高数11_3格林公式(黑白)
- 格式:ppt
- 大小:1.63 MB
- 文档页数:34
第三节 格林公式及其应用教学目的:理解和掌握格林公式及应用 教学重点:格林公式教学难点:格林公式的应用 教学内容: 一、Green 公式单连通区域.设D 为单连通区域,若D 内任一闭曲线所围的部分都属于D .称D 为单连通区域(不含洞),否则称为复连通区域(含洞).规定平面D 的边界曲线L 的方向,当观看者沿L 行走时,D 内在他近处的那一部分总在他的左边,如定理1. 设闭区域D 由分段光滑的曲线L 围成,函数),(y x P 和),(y x Q 在D 上具有一阶连续偏导数,则有dxdy y Px Q D⎰⎰∂∂-∂∂)(=⎰-L Qdy Pdx .L 为D 的取正向的边界曲线.即格林公式既为x - 型又为y -型区域2L :)(2x y ϕ=∵y P∂∂连续,证:对⎰⎰∂∂D dxdy y P=dyy y x P dx x x b a ⎰⎰∂∂)()(21),(ϕϕ=dxx x P x x P ba})](,[)](,[{1121⎰-ϕϕ1L :)(1x y ϕ= 又⎰⎰⎰+=21L L L Pdx Pdx Pdx=dxx x P ba⎰)](,[11ϕ+dxx x P ba⎰)](,[21ϕ=dxx x P x x P ba})](,[)](,[{2111⎰-ϕϕ∴⎰⎰⎰=∂∂-LD Pdx dxdy y PyxlLoyxL 1L 2ab对于y -型区域,同理可证 ⎰⎰∂∂D dxdy y Q=⎰L Qdx ∴原式成立对于一般情况,可引进辅助线分成有限个符合上述条件区域,在4321,,,D D D D 上应用格林公式相加,由于沿辅助线积分是相互抵消,即可得证.几何应用,在格林公式中,取x Q y P =-=,,⎰⎰Ddxdy2=⎰-Lydx xdy∴21=A ⎰-L ydx xdy说明:1)格林公式对光滑曲线围成的闭区域均成立2)记法⎰-L ydx xdy =⎰⎰∂∂-∂∂Ddxdy y x3)在一定条件下用二重积分计算曲线积分,在另外条件下用曲线积分计算二重积分.4)几何应用.例1. 计算⎰++-Cdy y x dx x y )3()( L :9)4()1(22=-+-y x解: 原式=⎰⎰=-D dxdy π18)13(, 3=∂∂x Q ,1=∂∂y P例1. 计算星形线⎩⎨⎧==t a y t a x 33sin cos 围成图形面积)20(π≤≤t⎰⎰⋅+⋅=-=π202223)sin cos 3sin cos sin 3cos (2121dtt t a t a t t a t a ydx xdy A L=832a π二 平面上曲线积分与路径无关的条件1) 与路无关:是G 为一开区域,),(),,(y x Q y x P 在G 内具有一阶连续偏导数,若G 内任意指定两点B A ,及G 内从A 到B 的任意两条曲线21,L L⎰⎰+=+21L L Q d yP d x Q d y P d x 恒成立,则称⎰+LQdy Pdx 在G 内与路径无关.否则与路径有关.例1.⎰-++Ldy y x dx y x )()( 1L :从)1,1(到)3,2(的折线2L 从)1,1(到)3,2(的直线解:⎰+1L QdyPdx =25)1()2(2131=++-⎰⎰dx x dy y 32L :)2(23-+=x y ,即 12-=x y⎰-++2)()(L dyy x dx y x =25)]1(2)12[(21=-+-+⎰dx x x x定理:设),(y x P ,),(y x Q 在单连通区域D 内有连续的一阶偏导数,则以下四个条件相互等价(1)内任一闭曲线C ,⎰+CQdy Pdx =0. (2)对内任一曲线L ,⎰+LQdyPdx 与路径无关(3)在D 内存在某一函数),(y x μ使Qdy Pdx y x d +=),(μ在D 内成立.(4)x Qy P ∂∂-∂∂,在D 内处处成立. 证明:(1)⇒(2) 在D 内任取两点B A ,,及连接B A ,的任意两条曲线⋂AEB ,⋂AGB ∴⋂⋂+=BGA AGB C 为D 内一闭曲线知⎰+CQdyPdx , 由(1)⎰⋂+AGBQdyPdx +⎰⋂+BEAQdy Pdx =0即⎰⋂+AGBQdy Pdx =⎰⋂+BEAQdyPdx∴(2)⇒(3)若⎰+LQdy Pdx 在D 内与路径无关.当起点固定在(0,yx )点,终点为),(y x 后,则⎰+),(),(00y x y x Qdy Pdx 是y x ,的函数,记为),(y x u .下证:),(y x u =⎰+),(),(00y x y x QdyPdx 的全微分为),(y x du =Qdy Pdx +.∵),(y x P ,),(y x Q 连续,只需证),(y x P x u =∂∂, ),(y x Q y u =∂∂,由定义=∂∂x u x y x u x x u x ∆-∆+→∆),()(lim 0=∆+),(y x x u ⎰∆++),(),(00y x x y x QdyPdx =),(y x u +⎰∆++),(),(y x x y x QdyPdx=),(y x u +⎰∆+xx xPdx∴-∆+),(y x x u ),(y x u =⎰∆+xx xPdx =x P ∆,),(y x x P P ∆+=θ)10(≤≤θoyx(2,3)(1,1)L2L1oyxEBAGx ∆),(000y x M oyxM(x,y)N(x+,y)即),(y x P x u =∂∂, 同理),(y x Q y u =∂∂.(3)⇒(4)若),(y x du =Qdy Pdx +,往证y P ∂∂=x Q ∂∂,=P x P∂∂,=Q y Q ∂∂y x P y P ∂∂∂=∂∂,x y Qx Q ∂∂∂=∂∂, 由Q P ,具有连续的一阶偏导数=∂∂∂y x u 2x y u ∂∂∂2 故y P ∂∂=x Q ∂∂(4)⇒(1)设C 为D 内任一闭曲线,D 为C 所围成的区域.⎰+CQdyPdx =dxdy y Px Q D⎰⎰∂∂-∂∂)(=0.例2.曲线积分⎰-++=Lx y dyy xe dx x e I )2()(, L 为过)0,0(,)1,0(和)2,1(点的圆弧.解: 令x e P y+=,y xe Q y2-=,则ye x Q=∂∂,ye y P =∂∂ ∴I 与路径无关. 取积分路径为AB OA +.=I ⎰+OAQdyPdx +⎰+ABQdyPdx=⎰⎰-++201)2()1(dy y e dx x y=272-e例2. 计算⎰+-Cy x ydxxdy 22, (1)c 为以)0,0(为心的任何圆周.(2)c 为以任何不含原点的闭曲线. 解:(1)令22y x y P +-=,22y x x Q +=,22222)(y x x y y P +-=∂∂,22222)(y x x y x Q +-=∂∂,∴在除去)0,0(处的所有点处有y P ∂∂=x Q∂∂,做以0为圆心,r为半径作足够小的圆使小圆含在C 内,∴⎰⎰++rC CQdyPdx =0,即=+⎰CQdy Pdx θθπd r r x r ⎰+202222sin cos =π2≠0(2)∵y P ∂∂=x Q∂∂ ∴=+⎰C Qdy Pdx 0 三、二元函数的全微分求积oyxBAoyx∵ ⎰+C QdyPdx 与路径无关,则Qdy Pdx +为某一函数的全微分为),(y x u =⎰+),(),(00y x y x QdyPdx =⎰+xx QdyPdx 0+⎰+yy QdyPdx 0注:),(y x u 有无穷多个.例3. 验证:ydy x dx y x cos )sin 2(++是某一函数的全微分,并求出一个原函数.解:令y x P sin 2+=,y x Q cos =y x Q cos =∂∂,y y P cos =∂∂∴原式在全平面上为某一函数的全微分,取)0,0(),(00=y x ,⎰+=),()0,0(),(y x Q d yP d x y x u =⎰⎰+x yydy x xdx 00cos 2=y x x sin 2+例5. 计算⎰-+-Cx x dym e y dy my e y )3()(23,c 为从E 到F 再到G ,⋂FG 是半圆弧解:令my e y P x-=3, m e y Q x-=23m e y y P x -=∂∂23,x e y y Q23=∂∂,m y Px Q =∂∂-∂∂添加直线GE,则,原式+⎰+GEQdy pdx =⎰⎰-Dmdxdy=])22(211221[2π⋅+⋅⋅-m =)41(π+-m ∴原式=m )41(π+-⎰-310dx =)41(π+-m 例6.设)(x f 在),(+∞-∞上连续可导,求dy y x f y y x dx y y x f y L L ⎰⎰++)],([),(1222,其中为从点)32,3(A 到)2,1(B 的直线段. ),(00y x ),(y x oyx),(y x )0.(x oyxo yxF (2,1)E (1,0)G (3,0)oy xB A C解;令y y x f y P ),(12+=, ]1),([22-=y x f y y x Q222),(1)],(),(2[y y x f y y y x f xy y x yf y P --'+=∂∂=2321),(),(y y x f xy y x f y -+=∂∂x Q ='+-)],([]1),([13222y x f y y x y x f y y 2321),(),(y y x f xy y x f y -+x Q y P ∂∂=∂∂,故原积分与路径无关,添CB AC +构成闭路,∴原式+0=+⎰⎰AC BC∴原式=⎰⎰+AC CB =dx x f dy y f y y )]32(941[23]1)([11322322++-⎰⎰ dy y y f dx x f ⎰⎰-++=132322]1)([)]32(3223[u x =3241)()(2323223223213-=+++⎰⎰y dy y f du u f x练习:1.证明:若)(u f 为连续函数,而C 为无重点的按段光滑的闭曲线,则)()(22=++⎰ydy xdx y xf c.2.确定的n 值,使在不经过直线0=y 的区域上,dy y y x x dx y y x x I c nc n ⎰⎰+-+=222222)()(与路径无关,并求当C 为从点)1,1(到点)2,0(B 的路径时I 的值.21-=n ,21-=I3.设),(y x f ,),(y x g 为L 上的连续函数,证明dsg f gdy fdx L L ⎰⎰+≤+22小结: 1. 格林公式及应用,积分与路径无关的四个等价命题,全微分求积.2. 格林公式使有些问题简化,有时可计算不封闭曲线积分,只需添上一条线使之成为封闭曲线,再减去所添曲线的积分值即可.作业:P153 2,3,5。
第三节一、格林公式二、平面上曲线积分与路径无关的 等价条件格林公式及其应用第十一章*三、全微分方程L D区域 D 分类单连通区域 ( 无“洞”区域 )多连通区域 ( 有“洞”区域 )域 D 边界L 的正向: 域的内部靠左定理1. 设区域 D 是由分段光滑正向曲线 L 围成,则有,),(y x P ),(y x Q ∫∫∫+=⎟⎠⎞⎜⎝⎛∂∂−∂∂LD y Q x P y x y P x Q d d d d ( 格林公式 )函数在 D 上具有连续一阶偏导数,∫∫∫+=∂∂∂∂LDyxyQ x P y x QP d d d d 或一、 格林公式证明:1) 若D 既是 X - 型区域 , 又是 Y - 型区域 , 且⎩⎨⎧≤≤≤≤b x a x y x D )()(:21ϕϕ⎩⎨⎧≤≤≤≤d y c y x y D )()(:21ψψ则y x x Q D d d ∫∫∂∂∫=dcy y y Q d )),((2ψ∫∂∂)()(21d y y xx Q ψψ∫=CBE y y x Q d ),(∫−CAE y y x Q d ),(∫=CBEy y x Q d ),(∫+EACyy x Q d ),(∫−dcyy y Q d )),((1ψ∫=dcy d O d c y xECBA b a D即y x xQD d d ∫∫∂∂∫=L y y x Q d ),(同理可证y x yP D d d ∫∫∂∂−∫=L xy x P d ),(①②①、②两式相加得:()∫∫∫+=∂∂−∂∂LD y Q x P y x y Px Q d d d dL2) 若D 不满足以上条件,则可通过加辅助线将其分割1D nD 2D ()∑∫∫=∂∂−∂∂=n k D y x yPx Q k1d d ()y x yPx Q Dd d ∂∂−∂∂∫∫∑∫=∂+=nk D kyQ x P 1d d ∫+=LyQ x P d d 为有限个上述形式的区域 , 如图)(的正向边界表示k k D D ∂证毕yxO推论: 正向闭曲线 L 所围区域 D 的面积∫−=Lxy y x A d d 21格林公式∫∫∫+=⎟⎠⎞⎜⎝⎛∂∂−∂∂LD y Q x P y x y P x Q d d d d 例如, 椭圆π)20(sin cos :≤≤⎩⎨⎧==θθθb y a x L 所围面积∫−=L xy y x A d d 21∫+=π2022d )sin cos (21θθθab ab ab π=例1. 设 L 是一条分段光滑的闭曲线, 证明d d 22=+∫y x x y x L证: 令,,22x Q y x P ==则yPx Q ∂∂−∂∂利用格林公式 , 得y x x y x Ld d 22∫+022=−=x x ∫∫=Dy x d d 00=例2. 计算,d d e2∫∫−Dyy x 其中D 是以 O (0,0) , A (1,1) ,B (0,1) 为顶点的三角形闭域 . 解: 令, 则2e,0yx Q P −===∂∂−∂∂yP x Q 利用格林公式 , 有∫∫−D yy x d d e2∫∂−=Dyy x d e 2y x OAyd e2∫−=yy yd e102∫−=)e 1(211−−=2e y−xy =yx)1,1(A )1,0(B D O例3. 计算,d d 22∫+−L y x xy y x 其中L 为一无重点且不过原点的分段光滑正向闭曲线.解: 令,022时则当≠+y x 22222)(y x xy x Q +−=∂∂设 L 所围区域为D ,,)0,0(时当D ∉由格林公式知0d d 22=+−∫L y x xy y x ,22yx yP +−=22y x x Q +=y P ∂∂=y xLOθθθd sin cos π2022222∫+=rr r π2=,)0,0(时当D ∈在D 内作圆周,:222r y x l =+取逆时针方向,1D , 对区域1D 应用格∫+−L y x xy y x 22d d ∫+−−l y x x y y x 22d d ∫−+−=l L yx xy y x ∪22d d 0d d 01==∫∫y x D ∫∫+−=+−∴l L y x x y y x y x x y y x 2222d d d d L 1D l记 L 和 l ¯ 所围的区域为林公式 , 得yxO二、平面上曲线积分与路径无关的等价条件定理2. 设D 是单连通域 ,),(),,(y x Q y x P 在D 内具有一阶连续偏导数,(1) 沿D 中任意光滑闭曲线 L , 有.0d d ∫=+L y Q x P (2) 对D 中任一分段光滑曲线 L , 曲线积分(3)y Q x P d d +),(y x u yQ x P y x u d d ),(d +=(4) 在 D 内每一点都有.xQ y P ∂∂=∂∂∫+L y Q x P d d 与路径无关, 只与起止点有关.函数则以下四个条件等价:在 D 内是某一函数的全微分,即(1) 沿D 中任意光滑闭曲线 L ,有.0d d ∫=+L y Q x P (2) 对D 中任一分段光滑曲线L , 曲线积分∫+L y Q x P d d 与路径无关, 只与起止点有关.说明: 积分与路径无关时, 曲线积分可记为 设21,L L ∫∫+−+21d d d d L L y Q x P y Q x P ∫+=1d d Ly Q x P ∫−++2d d L yQ x P ∫−+=21d d L L y Q x P ∪0=2L ∫+=2d d L yQ x P ∫+∴1d d L y Q x P 为D 内任意两条由A 到B 的有向分段光滑曲线,则(根据条件(1))∫+=B A y Q x P d d ∫+AB y Q x P d d AB 1L(2) 对D 中任一分段光滑曲线L , 曲线积分(3)y Q x P d d +),(y x u y Q x P y x u d d ),(d +=∫+Ly Q x P d d 与路径无关, 只与起止点有关. 在 D 内是某一函数的全微分,即 在D 内取定点),(00y x A 因曲线积分∫+=),(),(00d d ),(y x y x yQ x P y x u ),(),(y x u y x x u u x −∆+=∆则),(y x P =x u x u xx ∆∆=∂∂∴→∆0lim ),(lim 0y x x P x ∆+=→∆θ∫∆++=),(),(d d y x x y x y Q x P ∫∆+=),(),(d y x x y x xP xy x x P ∆∆+=),(θ同理可证y u ∂∂),,(y x Q =因此有y Q x P u d d d +=和任一点B ( x , y ),与路径无关,),(y x x C ∆+),(y x B ),(00y x A 有函数(4) 在 D 内每一点都有.xQ yP ∂∂=∂∂(3)y Q x P d d +),(y x u y Q x P y x u d d ),(d +=在 D 内是某一函数的全微分,即xy uy x u ∂∂∂=∂∂∂22所以设存在函数 u ( x , y ) 使得y Q x P u d d d +=则),(),,(y x Q yu y x P x u =∂∂=∂∂P, Q 在 D 内具有连续的偏导数,从而在D 内每一点都有x Q y P ∂∂=∂∂xy u x Q yx u y P ∂∂∂=∂∂∂∂∂=∂∂∴22,证明 (4) ⇒ (1)设L 为D 中任一分段光滑闭曲线,D D ⊂′(如图) ,上因此在D ′xQ y P ∂∂≡∂∂利用格林公式 , 得y x xQx Q y Q x P L D d d )(d d ∂∂−∂∂=+∫∫∫′D D ′L0=所围区域为证毕(1) 沿D 中任意光滑闭曲线 L , 有.0d d ∫=+L y Q x P (4) 在 D 内每一点都有.x Qy P ∂∂=∂∂说明:根据定理2 , 若在某区域D 内,xQy P ∂∂=∂∂则2) 求曲线积分时, 可利用格林公式简化计算,3) 可用积分法求d u = P d x + Q d y 在域 D 内的原函数:D y x ∈),(00及动点,),(D y x ∈y y x Q x y x P y x u y x y x d ),(d ),(),(),(),(00+=∫∫=xx x y x P 0d ),(0或∫=y y y y x Q y x u 0d ),(),(0则原函数为∫+y y yy x Q 0d ),(∫+x x xy x P 0d ),(若积分路径不是闭曲线, 可添加辅助线;取定点1) 计算曲线积分时, 可选择方便的积分路径;yx 0y 0x O xy4) 若已知 d u = P d x + Q d y ,则对D 内任一分段光滑曲∫+=B Ay y x Q x y x P d ),(d ),(AB u=)()(A u B u −=线 AB ,有yy x Q x y x P ABd ),(d ),(+∫注: 此式称为曲线积分的基本公式(P211定理4). ∫∫=babax F x x f )(d d )(DAB它类似于微积分基本公式:∫=BAu d ())()(x f x F =′其中)()()(a F b F x F ab −==yA xL 例4. 计算,d )(d )3(22y x y x y x L−++∫其中L 为上半24x x y −=从 O (0, 0) 到 A (4, 0).解: 为了使用格林公式, 添加辅助线段,AO D 它与L 所围原式y x y x y x AOL d )(d )3(22−++=∫∪∫∫=Dy x d d 4∫−+++OAyx y x y x d )(d )3(22∫+402d xx 圆周区域为D , 则O例5. 验证y y x x y x d d 22+是某个函数的全微分, 并求出这个函数.证: 设,,22y x Q y x P ==则xQ y x y P ∂∂==∂∂2由定理2 可知, 存在函数 u (x , y ) 使yy x x y x u d d d 22+=∫+=),()0,0(22d d ),(y x yy x x y x y x u )0,(x +=0y y x y d 02∫=yy x yd 02∫2221yx =)0,0(),(y x例6. 验证22d d yx xy y x +−在右半平面 ( x > 0 ) 内存在原函数 , 并求出它.证: 令2222,y x xQ y x y P +=+−=则)0()(22222>∂∂=+−=∂∂x yQ y x x y x P 由定理 2 可知存在原函数∫+−=),()0,1(22d d ),(y x yx xy y x y x u +=0)0(arctan >=x xyx y ∫+y y x y x 022d )0,(x )0,1(),(y x Ox y )0,(x )0,1(),(y x O ∫+−=),()0,1(22d d ),(y x yx xy y x y x u ∫+=y y y 021d yxy y arctan1arctan arctan −+=yx arctan 2π−=∫+−x y x x y 122d 或),1(y )0(arctan>=x xy例7. 设质点在力场作用下沿曲线 L :x y cos 2π=由)2π,0(A 移动到,)0,2π(B 求力场所作的功W解:)d d (2∫−=L y x x y r k 令,,22rx k Q r y k P −==则有)0()(22422≠+−=∂∂y x ry x k y P x Q∂∂=可见, 在不含原点的单连通区域内积分与路径无关..)(22y x r +=其中),(2x y rkF −=s F W Ld ∫⋅=L B Ay x O:AB )d d (2y x x y r kW AB −=∫θθθd )cos (sin 202π2+−=∫k )02π:(sin 2π,cos 2π→==θθθy x k 2π=思考: 积分路径是否可以取?OB AO ∪取圆弧为什么?注意, 本题只在不含原点的单连通区域内积分与路径无关 !LB A y xO 转内容小结判别: P , Q 在某单连通域D 内有连续一阶偏导数,,xQ y P ∂∂=∂∂D y x ∈),(③为全微分方程则求解步骤:方法1 凑微分法;方法2 利用积分与路径无关的条件.1. 求原函数 u (x , y )2. 由 d u = 0 知通解为 u (x , y ) = C .*三、全微分方程使若存在),(y x u y y x Q x y x P y x u d ),(d ),(),(d +=则称0d ),(d ),(=+y y x Q x y x P 为全微分方程.③),(y x yxO 例8. 求解0d )33(d )35(222324=+−+−+y y y x y x x y y x x 解: 因为=∂∂y P 236y y x −,xQ ∂∂=故这是全微分方程. ,0,000==y x 取则有x x y x u xd 5),(04∫=yy y x y x yd )33(0222∫+−+5x =2223y x +3y x −331y+因此方程的通解为Cy y x y x x =+−+332253123)0,(x 法10d )33(d )35(222324=+−+−+y y y x y x x y y x x 求解法2 此全微分方程的通解为 yu ∂∂,)(2y y =′ϕC y x u =),(x u ∂∂, 则有)(d )35(),(324y x y y x x y x u ϕ+−+=∫待定,)()(233225y y y x y x x ϕϕ+−+=两边对 y 求导得④yu ∂∂⑤由④得与⑤比较得331)(yy =ϕ取因此方程的通解为C y y x y x x =+−+33225312332435y y x x −+=22233y y x y x +−=)(3322y y x y x ϕ′+−=例9. 求解0d 1d )(2=−+y x x xy x 解:21x y P =∂∂∵∴ 这是一个全微分方程 .用凑微分法求通解.将方程改写为0d d d 2=−−xx y y x x x 即()(),0d 21d 2=−x y x 故原方程的通解为()021d 2=−xyx 或Cxyx =−221,xQ ∂∂=思考: 如何解方程?0d d )(3=−+y x x y x 这不是一个全微分方程 ,,12x就化成例9 的方程 .,0),(≠=y x µµ使d ),(),(d ),(),(=+y y x Q y x x y x P y x µµ为全微分方程,),(y x µ则称在简单情况下, 可凭观察和经验根据微分倒推式得到为原方程的积分因子.但若在方程两边同乘注:若存在连续可微函数 积分因子.内容小结1. 格林公式∫+L y Q x P d d2. 等价条件在 D 内与路径无关.yP x Q ∂∂=∂∂在 D 内有yQ x P u d d d +=yx y P x Q D d d ∫∫⎟⎠⎞⎜⎝⎛∂∂−∂∂=∫+Ly Q x P d d 对 D 内任意闭曲线 L 有0d d =+∫Ly Q x P 在 D 内有设 P , Q 在 D 内具有一阶连续偏导数, 则有为全微分方程0d d =+y Q x P思考与练习1. 设,4:,1:222412=+=+y x l y x L 且都取正向, 问下列计算是否正确 ?∫+−L y x x y y x 22d 4d )1(∫+−=l y x x y y x 22d 4d ∫−=l x y y x d 4d 41∫∫=Dσd 541π5=∫+−L y x x y y x 22d d )2(∫+−=l y x x y y x 22d d ∫−=l x y y x d d 41∫∫=D σd 241π2=提示:时022≠+y x y P x Q ∂∂≠∂∂)1(y P x Q ∂∂=∂∂)2(LO 2y1x2lD2. 设,)56,4(),(42234y y x xy x y x u −+=grad ).,(y x u 求提示:=),(d y x u x xy x d )4(34+y y y x d )56(422−+),(y x u O y x),(y x )0,(x x x x d 04∫=y y y x y d )56(0422∫−+C +551x =322y x +C y +−5x xy x d )4(34+y y y x d )56(422−+∫=),()0,0(y x C+作业P212 2 (1) ; 3 ; 4 (3) ; 5 (1) , (4) ; 6 (2) ,(5) ;*8 (2), (4), (7) ; 9∫∫′′−C C C ∪D O yx a a −C 备用题 1. 设 C 为沿[]y x a x y x a x x a y C d )ln(2d 22222+++++∫222a y x =+从点),0(a 依逆时针),0(a −的半圆, 计算解: 添加辅助线如图 ,利用格林公式 .原式 =3π21a =∫−−a a ya y d )ln 2(∫∫⎢⎣⎡=D 222x a y a ++222x a y +−y x d d ⎥⎦⎤C ′到点D2. 质点M 沿着以AB 为直径的半圆, 从 A (1,2) 运动到+=∫∫D y x d d 2点B (3, 4),到原点的距离,解: 由图知 故所求功为AB y x x y d d +−=∫AB (∫=BA ∪AB []x x x d )1(31∫++−2π2−=锐角,其方向垂直于OM , 且与y 轴正向夹角为AB ∫+))d d (y x x y +−)1(21334−+=−−x y AB 的方程F 求变力 F 对质点M 所作的功. ( 1990 考研 ) ,),(x y F −=F 的大小等于点 M 在此过程中受力 F 作用,s F W d ⋅=∫O ),(y x M B A y x,0)1,0(,1=∈F C F 3. 已知曲线积分与路径无关, 其中求由确定的隐函数解:因积分与路径无关 , 故有x F x F x sin cos +−xF x y F y sin sin +=即因此有]d cos d sin [),(y x x x y y x F L −∫0),(=y x F .)(x f y =x y F F y x tan =−x y y tan =′10==x y xy cos 1=x sec =]sin ),([]cos ),([x y y x F yx y x F x ∂∂=−∂∂y ′。