数字信号处理第三章汇总
- 格式:doc
- 大小:1.08 MB
- 文档页数:21
·54· 第3章 离散傅里叶变换(DFT )及其快速算法(FFT )3.1 引 言本章是全书的重点,更是学习数字信号处理技术的重点内容。
因为DFT (FFT )在数字信号处理这门学科中起着不一般的作用,它使数字信号处理不仅可以在时域也可以在频域进行处理,使处理方法更加灵活,能完成模拟信号处理完不成的许多处理功能,并且增加了若干新颖的处理内容。
离散傅里叶变换(DFT )也是一种时域到频域的变换,能够表征信号的频域特性,和已学过的FT 和ZT 有着密切的联系,但是它有着不同于FT 和ZT 的物理概念和重要性质。
只有很好地掌握了这些概念和性质,才能正确地应用DFT (FFT ),在各种不同的信号处理中充分灵活地发挥其作用。
学习这一章重要的是会应用,尤其会使用DFT 的快速算法FFT 。
如果不会应用FFT ,那么由于DFT 的计算量太大,会使应用受到限制。
但是FFT 仅是DFT 的一种快速算法,重要的物理概念都在DFT 中,因此重要的还是要掌握DFT 的基本理论。
对于FFT 只要掌握其基本快速原理和使用方法即可。
3.2 习题与上机题解答说明:下面各题中的DFT 和IDFT 计算均可以调用MA TLAB 函数fft 和ifft 计算。
3.1 在变换区间0≤n ≤N -1内,计算以下序列的N 点DFT 。
(1) ()1x n =(2) ()()x n n δ=(3) ()(), 0<<x n n m m N δ=- (4) ()(), 0<<m x n R n m N = (5) 2j()e, 0<<m n N x n m N π=(6) 0j ()e n x n ω=(7) 2()cos , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(8)2()sin , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(9) 0()cos()x n n ω=(10) ()()N x n nR n =(11) 1,()0n x n n ⎧=⎨⎩,解:(1) X (k ) =1N kn N n W -=∑=21j0eN kn nn π--=∑=2jj1e1ekN n k nπ---- = ,00,1,2,,1N k k N =⎧⎨=-⎩(2) X (k ) =1()N knNM n W δ-=∑=10()N n n δ-=∑=1,k = 0, 1, …, N -1(3) X (k ) =100()N knNn n n W δ-=-∑=0kn NW 1()N n n n δ-=-∑=0kn NW,k = 0, 1, …, N -1为偶数为奇数·55·(4) X (k ) =1m knN n W -=∑=11kmN N W W --=j (1)sin esin k m N mk N k N π--π⎛⎫⎪⎝⎭π⎛⎫ ⎪⎝⎭,k = 0, 1, …, N -1 (5) X (k ) =21j 0e N mn kn N N n W π-=∑=21j ()0e N m k nNn π--=∑=2j()2j()1e1em k N N m k Nπ--π----= ,0,,0≤≤1N k mk m k N =⎧⎨≠-⎩(6) X (k ) =01j 0eN nknN n W ω-=∑=021j 0e N k nN n ωπ⎛⎫-- ⎪⎝⎭=∑=002j 2j 1e1ek NN k N ωωπ⎛⎫- ⎪⎝⎭π⎛⎫- ⎪⎝⎭--= 0210j 202sin 2e2sin /2N k N N k N k N ωωωπ-⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦,k = 0, 1, …, N -1或 X (k ) =00j 2j 1e 1e Nk N ωωπ⎛⎫- ⎪⎝⎭--,k = 0, 1, …, N -1(7) X (k ) =102cos N kn N n mn W N -=π⎛⎫ ⎪⎝⎭∑=2221j j j 01e e e 2N mn mn kn N N N n πππ---=⎛⎫ ⎪+ ⎪⎝⎭∑=21j ()01e 2N m k n N n π--=∑+21j ()01e 2N m k n N n π--+=∑=22j ()j ()22j ()j ()11e 1e 21e 1e m k N m k N N N m k m k N N ππ--+ππ--+⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦=,,20,,N k m k N mk m k N M ⎧==-⎪⎨⎪≠≠-⎩,0≤≤1k N - (8) ()22j j 21()sin ee 2j mn mnN N x n mn N ππ-π⎛⎫== ⎪-⎝⎭ ()()112222j j j ()j ()0011()=e e ee 2j 2j j ,2=j ,20,(0≤≤1)N N kn mn mn m k n m k n N N N N N n n X k W Nk m N k N mk k N --ππππ---+===--⎧-=⎪⎪⎨=-⎪⎪-⎪⎩∑∑其他(9) 解法① 直接计算χ(n ) =cos(0n ω)R N (n ) =00j j 1[e e ]2n n ωω-+R N (n )X (k ) =1()N knNn n W χ-=∑=0021j j j 01[e e ]e 2N kn n n N n ωωπ---=+∑=0000j j 22j j 11e 1e 21e 1e N N k k N N ωωωω-ππ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦,k = 0, 1, … , N -1 解法② 由DFT 共轭对称性可得同样的结果。
3.4系列的Z 变换与连续信号的拉普拉斯变换、傅里叶变换的关系序列的Z 变换与连续信号的拉普拉斯变换、傅里叶变换的关系拉普拉斯变换拉普拉斯逆变换傅里叶变换傅里叶逆变换序列x(n)的Z 变换逆Z 变换抽样信号的拉普拉斯变换[]⎰∞∞--==dt e t x t x LT s X st a )()()([]⎰∞+∞--==j j st a dte t x s X LT t x σσ)()()(1Ω+=j s σ[]⎰∞∞-Ω-==Ωdte t x t x FT j X t j )()()([]⎰∞∞-Ω-ΩΩ=Ω=d e j X j X FT t x tj )()()(1Ω=j s ()()nn X z x n z ∞-=-∞=∑,2,1,0,)(21)(1±±==⎰-n dz z z X jn x cn π()()()()()∑∑⎰⎰∑⎰∞-∞=-∞-∞=∞∞--∞∞--∞-∞=∞∞--∧∧∧=-=-==⎥⎦⎤⎢⎣⎡=n nsTan st a stn ast a a a enT x dte nT t nT x dt e nT t nT x dt e t x t x LT s X δδ)()()(抽样序列的z 变换为3.4.1拉氏变换与Z 变换变换的关系就是复变量s 平面到复变量z 平面的映射:令 s=σ+j Ω, z=re j ω 得到: re j ω =e (σ+j Ω)T =e σT e j ΩT , 因而 r=e σT , ω=ΩT3.4.2 ω= ΩTΩ=0 、π/T 、3π/T 、 Ω0与ω的对应关系 Ω变化时与ω的对应关系s 平面到z 平面的映射是多值映射。
(傅里叶变换是拉普拉斯变换在虚轴的特例,即s =j Ω,因而映射到z 平面上为单位圆,代入 抽样序列的z 变换sTez=()[]()∑∞-∞=-==n nzn x n x ZT z X )(()eˆ()(e )(2.89)sTsT az X z X X s ===得取样序列在单位圆上的Z变换,等于其理想取样信号的傅里叶变换 。
数字信号处理第三章数字信号处理第三章实验程序3.1计算离散时间傅里叶变换% Program P3_1% Evaluation of the DTFTclf;% Compute the frequency samples of the DTFT w = -4*pi:8*pi/511:4*pi;num = [2 1];den = [1 -0.6];h = freqz(num, den, w);% Plot the DTFTsubplot(2,1,1)plot(w/pi,real(h));gridtitle('Real part of H(e^{j\omega})')xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,1,2)plot(w/pi,imag(h));gridtitle('Imaginary part of H(e^{j\omega})') xlabel('\omega /\pi');ylabel('Amplitude');pausesubplot(2,1,1)plot(w/pi,abs(h));gridtitle('Magnitude Spectrum |H(e^{j\omega})|') xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,1,2)plot(w/pi,angle(h));gridtitle('Phase Spectrum arg[H(e^{j\omega})]') xlabel('\omega /\pi');ylabel('Phase in radians');Q3.1离散时间傅里叶变换的原始序列是H(e^jw)=(2+z^-1)/(1-0.6z^-1)。
第三章 自适应数字滤波器3.1 引言滤波器的设计都是符合准则的最佳滤波器。
维纳滤波器参数固定,适用于平稳随机信号的最佳滤波;自适应滤波器参数可以自动地按照某种准则调整到最佳。
本章主要涉及自适应横向滤波器.....、自适应格型滤波器........、最小二乘自适应滤波器..........。
3.2 自适应横向滤波器自适应...线性组合....器.和自适应....FIR ...滤波器...是自适应信号......处理的基础.....。
3.2.1 自适应线性组合器和自适应FIR 滤波器自适应滤波器的矩阵表示式 滤波器输出:()()()1N m y n w m x n m -==-∑n 用j 表示,自适应滤波器的矩阵形式为T T j jj y ==X W W X 式中1212,,,,,,,TTN N w w w x x x ⎡⎤⎡⎤==⎣⎦⎣⎦W X误差信号表示为T T j j j j jj j e d y d d =-=-=-X W W X 与维纳滤波相同,先考虑最小均方误差准则:()2222T T j j j j dx xx E e E d y E e ⎡⎤⎡⎤⎡⎤=-=-+⎣⎦⎣⎦⎢⎥⎣⎦R W W R W2j E e ⎡⎤⎣⎦称为性能函数....,将其对每个权系数求微分,形成一个与权系数相同的列向量: 2221222,,,Tj j jj xx dx N E e E e E e w w w ⎡⎤⎡⎤⎡⎤⎡⎤∂∂∂⎣⎦⎣⎦⎣⎦⎢⎥∇==-∂∂∂⎢⎥⎣⎦R W R令梯度为零,可得最佳权系数此时最小均方误差为:22*min T j j dx E e E d ⎡⎤⎡⎤=-⎣⎦⎣⎦W R 要求2minj Ee ⎡⎤⎣⎦和最佳权系数*W ,先求自相关矩阵xx R 和互相关矩阵dx R 。
3.2.2 性能函数表示式及几何意义3.2.3 最陡下降法3.2.1给出了要求2minj Ee ⎡⎤⎣⎦和最佳权系数*W 的理论求解方法,但实际很难应用。
数字信号处理刘顺兰第三章完整版习题解答一、题目解答1. 题目利用时域抽样、频域抽样、零填充、插值法等,实现信号的变换。
1.1 时域抽样时域抽样是指将一个连续时间信号在时间轴上的等间隔位置上进行采样,可以得到一个离散时间信号。
时域抽样的原理是,将时间轴上的信号按照一定的时间间隔进行采样,每个采样点的振幅值就是该点对应的连续时间信号的振幅值。
时域抽样可以通过以下步骤进行实现:1.假设连续时间信号为x(t),采样频率为Fs(采样频率是指每秒采样的次数),采样间隔为Ts(采样间隔是指相邻两个采样点之间的时间间隔)。
2.根据采样频率和采样间隔,计算出采样点数N:N =Fs * T,其中T为采样时长。
为Ts。
4.在每段的中点位置进行采样,得到N个采样点。
5.将N个采样点按照时域顺序排列,即可得到离散时间信号。
1.2 频域抽样频域抽样是指将一个连续频谱信号在频率轴上的等间隔位置上进行采样,可以得到一个离散频谱信号。
频域抽样的原理是,将频率轴上的信号按照一定的频率间隔进行采样,每个采样频率点上的能量值就是该频率点对应的连续频谱信号的能量值。
频域抽样可以通过以下步骤进行实现:1.假设连续频谱信号为X(f),采样频率为Fs(采样频率是指每秒采样的次数),采样间隔为Δf(采样间隔是指相邻两个采样频率点之间的频率间隔)。
2.根据采样频率和采样间隔,计算出采样点数N:N =Fs / Δf,其中Δf为采样频率点之间的频率间隔。
为Δf。
4.在每段的中点位置进行采样,得到N个采样频率点。
5.将N个采样频率点按照频域顺序排列,即可得到离散频谱信号。
1.3 零填充零填充是指在信号的末尾添加一些零值样本,使得信号的长度变长。
零填充的原理是,通过增加信号的长度,可以在时域和频域上提高信号的分辨率,从而更精确地观察信号的特征。
零填充可以通过以下步骤进行实现:1.假设原始信号为x(n),长度为N。
2.计算需要填充的长度L,L > 0。
第三章习题答案 3.1 (1)非周期(2)N=1 (3)N=10 (4)N=4 (5)N=20 3.2 02s f f ωπ=,1s sf T = (1)0153,2f ωπ==;0.3s T =,05f π= (2)010,25f ωπ==;0.3s T =,0503f =(3)0,0.55f πω==;0.3s T =,013f =(4)03.5,8.75f ωπ==;0.3s T =,0356f =(5) ()()()(){}0.20.210.20.20.20.2(0.2)(0.2)1cos(0.2)()2130.6cos(0.2)() 1.8()0.6()211.80.6()0.6()2110.910.610.6j n j n n n j n j n n nj n j n j j n e e F n u n F e e u n F e u n F e u n ee ππππππωπωπππ-+-----+=+⎡⎤⎡⎤-=-•+-⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤=-•-+-⎣⎦⎣⎦⎛⎫=-+ ⎪++⎝⎭3.3 function [X]=myDTFT(x, n, w)% 计算DTFT% [X]=myDTFT(x, n, w) %X=输出的DTFT 数组 %x=输入的有限长序列 %n=样本位置行向量 %w=频率点位置行向量 X=x*exp(-j*n ’*w)3.4 (1) 7()10.3j j X e eωω-=- (2)20.51()(10.5)10.5j j j j e X e e e ωωωω---=---(3)2()0.80.1610.4j j j e X e e ωωω--=⨯⨯-(4)112210.920.9()(10.9)10.9(10.9)j j j j j j e e X e e e e ωωωωωω-----⨯-⨯=-=---3.5(1) 23456()642246j j j j j j j X e e e e e e e ωωωωωωω------=++++++(2)234567()642246j j j j j j j j X e e e e e e e e ωωωωωωωω-------=+++++++ (3)234567()642246j j j j j j j j X e e e e e e e e ωωωωωωωω-------=+++---- (4)235678()642246j j j j j j j j X e e e e e e e e ωωωωωωωω-------=+++----3.6 00()()11()211j j j A X e ae ae ωωωωω---+⎡⎤=+⎢⎥--⎣⎦3.7 N=5,()5611()11j j j j j j e ee X e e e ωωωωωω----=+--N=25,()252611()11j j j j j j e e eX e e e ωωωωωω----=+-- N=100,()10010111()11j j j j j j e ee X e e e ωωωωωω----=+-- N=5,》n = -5:5; x =ones(1,11); % x(n)k = -500:499; w = (pi/500)*k; % [-pi, pi] X =1/11* x*exp(-j*pi/500*n'*k); % DTFT magX = abs(X); angX = angle(X); realX = real(X); imagX = imag(X); subplot(2,2,1); plot(w/pi,magX); gridxlabel('以pi 为单位的频率'); title('幅度部分'); ylabel('幅值') subplot(2,2,2); plot(w/pi,angX); gridxlabel('以pi 为单位的频率'); title('相位部分'); ylabel('弧度')-1-0.500.5100.51以pi 为单位的频率幅度部分幅值-1-0.500.51-4-2024以pi 为单位的频率相位部分弧度N=25,>> n = -25:25; x =ones(1,51); % x(n)k = -500:499; w = (pi/500)*k; % [-pi, pi] X =1/51* x*exp(-j*pi/500*n'*k); % DTFT magX = abs(X); angX = angle(X); realX = real(X); imagX = imag(X); subplot(2,2,1); plot(w/pi,magX); gridxlabel('以pi 为单位的频率'); title('幅度部分'); ylabel('幅值') subplot(2,2,2); plot(w/pi,angX); gridxlabel('以pi 为单位的频率'); title('相位部分'); ylabel('弧度')-1-0.8-0.6-0.4-0.200.20.40.60.81以pi 为单位的频率相位部分弧度-1-0.8-0.6-0.4-0.200.20.40.60.81以pi 为单位的频率幅度部分幅值N=100,>> n = -100:100; x =ones(1,201); % x(n)k = -500:499; w = (pi/500)*k; % [-pi, pi] X =1/201* x*exp(-j*pi/500*n'*k); % DTFT magX = abs(X); angX = angle(X); realX = real(X); imagX = imag(X); subplot(2,2,1); plot(w/pi,magX); gridxlabel('以pi 为单位的频率'); title('幅度部分'); ylabel('幅值') subplot(2,2,2); plot(w/pi,angX); gridxlabel('以pi 为单位的频率'); title('相位部分'); ylabel('弧度')-1-0.500.5100.51以pi 为单位的频率幅度部分幅值-1-0.500.51-4-2024以pi 为单位的频率相位部分弧度随着N 的增大,DTFT 的幅度特性主瓣越尖锐,旁瓣越小,越接近于1)(=n x 的DTFT 特性。
数字信号处理第三章实验程序3.1计算离散时间傅里叶变换% Program P3_1% Evaluation of the DTFTclf;% Compute the frequency samples of the DTFTw = -4*pi:8*pi/511:4*pi;num = [2 1];den = [1 -0.6];h = freqz(num, den, w);% Plot the DTFTsubplot(2,1,1)plot(w/pi,real(h));gridtitle('Real part of H(e^{j\omega})')xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,1,2)plot(w/pi,imag(h));gridtitle('Imaginary part of H(e^{j\omega})')xlabel('\omega /\pi');ylabel('Amplitude');pausesubplot(2,1,1)plot(w/pi,abs(h));gridtitle('Magnitude Spectrum |H(e^{j\omega})|')xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,1,2)plot(w/pi,angle(h));gridtitle('Phase Spectrum arg[H(e^{j\omega})]')xlabel('\omega /\pi');ylabel('Phase in radians');Q3.1离散时间傅里叶变换的原始序列是H(e^jw)=(2+z^-1)/(1-0.6z^-1)。
Pause的作用是暂停等待用户输入任意键后接着执行以下命令。
Q3.2是周期函数,周期是2π。
实部和幅度谱是关于y 轴对称,是偶函数;虚部和相位谱是关于原点对称,是奇函数。
Q3.3 clf; N = 512;num = [0.7 -0.5 0.3 1]; den = [1 0.3 -0.5 0.7]; [h,w] = freqz(num, den, N); subplot(2,1,1)plot(w/pi,real(h));gridtitle('Real part of H(e^{j\omega})') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,1,2)plot(w/pi,imag(h));gridtitle('Imaginary part of H(e^{j\omega})') xlabel('\omega /\pi'); ylabel('Amplitude'); pausesubplot(2,1,1)plot(w/pi,abs(h));gridtitle('Magnitude Spectrum |H(e^{j\omega})|') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,1,2)plot(w/pi,angle(h));gridtitle('Phase Spectrum arg[H(e^{j\omega})]') xlabel('\omega /\pi');ylabel('Phase in radians');还是周期函数,周期是2π。
相位谱的跳变的原因是:在利用反正切函数计算角度的时候,其中的一个分支出现了衰减,造成了跳变。
clf;N = 512;num = [0.7 -0.5 0.3 1];den = [1 0.3 -0.5 0.7];[h,w] = freqz(num, den, N);subplot(2,1,1)plot(w/pi,unwrap(angle(h)));gridtitle('Phase Spectrum arg[H(e^{j\omega})]')xlabel('\omega /\pi');ylabel('Phase in radians');Q3.4 修改后的程序为clf;w = -4*pi:8*pi/511:4*pi;num = [1 3 5 7 9 11 13 15 17];den = 1;h = freqz(num, den, w);% Plot the DTFTsubplot(2,1,1)plot(w/pi,real(h));gridtitle('Real part of H(e^{j\omega})')xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,1,2)plot(w/pi,imag(h));gridtitle('Imaginary part of H(e^{j\omega})')xlabel('\omega /\pi');ylabel('Amplitude');pausesubplot(2,1,1)plot(w/pi,abs(h));gridtitle('Magnitude Spectrum |H(e^{j\omega})|')xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,1,2)plot(w/pi,angle(h));gridtitle('Phase Spectrum arg[H(e^{j\omega})]')xlabel('\omega /\pi');ylabel('Phase in radians');是周期函数,周期是2π。
实部和幅度谱是关于y轴对称,是偶函数;虚部和相位谱是关于原点对称,是奇函数。
Q3.5若要改为以度为单位,则将程序中的第二个图的程序改为subplot(2,1,2)plot(w/pi,180*angle(h)/pi);gridtitle('Phase Spectrum arg[H(e^{j\omega})]')xlabel('\omega /\pi');ylabel('Phase in degrees');就可以了。
3.2离散时间傅里叶变换的性质1.时移特性clf;w = -pi:2*pi/255:pi;D = 10;num = [1 2 3 4 5 6 7 8 9];h1 = freqz(num, 1, w);h2 = freqz([zeros(1,D) num], 1, w);subplot(2,2,1)plot(w/pi,abs(h1));gridtitle('Magnitude Spectrum of Original Sequence','FontSize',8)xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,2,2)plot(w/pi,abs(h2));gridtitle('Magnitude Spectrum of Time-Shifted Sequence','FontSize',8)xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,2,3)plot(w/pi,angle(h1));gridtitle('Phase Spectrum of Original Sequence','FontSize',8)xlabel('\omega /\pi');ylabel('Phase in radians');subplot(2,2,4)plot(w/pi,angle(h2));gridtitle('Phase Spectrum of Time-Shifted Sequence','FontSize',8)xlabel('\omega /\pi');ylabel('Phase in radians');Q3.6参数D控制时移量。
Q3.7D=10 D=50时移特性:信号在时域移动某个距离,则所得信号的幅度谱和原信号相同,而相位谱是原信号的相位谱再附加一个线性相移,由时移特性可以看到,信号的相位谱可以反映信号在时域中的位置信息,不同位置上的同一信号,它们具有不同的相频特性,而幅频特性相同。
Q3.8如上图所示Q3.9改变序列长度num = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29];所得的图像为D=10 D=50从上图中可以看出,增加序列的长度,使得幅度谱更加窄,而相位谱则更加密集和陡峭。
2.平移特性Q3.10clf;w = -pi:2*pi/255:pi;wo = 0.4*pi;num1 = [1 3 5 7 9 11 13 15 17];L = length(num1);h1 = freqz(num1, 1, w);n = 0:L-1;num2 = exp(wo*i*n).*num1;h2 = freqz(num2, 1, w);subplot(2,2,1)plot(w/pi,abs(h1));gridtitle('Magnitude Spectrum of Original Sequence','FontSize',8)xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,2,2)plot(w/pi,abs(h2));gridtitle('Magnitude Spectrum of Frequency-Shifted Sequence','FontSize',8)xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,2,3)plot(w/pi,angle(h1));gridtitle('Phase Spectrum of Original Sequence','FontSize',8)xlabel('\omega /\pi');ylabel('Phase in radians');subplot(2,2,4)plot(w/pi,angle(h2));gridtitle('Phase Spectrum of Frequency-Shifted Sequence','FontSize',8)xlabel('\omega /\pi');ylabel('Phase in radians');Wo控制平移量。