高三数学第一轮总复习培优版讲义(理)
- 格式:doc
- 大小:1.36 MB
- 文档页数:25
高考数学一轮复习讲义导言本讲义旨在为高考考生提供一轮全面复数学的指导。
根据往年考试情况以及高考数学的考点分布,此讲义涵盖了高考数学的各个重要知识点,帮助考生对数学知识进行系统复和巩固。
第一章:代数与函数1.1 一元一次方程- 方程的定义和基本性质- 一元一次方程的解法- 应用题:利用一元一次方程解决实际问题1.2 一元二次方程- 方程的定义和基本性质- 一元二次方程的解法- 应用题:利用一元二次方程解决实际问题1.3 指数与对数- 指数与对数的基本知识- 指数与对数的运算- 应用题:利用指数与对数解决实际问题第二章:几何与图形2.1 直线与曲线- 直线与曲线的基本概念- 直线与曲线的性质与判定方法- 应用题:利用直线与曲线解决实际问题2.2 三角形- 三角形的基本概念和性质- 三角形的判定方法- 三角形的相似与全等- 应用题:利用三角形解决实际问题2.3 圆与圆周角- 圆的基本概念和性质- 圆周角的性质和计算- 应用题:利用圆和圆周角解决实际问题第三章:概率与统计3.1 概率- 概率的基本概念和性质- 概率计算方法- 应用题:利用概率解决实际问题3.2 统计- 统计的基本概念和方法- 统计图表的制作和分析- 水果调查统计案例总结通过全面复习以上各个单元的知识,考生可以更好地应对高考数学题目,提高解题能力和应变能力。
在复习过程中,建议考生多做习题并及时查找解答,加强对知识点的理解和掌握。
祝愿所有考生在高考中取得优异成绩!。
高三数学第一轮复习讲义
高三数学第一轮复习讲义高三数学第一轮复习讲义高三数学第一轮复习讲义直线的方程一.复习目标:1.深化理解倾斜角、斜率的概念,熟练掌握斜率公式;2.掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能熟练写出直线方程.二.知识要点:1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习:1.设,则直线的倾斜角为()2.已知,则过不同三点,,的直线的条数为()多于3.已知的顶点, ,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是 .4.若直线的方向向量是,则直线的倾斜角是;若点,,直线过点且与线段相交,则直线的斜率k 的取值范围为 .四.例题分析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程.
例2.⑴已知,试求被直线所分成的比λ;⑵已知,,若直线与直线相交于点,不与重合,求证:点分的比 .例3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程. 例4.的一个顶点,两条高所在直线方程为和,求三边所在直线方程.
五.课后作业:班级学号姓名。
高三数学第一轮总复习讲义(培优版)供理科生使用第一讲等差数列与其性质与前n项和第二讲等比数列与其性质与前n项和第三讲数列的通项公式与前n项和的求法第四讲数列的综合问题第一讲 等差数列与其性质与前n 项和【教学目标】1、 掌握等差数列的概念与通项公式;2、 理解并能应用等差数列的性质;3、 熟练掌握各种方法求等差数列的通项公式与前n 项和以与应用等差数列解决实际问题。
【重点难点】1、应用等差数列的性质解题;2、等差数列前n 项和公式理解、推导与应用;3、理解等差数列前n 项和公式与二次函数的联系,会利用等差数列求和公式来研究n S 最值; 【命题趋势】1、题型以选择题和解答题为主;2、选择题重点考察等差、等比数列的性质的应用;3、解答题重点考察等差、等比数列的证明与通项公式的求解,以与数列的前n 项和与函数、不等式的综合问题。
【教学过程】 一、知识要点1. 等差数列的判定方法:(1)d a a n n =-+1(常数){}n a ⇔是等差数列; (2))(221*++∈+=N n a a a n n n {}n a ⇔是等差数列; (3)b k b kn a n ,(+=是常数){}n a ⇔是等差数列;(4)B A Bn An s n ,(2+=是常数,)1≥n {}n a ⇔是等差数列.2.等差数列的性质.由等差数列{}n a 的通项公式d n a a n )1(1-+=可以推出许多性质,如: ①{}n a d ,0时>递增; {}n a d ,0时<递减; {}n a d ,0时=为常数列. ②),()(*∈-+=N n m d m n a a m n . ③),(*∈=--N n m d nm a a nm ;④若,s r q p +=+则,s r q p a a a a +=+特别地,k n k n n a a a +-+=2,若{}n a 是有穷数列,则与首末两项等距离的两项的和相等,且等于首末两项的和;⑤若n n t t t r r r +++=+++ 2121,则nnt t t r r r a a a a a a +++=+++ 2121;⑥项数成等差数列的项是等差数列,{}n ka ,{}r ka n +也都是等差数列,公差是.kd⑦等差数列中依次k 项的和成等差数列,即 k k k k k S S S S S 232,,--成等差数列,其公差为d k 2⑧若{}n a ,{}n b 都是等差数列,公差分别为21,d d ,则{}n n pb ka +也是等差数列,其公差为21pd kd +. 二、典例精析题型一、等差数列的证明例1. 已知数列{}n a 满足),2(44,411≥-==-n a a a n n 若,21-=n n a b (1)求证: {}n b 是等差数列 (2)求数列{}n a 的通项公式题型二、等差数列的性质例2. 在等差数列{}n a 中,若,36121132=+++a a a a 求876a a a ++的值. 例3. (2010广东惠州调研,改)已知{}n a 为等差数列,,87,105864531=++=++a a a a a a n S 是数列{}n a 的前n 项和,则使得n S 达到最大值的n 是( )A.21B.20C.19D.18变式:设公差为-2的等差数列{}n a 中,,5097741=++++a a a a 求99963a a a a ++++ 与99S 的值.例4. (07年辽宁,改)设等差数列{}n a 的前n 项和为n S ,若36,963==S S ,求151413a a a ++的值。
高中数学总复习讲义(培优版)供理科生使用数列四讲第一讲 数列的概念及简单表示教学目标了解数列的概念和几种简单的表示方法(列表、图象、通项公式). 教学重难点1.本部分主要考查数列的基本概念及表示方法、通项公式的求法以及数列的性质.2.题型多以选择、填空题为主,有时也作为解答题的一问,难度不大. 教材知识再现一.基础知识1.数列的概念:按一定 排列的一列数叫做数列。
数列中的每一个数都叫做数列的 。
从函数的角度看:数列可以看作是一个定义域为 或它的有限子集,当自变量从小到大依次取值时对应的一列 。
2.数列的表示方法:(1)列表法;(2)图示法:数列的图像是离散的点,而不是曲线; (3)通项公式法:用含)(n f a a n n n =,即的式子表示(4)递推公式法: 3.数列的分类:(1)按项数的多少可分为 和 ;(2)按数列中相邻两项的大小关系可分为 、 、 和 。
4.(1)数列{}n a 的前n 项和:n n a a a a S ++++= 321(2)的关系与n n S a : ⎩⎨⎧≥-==-.2111n S S n S a n nn ,,,基本方法 用函数的思想方法处理数列问题(数列的本质是函数) (1)如何理解数列是函数? (2)如何求数列的通项公式?(3)如何判断数列的单调性及求数列中的最大(小)项? (4)如何求数列的前n 项和公式?经典习题奠基1.数列⋅⋅⋅,95,74,53,32,1的一个通项公式是2.已知数列{a n }的通项公式为a n =n +1,则这个数列是( ) A .递增数列 B .递减数列 C .常数列 D .摆动数列 3.在数列{a n }中,a n +1=a n +2+an ,a 1=2,a 2=5,则a 6的值是( ) A .-3 B .-11 C .-5 D .19 4,已知数列{}n a 的通项公式⎩⎨⎧-⋅=-52321n a n n122+==k n kn )(N k ∈,则=⋅34a a 5. 已知数列{}n a 的通项公式为n q pn a n +=,且23,2342==a a ,则=8a 关键要点点拨1.求通项公式的技巧根据数列的前几项写出数列的通项公式时,常用到“观察、归纳、猜想、验证”的数学思想方法,即先找出各项相同的部分(不变量),再找出不同的部分(可变量)与序号之间的关系,并用n 表示出来.不是所有的数列都有通项公式,一个数列的通项公式在形式上可以不唯一 2.数列中最大项与最小项的求法考点一 由数列的前几项求数列的通项公式[例1] 下列可作为数列{}⋅⋅⋅,2,1,2,1,2,1:n a 的通项公式的是( )A.1=n aB.21)1(+-=n n aC. 2sin 2πn - D. 23)1(1+-=-n n a1.已知数列⋅⋅⋅,13,10,7,2则72是该数列的( ) A.第7项 B.第8项 C.第9项 D.第10项2.写出下列各数列的一个通项公式 (1)3,5,7,9,…(2)⋅⋅⋅,3231,1615,87,43,21 (3)⋅⋅⋅---,63,51,43,31,23,11.根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,可使用添项、还原、分割等办法,转化为一些常见数列的通项公式来求.2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n +1来调整.3.观察、分析问题的特点是最重要的,观察要有目的,观察出项与n 之间的关系、规律,利用我们熟知的一些基本数列(如自然数列、奇偶数列等)建立合理的联想、转换而使问题得到解决.考点二 由n a 和n S 的关系求通项[例2]数列{}n a 的前n 项和为n S ,若)1(3,111≥==+n S a a n n ,则=6a 3. 数列{}n a 的前n 项和为n S ,且1+=n n S n ,则=51a 4. 数列{}n a 的前n 项和为n S ,求{}n a 的通项公式 (1)Sn =2n 2-3n ; (2)Sn =4n +b .n a 和n S 的关系通常用)2(1≥-=-n S S a n n n ,注意验证1=n考点三 由数列的递推关系求通项公式[例3] 数列{}n a 满足2,3311=-=+n a a a n n ,求nan 的最小值为( ) A.9.5 B.10.6 C.10.5 D.9.6变式:若本例条件变为:数列{a n }满足下列条件:a 1=1,且对于任意的正整数n (n ≥2,n ∈N*),有2a n =2n a n -1,则a 100的值为________.5. 已知数列{}n a 中,)2()1(1,111≥--==-n n n a a a n n ,则=16a6.分别求满足下列条件的数列的通项公式(1))12(,011-+==+n a a a n n (2))2(1,111≥-==-n a n na a n n 由a 1和递推关系求通项公式,可观察其特点,一般常利用“化归法”、“累加法”、“累乘法”等.1.对于形如“a n +1=a n +f (n )”型的递推关系式求通项公式,只要f (n )可求和,便可利用累加的方法. 2.对于形如)"("1n g a a nn =+型的递推关系式来求通项公式,只要)(n g 可求积,便可以利用累积或迭代的方法。
高三数学第一轮总复习讲义(培优版)供理科生使用第一讲等差数列及其性质与前n项和第二讲等比数列及其性质与前n项和第三讲数列的通项公式与前n项和的求法第四讲数列的综合问题第一讲 等差数列及其性质与前n 项和【教学目标】1、 掌握等差数列的概念及通项公式;2、 理解并能应用等差数列的性质;3、 熟练掌握各种方法求等差数列的通项公式及前n 项和以及应用等差数列解决实际问题。
【重点难点】1、应用等差数列的性质解题;2、等差数列前n 项和公式理解、推导及应用;3、理解等差数列前n 项和公式与二次函数的联系,会利用等差数列求和公式来研究n S 最值;【命题趋势】1、题型以选择题和解答题为主;2、选择题重点考察等差、等比数列的性质的应用;3、解答题重点考察等差、等比数列的证明及通项公式的求解,以及数列的前n 项和与函数、不等式的综合问题。
【教学过程】 一、知识要点1. 等差数列的判定方法:(1)d a a n n =-+1(常数){}n a ⇔是等差数列; (2))(221*++∈+=N n a a a n n n {}n a ⇔是等差数列; (3)b k b kn a n ,(+=是常数){}n a ⇔是等差数列;(4)B A Bn An s n ,(2+=是常数,)1≥n {}n a ⇔是等差数列. 2. 等差数列的性质.由等差数列{}n a 的通项公式d n a a n )1(1-+=可以推出许多性质,如: ①{}n a d ,0时>递增; {}n a d ,0时<递减; {}n a d ,0时=为常数列.②),()(*∈-+=N n m d m n a a m n .③),(*∈=--N n m d nm a a nm ;④若,s r q p +=+则,s r q p a a a a +=+特别地,k n k n n a a a +-+=2,若{}n a 是有穷数列,则与首末两项等距离的两项的和相等,且等于首末两项的和;⑤若n n t t t r r r +++=+++ 2121,则n n t t t r r r a a a a a a +++=+++ 2121; ⑥项数成等差数列的项是等差数列,{}n ka ,{}r ka n +也都是等差数列,公差是.kd⑦等差数列中依次k 项的和成等差数列,即 k k k k k S S S S S 232,,--成等差数列,其公差为d k 2⑧若{}n a ,{}n b 都是等差数列,公差分别为21,d d ,则{}n n pb ka +也是等差数列,其公差为21pd kd +.二、典例精析题型一、等差数列的证明例1. 已知数列{}n a 满足),2(44,411≥-==-n a a a n n 若,21-=n n a b (1)求证: {}n b 是等差数列 (2)求数列{}n a 的通项公式题型二、等差数列的性质例2. 在等差数列{}n a 中,若,36121132=+++a a a a 求876a a a ++的值.例3. (2010广东惠州调研,改)已知{}n a 为等差数列,,87,105864531=++=++a a a a a a n S 是数列{}n a 的前n 项和,则使得n S 达到最大值的n 是( )A.21B.20C.19D.18变式:设公差为-2的等差数列{}n a 中,,5097741=++++a a a a 求99963a a a a ++++ 及99S 的值.例4. (07年辽宁,改)设等差数列{}n a 的前n 项和为n S ,若36,963==S S ,求151413a a a ++的值。
变式:设等差数列{}n a 的前n 项和为n S ,若18,293==S S ,求24S 的值。
题型三、等差数列的前n 项和n S例5. 在等差数列{}n a 中,若,4,84111073=-=-+a a a a a 求前13项的和13S .例6. 已知等差数列{}n a 的前n 项和为n S ,,,2410171S S a ==问数列{}n a 的前多少项和最大?并求此最大值.题型四、综合问题例7. (2009年湖南四市,改)数列{}n a 中,0,262==a a ,且数列⎭⎬⎫⎩⎨⎧+11n a 是等差数列。
求:(1)84,a a ; (2)求数列n a 的通项公式;(3)若))(1)(1(1*+∈++=N n a a b n n n ,求n b 的前n 项和n S 。
例8.(2010年广东惠州调研,14分)在xoy 平面上有一系列的点 ),(,),,(),,(222111n n n y x P y x P y x P ,对于*∈N n ,点),(n n n y x P 在函数)0(2≥=x x y 图象上,以点n P 为圆心的⊙n P 与X 轴相切,且⊙n P 与⊙1+n P 又相外切,若11=x ,且n n x x <+1。
(1)求证:数列⎭⎬⎫⎩⎨⎧n x 1是等差数列; (2)设⊙n P 的面积为n S ,n n S S S T +++= 21,求证:23π<n T 。
三、优化训练选择题1. 设等差数列{}n a 单调递增,且前三项和为12,前三项积为48,则它的首项为( ) (A)1 (B)2 (C) 4 (D)62. 在各项均为正数的等差数列{}n a 中,公差,0≠d 则( )(A) 5481a a a a > (B) 5481a a a a < (C) 5481a a a a +>+ (D) 5481a a a a = 3. 首项为1a ,公差为d 的无穷等差数列{}n a 只有有限个负项的条件是( ) (A)0,01>>d a (B) 0,01<>d a (C) 0,01><d a (D) 0,01<<d a 4. 若{}n a ,{}n b 都是等差数列,且,100,75,252211=+==b a b a 则=+3737b a ( ) (A)0 (B)37 (C)100 (D)-375. 公差d 为正数的等差数列{}n a 中,若,15321=++a a a ,80321=⋅⋅a a a 则131211a a a ++=( ) (A)120 (B)105 (C)90 (D)756. 等差数列{}n a 中,,33,4,31521==+=n a a a a 则=n ( ) (A)48 (B)49 (C)50 (D)51 填空题7. 等差数列{}n a 中,103,a a 是方程0532=--x x 的两根,则该数列前12项的和=12s 。
8. 已知等差数列{}n a 中,,12321=++a a a ,18654=++a a a 则151413a a a ++= .9. 已知项数为偶数的等差数列{}n a 中,奇数项的和为24, 偶数项的和为30,且最后一项超过第一项10.5,那么该数列的项数是 .10. (09年辽宁抚顺)在等差数列{}n a 中,0,011101<⋅>a a a ,若n S 是数列的前n 项和,且12,361810==S S ,则数列{}n a 的前18项之和18T 的值是 。
解答题11. 在数列{}n a 中,22,211+==+n nn a a a a ,求n a .12. 设{}n a 为等差数列,(1)已知,11=a 求公差,d 使3231a a a a +最小; (2)已知,97=a 求公差,d 使21a a 最小.13. 数列{}n a 是首项为23,公差为整数的等差数列,且第六项为正,第七项变为负. (1)求此等差数列的的公差;d (2)设数列{}n a 的前n 项和为n s ,求n s 的最大值; (3)当n s 是正数时,求n 的最大值.14. 已知等差数列{}n a 中, 公差),(02,0,0212*++∈=++≠≠N n k a x a x a a d k k k n .(1)求证:当k 取不同的正整数时方程有公根; (2)若方程不同的根为依次为,,,,21n x x x 求证:11,,11,1121+++n x x x 是等差数列.第二讲 等比数列及其性质与前n 项和【教学目标】1.掌握等比数列的概念及通项公式; 2. 理解并能应用等比数列的性质;3. 熟练掌握各种方法求等比数列的通项公式及前n 项和;4.应用等比数列解决实际问题,提高学生解决实际问题的能力。
【重点难点】1.应用等比数列的性质解题;2.等比数列前n 项和公式理解、推导及应用;3.理解等比数列前n 项和公式与指数函数的联系,能解等比数列与不等式函数等综合问题。
【命题趋势】1. 题型以选择题和解答题为主;2. 选择题重点考察等差、等比数列的性质的应用;3. 解答题重点考察等差、等比数列的证明及通项公式的求解,以及数列的前n 项和与函数、不等式的综合问题。
【教学过程】 一、知识要点1. 等比数列的判定方法:(1) q a a n n =+/1(常数)),2(*N n n ∈≥ {}n a ⇔是等比数列; (2) )(*221N n a a a n n n ∈=++ {}n a ⇔是等比数列;(3)),0,0(11≠≠=-+q a aq a n n {}n a ⇔是等比数列; (4))1,0(1≠>-=a a a s nn , {}n a ⇔是等比数列.2. 等比数列的性质: 由通项公11-=n n qa a 可以推导出许多性质,①若01>a ,则1>q 时{}n a 递增;10<<q 时{}n a 递减;1=q 为常数列.0<q 时, {}n a 是摆动数列.②),(*-∈=N n m qa a mn m n③m n mnq a a -=),(*N n m ∈ ④若p q r s +=+.则s r q p a a a a ⋅=⋅, 特别地,k n k n n a a a +-⋅=2;若{}n a 是有穷数列,则与首末两项等距离的两项的积相等,且等于首末两项的积 ⑤若k k t t t r r r +++=+++ 2121,则n k t t t r r r a a a a a a 2121⋅=⋅; ⑥ 项数成等差数列的项组成等比数列;{}n ka 也是等比数列,公比均为kq ;⑦若{}n a ,{}n b 都是等比数列,公比分别为,,21q q ,则{}n n pb ka ⋅也成等比数列,其公比为.21pq kq ⋅ ⑧前k 项之和,第二个k 项之和,…,第r 个k 项之和构成等比数列, 其公比为kq ;前k 项之积,第二个k 项之积,…,第r 个k 项之积构成等比数列, 其公比为2kq ;二、典例精析题型一、等比数列的证明 例1.已知数列{}n a 的前n 项和为n S ,对于N n n ∈≥,2,满足关系n n n a a S -=--11。