ⃗⃗⃗⃗⃗ =3x -√6z =0,取x=√6,得n=(√6,2√6,3)为平面BEF 的一个法向量.所以cos<CA ⃗⃗⃗⃗⃗ ,n>=CA⃗⃗⃗⃗⃗ ·n |CA⃗⃗⃗⃗⃗ ||n|=√63√2×√39=-√1313. 所以直线CA 与平面BEF 所成角的正弦值为√1313.(3)假设在线段AF 上存在符合条件的点M,由(2)可设M(3,0,t),0≤t ≤2√6,则BM ⃗⃗⃗⃗⃗⃗ =(0,-3,t).设平面MBE 的法向量为m=(x 1,y 1,z 1), 则{m ·BM ⃗⃗⃗⃗⃗⃗ =−3y 1+tz 1=0,m ·BE⃗⃗⃗⃗⃗ =−3x 1-3y 1+3√6z 1=0,令y 1=t,得m=(3√6-t,t,3)为平面MBE 的一个法向量.由(1)知CA ⊥平面BED,所以CA ⃗⃗⃗⃗⃗ 是平面BED 的一个法向量,|cos<m,CA ⃗⃗⃗⃗⃗ >|=|m ·CA⃗⃗⃗⃗⃗ ||m||CA⃗⃗⃗⃗⃗ |=√6-3√2×√(3√6-t)2+t 2+9=cos 60°=12,整理得2t 2-6√6t+15=0,解得t=√62,故在线段AF 上存在点M,使得二面角M-BE-D 的大小为60°,此时AMAF =14. 13.(1)因为BC ∥平面α,BC ⊂平面PBC,平面α∩平面PBC=EF,所以BC ∥EF,且F 为棱PB 的中点,因为BC ⊥AB,所以EF ⊥AB.因为PA ∥平面α,PA ⊂平面PAC,平面α∩平面PAC=DE,所以PA ∥DE.因为PA ⊥平面ABC,所以PA ⊥AB, 所以DE ⊥AB.又DE ∩EF=E,DE ⊂平面DEF,EF ⊂平面DEF,所以AB ⊥平面DEF,即AB ⊥平面α.(2)如图D 8-5-21,以点B 为坐标原点,分别以BA,BC 所在直线为x,y 轴,过点B 且与AP 平行的直线为z 轴建立空间直角坐标系,则B(0,0,0),A(2,0,0),C(0,2,0),P(2,0,2),E(1,1,1),F(1,0,1),AC⃗⃗⃗⃗⃗ =(-2,2,0),BC ⃗⃗⃗⃗⃗ =(0,2,0), BP⃗⃗⃗⃗⃗ =(2,0,2).图D 8-5-21设M(1,t,1),平面MAC 的法向量为m=(x 1,y 1,z 1),则AM ⃗⃗⃗⃗⃗⃗ =(-1,t,1),则{m ·AC⃗⃗⃗⃗⃗ =−2x 1+2y 1=0,m ·AM ⃗⃗⃗⃗⃗⃗ =−x 1+ty 1+z 1=0,令x 1=1,则y 1=1,z 1=1-t,所以m=(1,1,1-t)为平面MAC 的一个法向量.设平面PBC 的法向量为n=(x 2,y 2,z 2),则{n ·BC ⃗⃗⃗⃗⃗ =2y 2=0,n ·BP ⃗⃗⃗⃗⃗ =2x 2+2z 2=0,得y 2=0,令x 2=1,则z 2=-1,所以n=(1,0,-1)为平面PBC 的一个法向量.设平面MAC 与平面PBC 所成的锐二面角为θ,则cos θ=|cos<m,n>|=|m ·n||m|×|n|=√12+12+(1-t)2×√2=√t 2-2t+3×√2.当t=0时,cos θ=0; 当t ≠0时, cos θ=√3t 2-2t+1×√2=√3(1t -13)+23×√2,当且仅当1t =13,即t=3时,3(1t -13)2+23取得最小值23,cos θ取得最大值,最大值为√23×√2=√32.所以平面MAC 与平面PBC 所成锐二面角的余弦值的最大值为√32.14.(1)因为AB ∥平面PCD,AB ⊂平面OCP,平面OCP ∩平面PCD=PC,所以AB ∥PC.又∠COB=60°,所以∠OCP=60°.又OC=OP,所以△OCP 为正三角形,所以PC=1.(2)由题意知DO ⊥平面COP,而V P-COD =V D-COP ,S △COP =12·OC ·OP ·sin ∠COP, 所以当OC ⊥OP 时,三棱锥P-COD 的体积最大.解法一 易知OP,OD,OC 两两垂直,以O 为坐标原点,OP⃗⃗⃗⃗⃗ ,OD ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向,建立如图D 8-5-22所示的空间直角坐标系O-xyz,则P(1,0,0),D(0,1,0),C(0,0,1),PC ⃗⃗⃗⃗⃗ =(-1,0,1),DP ⃗⃗⃗⃗⃗ =(1,-1,0).图D 8-5-22设平面DPC 的法向量为n 1=(x,y,z),则{PC⃗⃗⃗⃗⃗ ·n 1=0,DP ⃗⃗⃗⃗⃗ ·n 1=0,即{-x +z =0,x -y =0,取x=1,得平面DPC 的一个法向量为n 1=(1,1,1).易知平面PCO 的一个法向量为n 2=(0,1,0),设二面角D-PC-O 的平面角为α,由题图知,二面角D-PC-O 的平面角为锐角,则cos α=|n 1·n 2||n 1||n 2|=√33, 所以二面角D-PC-O 的余弦值为√33.解法二如图D 8-5-23所示,取PC的中点H,连接OH,DH.图D 8-5-23 因为OC=OP,DC=DP,所以OH,DH都与PC垂直,即∠OHD为所求二面角的平面角.在Rt△OPC中,可得OH=√22,在Rt△OHD中,DH=(√22=√62,所以cos∠OHD=√22√62=√33,所以二面角D-PC-O的余弦值为√33.。
高考数学总复习第五讲:应用问题一、专题简介著名数学家华罗庚曾说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学.可见数学在现实生活中的应用之广泛.从93年开始,为考察考生的分析问题与决问题的能力,在高考数学试题中引入了一定数量的联系生产和生活实际以及相关学科的应用问题.高考中的应用性问题是指具有实际背景或具有实际意义的数学问题,以考察学生的数学知识、方法与能力为主,着重考察学生应用数学的意识.高考中出现的应用性问题,大体可分为三类:第一类是教科书或其它书籍中已经出现过的,从实际生活中概括出来的应用性问题.第二类是与横向学科,如化学、物理、生物等有联系的问题.第三类是有实际生活背景,题意新颖的应用问题.解数学应用问题从一般步骤是:一要阅读理解,认真审题,分析题意,认清已知条件及要求的结论.二要理清各种量(已知与已知、已知与未知)之间的关系,紧紧抓住各种变量之间的关系,分析各种制约条件,将实际问题转化为数学问题.三构造模型、通过对各种关系的分析,形成数学框架,转化为函数、方程、不等式、数列等数学问题,再设法去解决.二、例题分析1.代数应用题例1.在测量某物理量的过程中,因仪器和观测的误差,使得n次测量分别得到a1,a2,…a n共n个数据,我们规定所测量的物理量的―最佳近似值‖a是这样一个量:与其他近似值比较,a与各数据的差的平方和最小,依此规定,从a1,a2,…a n推出的a=______________.分析:本题是与其它学科相关的数学应用问题,要正确理解题意,并能把文字语言转化为符号语言.解:依题意,本题即是求使的最小值时,a的取值.∵,故当时,f(a)最小.例2.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳锐,超过500元的部分为全月应纳税所得额,此项税款按下表分段累进计算:某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900元~1200元(C)1200~1500元(D)1500~2000元分析:注意分类讨论思想的应用.思路一:若收入1300元应纳税:500×5%=25元<26.78元∴此人收入超过1300元,淘汰A、B.若收入1500元应纳税:500×5%+200×10%=45元>26.78元∴此人收入低于1500元,排除D,故选C.思路2:设全月应纳税所得额为x元.当x<500时,由题意知x·5%=26.78∴故与题意不符合.当500<x<2000元时,则500×5%+(x–500) ×10%=26.78∴x=517.8 ∴当月工资、薪金所得额为800+517.8=1317.8元.故选C.例3.设计某高速公路时,要求最低车速50千米/小时,最小车距为l千米(l是定值),并且车速v与车距d之间必须满足关系 ,求:(Ⅰ)常数k的值:(Ⅱ)这条高速公路的一条车道上每小时的最高车流量.(单位时间车流量=车速/车距)解:(Ⅰ)由题意,将v=50,d=l代入解析式中可求得(Ⅱ).设每小时车流量为Q,则(由实际问题,皆为正值)当且仅当,即时等号成立.而所以当车速为千米/小时,此高速公路一条车道上每小时的最大车流量为辆.例4.某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线表示.图一图二(Ⅰ)写出图一表示的市场售价与时间的函数关系式P=f(x);写出图二表示的种植成本与时间的函数关系式Q=g(t) (Ⅱ)认定市场售价减去种植成本为纯收益,向何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102kg,时间单位:天)分析:要根据函数图象正确建立函数关系式,然后求最值.解:由图一可得市场售价与时间的函数关系为由图二可得种植成本与时间的函数关系为,Ⅱ)设t时刻的纯收益h(t),则由题意得.当0≤t≤200时,配方整理得,∴t=50时,h(t)取得区间[0,200]上的最大值100;当时,配方整理得,∴当t=300时,h(t)取得区间(200,300]上的最大值87.5 综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.例5某企业年初有资金1000万元,如果该企业经过生产经营每年资金增长率均为50%,但每年年底都要扣除消费基金x万元,余下资金投入再生产,为实现经过5年资金达到2000万元(扣除消费资金后),那么每年扣除消费基金x应是多少万元(精确到万元)?解:依题意,第一年年底扣除消费资金后,投入再生产资金为1000+1000×50%–x=1000×第二年投入再生产资金为……第五年投入再生产资金为化简得:故x≈424(万元)答:每年扣除消费资金为424元.说明:本题关键是寻求每年投入再生产资金的规律,构造数列模型来解题.例6在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102(cos =θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大问几小时后该城市开始受到台风的侵袭?解:如图建立坐标系:以O 为原点,正东方向为x 轴正向. 在时刻:t (h )台风中心),(y x P 的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是222)]([)()(t r y y x x ≤-+-,其中10)(=t r t+60,若在t 时,该城市O 受到台风的侵袭,则有,)6010()0()0(222+≤-+-t y x即,)6010()22201027300()2220102300(222+≤⨯+⨯-+⨯-⨯t t t 即0288362≤+-t t , 解得2412≤≤t .答:12小时后该城市开始受到台风气侵袭例7、有三个新兴城镇,分别位于A ,B ,C 三点处,且AB=AC=a ,BC=2b.今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处,(建立坐标系如图)(Ⅰ)若希望点P 到三镇距离的平方和为最小,点P 应位于何处?(Ⅱ)若希望点P 到三镇的最远距离为最小, 点P 应位于何处?本小题主要考查函数,不等式等基本知识,考查运用数学知识分析问题和解决问题的能力.(Ⅰ)解:由题设可知,,0>>b a 记,22b a h -=设P 的坐标为(0,y ),则P 至三镇距离的平方和为.232)3(3)()(2)(222222b h h y y h y b y f ++-=-++= 所以,当3h y =时,函数)(y f 取得最小值. 答:点P 的坐标是).31,0(22b a -(Ⅱ)解法一:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|||,||,|,)(222222y h y b y h y h y b y b x g 当当由||22y h y b -≥+解得,222h b h y -≥记,222*h b h y -=于是⎪⎩⎪⎨⎧<-≥+=.|,|,,)(**22y y y h y y y b y g 当当 当,0222≥-=h b h y n 即b h≥时,22y b +在[),*+∞y上是增函数,而]y ,(-||*∞-在y h 上是减函数. 由此可知,当ny y =时,函数)(y g 取得最小值.当,0222*<-=h b h y 即b h<时,函数22y b +在[),*+∞-y 上,当0=y 时,取得最小值b ,而]y ,(-||*∞-在y h 上为减函数,且 b.||>-y h 可见, 当0=y 时, 函数)(y g 取得最小值.答当b h ≥时,点P 的坐标为);22,0(2222ba b a --当b h <时,点P 的坐标为(0,0),其中,22b a h -=解法二:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|||,||,|,)(222222y h y b y h y h y b y b y g 当当由||22y h y b -≥+解得,222h b h y -≥记,222*h b h y -=于是⎪⎩⎪⎨⎧<-≥+=.|,|,,)(**22y y y h y y y b y g 当当当g(y)z ,b h ,0*=≥≥时即y 的图象如图(a),因此,当*y y =时,函数)(y g 取得最小值.当,*y y <即g(y)z ,=<时b h 的图象如图(b),因此,当0=y 时,函数)(y g 取得最小值.答:当b h ≥时,点P 的坐标为);22,0(2222b a b a --当b h <,点P 的坐标为(0,0),其中.22b a h -=解法三:因为在△ABC 中,AB=AC=,a 所以△ABC 的外心M 在射线AO 上,其坐标为)22,0(2222ba b a --,且AM=BM=CM. 当P 在射线MA 上,记P 为P1;当P 在射线MA 的反向延长线上,记P 为P2,若b b a h ≥-=22(如图1),则点M 在线段AO 上, 这时P 到A 、B 、C 三点的最远距离为P1C 和P2A ,且P1C ≥MC ,P2A ≥MA ,所以点P 与外心M 重合时,P 到三镇的最远距离最小. 若b b a h <-=22(如图2),则点M 在线段AO 外,这时P 到A 、B 、C 三点的最远距离为P1C 或P2A ,且P1C ≥OC ,P2A ≥OC ,所以点P 与BC 边中点O 重合时, P 到三镇的最远距离最小为b .答:当b b a h ≥-=22时,点P 的位置在△ABC 的外心)22,0(2222b a b a --;当b b a h <-=22时,点P 的位置在原点O.例8、某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的%6,并且每年新增汽车数量相同。
为保护城市环境,要求该城市汽车保有量不超过60万量,那么每年新增汽车数量不应超过多少辆?解:设2002年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆……,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有x b b n n +⨯=+94.01x b n )94.01(94.021++⨯=-………………∴)94.094.01(94.0111-+++++⨯=n n n x b bx b nn94.0194.0194.01--+⨯=n x x 94.0)06.030(06.0⨯-+=当006.030≥-x,即8.1≤x 时,3011=≤≤≤+b b b n n 当006.030<-x ,即8.1>x 时,并且数列{}n b 逐项增加,可以任意靠近06.0xn n b ∞→lim ]94.0)06.030(06.0[lim 1-∞→⨯-+=n n x x =06.0x 因此,如果要求汽车保有量不超过60万辆,即60≤n b ),3,2,1( =n则6006.0≤x,即6.3≤x (万辆) 综上,每年新增汽车不应超过6.3万辆。