数字信号处理第三章
- 格式:doc
- 大小:1.08 MB
- 文档页数:21
3.4系列的Z 变换与连续信号的拉普拉斯变换、傅里叶变换的关系序列的Z 变换与连续信号的拉普拉斯变换、傅里叶变换的关系拉普拉斯变换拉普拉斯逆变换傅里叶变换傅里叶逆变换序列x(n)的Z 变换逆Z 变换抽样信号的拉普拉斯变换[]⎰∞∞--==dt e t x t x LT s X st a )()()([]⎰∞+∞--==j j st a dte t x s X LT t x σσ)()()(1Ω+=j s σ[]⎰∞∞-Ω-==Ωdte t x t x FT j X t j )()()([]⎰∞∞-Ω-ΩΩ=Ω=d e j X j X FT t x tj )()()(1Ω=j s ()()nn X z x n z ∞-=-∞=∑,2,1,0,)(21)(1±±==⎰-n dz z z X jn x cn π()()()()()∑∑⎰⎰∑⎰∞-∞=-∞-∞=∞∞--∞∞--∞-∞=∞∞--∧∧∧=-=-==⎥⎦⎤⎢⎣⎡=n nsTan st a stn ast a a a enT x dte nT t nT x dt e nT t nT x dt e t x t x LT s X δδ)()()(抽样序列的z 变换为3.4.1拉氏变换与Z 变换变换的关系就是复变量s 平面到复变量z 平面的映射:令 s=σ+j Ω, z=re j ω 得到: re j ω =e (σ+j Ω)T =e σT e j ΩT , 因而 r=e σT , ω=ΩT3.4.2 ω= ΩTΩ=0 、π/T 、3π/T 、 Ω0与ω的对应关系 Ω变化时与ω的对应关系s 平面到z 平面的映射是多值映射。
(傅里叶变换是拉普拉斯变换在虚轴的特例,即s =j Ω,因而映射到z 平面上为单位圆,代入 抽样序列的z 变换sTez=()[]()∑∞-∞=-==n nzn x n x ZT z X )(()eˆ()(e )(2.89)sTsT az X z X X s ===得取样序列在单位圆上的Z变换,等于其理想取样信号的傅里叶变换 。
数字信号处理第三章数字信号处理第三章实验程序3.1计算离散时间傅里叶变换% Program P3_1% Evaluation of the DTFTclf;% Compute the frequency samples of the DTFT w = -4*pi:8*pi/511:4*pi;num = [2 1];den = [1 -0.6];h = freqz(num, den, w);% Plot the DTFTsubplot(2,1,1)plot(w/pi,real(h));gridtitle('Real part of H(e^{j\omega})')xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,1,2)plot(w/pi,imag(h));gridtitle('Imaginary part of H(e^{j\omega})') xlabel('\omega /\pi');ylabel('Amplitude');pausesubplot(2,1,1)plot(w/pi,abs(h));gridtitle('Magnitude Spectrum |H(e^{j\omega})|') xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,1,2)plot(w/pi,angle(h));gridtitle('Phase Spectrum arg[H(e^{j\omega})]') xlabel('\omega /\pi');ylabel('Phase in radians');Q3.1离散时间傅里叶变换的原始序列是H(e^jw)=(2+z^-1)/(1-0.6z^-1)。
第三章.离散傅里叶变换(DFT )一 离散傅里叶变换的定义及物理意义1 DFT 定义设x(n)是一个长度为M 的有限长序列10()[()]()0,1,,1N kn N n X k D FT x n x n Wk N -====-∑ 逆变换:101()[()]()N kn N k x n ID FT X k X k W N --===∑2 DFT 与傅里叶变换和z 变换的关系2()()j kN z e X k X z π== 3 DET 的隐含周期性在进行DFT 时,有限长序列都是作为周期序列的一个周期来考虑的。
因此,凡是涉及DFT 关系,都隐含有周期性意义二:离散傅里叶变换的基本性质1. 线性性质1212[()()]()()D FT ax n bx n aX k bX k +=+ a ,b 为常数2. 循环移位性质2,1序列的循环移位长度为N 的有限长序列x (n )的圆周移位定义为N N y(n )x ((n m ))R (n )=+2.2 时域循环移位定理设x (n )是长度为N 的有限长序列,y (n )为x (n )圆周移位则圆周移位后的DFT 为()[()][(())()]()m k N N N Y k D FT y n D FT x n m R n W X k -==+=2.3频域循环移位定理频域有限长序列X (k ),也可看成是分布在一个N 等分的圆周上由于频域与时域的对偶关系,有如下性质若 ()[()]X k DFT x n =则 2[(())()]()()j nl nl N N N N IDFT X k l R k W x n ex n π-+==3 循环卷积定理3.1定义:设x 1(n )和x 2(n )都是点数为N 的有限长序列(0≤n ≤N -1),且有:1122[()]()[()]()DFT x n X k DFT x n X k ==若12()()()Y k X k X k =则11201210()[()]()(())()()(())()N N N m N N N m y n ID FT Y k x m x n m R n xm x n m R n -=-===-=-∑∑上式所表示的运算称为x 1(n )和x 2(n )的N 点圆周卷积3.2 循环卷积定理若12()()()y n x n x n = x 1(n ),x 2(n )皆为N 点有限长序列则 1120121012()[()]1()(())()1()(())()1()()N N N l N N N l Y k D FT y n X l X k l R k NX l X k l R k NX k X k N -=-===-=-=∑∑ 3.3 复共轭序列的DFT设x *(n )为x (n )的共轭复序列,已知X (k )= DFT[x (n )]则DFT [x *(n )]=X *(N-k ) 0≤k ≤N -1且 X (N )=X (0)3.4 共轭对称性三 频域采样1频域采样定理如果序列x (n )长度为M ,则只有当频域采样点数N>M 时,才有()()()()()()N N N N r x n x n R n x n rN R n x n ∞=-∞==+=∑即由频域采样X (k )恢复原序列x (n ),否则产生时域混叠现象。
第三章习题答案 3.1 (1)非周期(2)N=1 (3)N=10 (4)N=4 (5)N=20 3.2 02s f f ωπ=,1s sf T = (1)0153,2f ωπ==;0.3s T =,05f π= (2)010,25f ωπ==;0.3s T =,0503f =(3)0,0.55f πω==;0.3s T =,013f =(4)03.5,8.75f ωπ==;0.3s T =,0356f =(5) ()()()(){}0.20.210.20.20.20.2(0.2)(0.2)1cos(0.2)()2130.6cos(0.2)() 1.8()0.6()211.80.6()0.6()2110.910.610.6j n j n n n j n j n n nj n j n j j n e e F n u n F e e u n F e u n F e u n ee ππππππωπωπππ-+-----+=+⎡⎤⎡⎤-=-•+-⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤=-•-+-⎣⎦⎣⎦⎛⎫=-+ ⎪++⎝⎭3.3 function [X]=myDTFT(x, n, w)% 计算DTFT% [X]=myDTFT(x, n, w) %X=输出的DTFT 数组 %x=输入的有限长序列 %n=样本位置行向量 %w=频率点位置行向量 X=x*exp(-j*n ’*w)3.4 (1) 7()10.3j j X e eωω-=- (2)20.51()(10.5)10.5j j j j e X e e e ωωωω---=---(3)2()0.80.1610.4j j j e X e e ωωω--=⨯⨯-(4)112210.920.9()(10.9)10.9(10.9)j j j j j j e e X e e e e ωωωωωω-----⨯-⨯=-=---3.5(1) 23456()642246j j j j j j j X e e e e e e e ωωωωωωω------=++++++(2)234567()642246j j j j j j j j X e e e e e e e e ωωωωωωωω-------=+++++++ (3)234567()642246j j j j j j j j X e e e e e e e e ωωωωωωωω-------=+++---- (4)235678()642246j j j j j j j j X e e e e e e e e ωωωωωωωω-------=+++----3.6 00()()11()211j j j A X e ae ae ωωωωω---+⎡⎤=+⎢⎥--⎣⎦3.7 N=5,()5611()11j j j j j j e ee X e e e ωωωωωω----=+--N=25,()252611()11j j j j j j e e eX e e e ωωωωωω----=+-- N=100,()10010111()11j j j j j j e ee X e e e ωωωωωω----=+-- N=5,》n = -5:5; x =ones(1,11); % x(n)k = -500:499; w = (pi/500)*k; % [-pi, pi] X =1/11* x*exp(-j*pi/500*n'*k); % DTFT magX = abs(X); angX = angle(X); realX = real(X); imagX = imag(X); subplot(2,2,1); plot(w/pi,magX); gridxlabel('以pi 为单位的频率'); title('幅度部分'); ylabel('幅值') subplot(2,2,2); plot(w/pi,angX); gridxlabel('以pi 为单位的频率'); title('相位部分'); ylabel('弧度')-1-0.500.5100.51以pi 为单位的频率幅度部分幅值-1-0.500.51-4-2024以pi 为单位的频率相位部分弧度N=25,>> n = -25:25; x =ones(1,51); % x(n)k = -500:499; w = (pi/500)*k; % [-pi, pi] X =1/51* x*exp(-j*pi/500*n'*k); % DTFT magX = abs(X); angX = angle(X); realX = real(X); imagX = imag(X); subplot(2,2,1); plot(w/pi,magX); gridxlabel('以pi 为单位的频率'); title('幅度部分'); ylabel('幅值') subplot(2,2,2); plot(w/pi,angX); gridxlabel('以pi 为单位的频率'); title('相位部分'); ylabel('弧度')-1-0.8-0.6-0.4-0.200.20.40.60.81以pi 为单位的频率相位部分弧度-1-0.8-0.6-0.4-0.200.20.40.60.81以pi 为单位的频率幅度部分幅值N=100,>> n = -100:100; x =ones(1,201); % x(n)k = -500:499; w = (pi/500)*k; % [-pi, pi] X =1/201* x*exp(-j*pi/500*n'*k); % DTFT magX = abs(X); angX = angle(X); realX = real(X); imagX = imag(X); subplot(2,2,1); plot(w/pi,magX); gridxlabel('以pi 为单位的频率'); title('幅度部分'); ylabel('幅值') subplot(2,2,2); plot(w/pi,angX); gridxlabel('以pi 为单位的频率'); title('相位部分'); ylabel('弧度')-1-0.500.5100.51以pi 为单位的频率幅度部分幅值-1-0.500.51-4-2024以pi 为单位的频率相位部分弧度随着N 的增大,DTFT 的幅度特性主瓣越尖锐,旁瓣越小,越接近于1)(=n x 的DTFT 特性。
数字信号处理第三章实验程序3.1计算离散时间傅里叶变换% Program P3_1% Evaluation of the DTFTclf;% Compute the frequency samples of the DTFTw = -4*pi:8*pi/511:4*pi;num = [2 1];den = [1 -0.6];h = freqz(num, den, w);% Plot the DTFTsubplot(2,1,1)plot(w/pi,real(h));gridtitle('Real part of H(e^{j\omega})')xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,1,2)plot(w/pi,imag(h));gridtitle('Imaginary part of H(e^{j\omega})')xlabel('\omega /\pi');ylabel('Amplitude');pausesubplot(2,1,1)plot(w/pi,abs(h));gridtitle('Magnitude Spectrum |H(e^{j\omega})|')xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,1,2)plot(w/pi,angle(h));gridtitle('Phase Spectrum arg[H(e^{j\omega})]')xlabel('\omega /\pi');ylabel('Phase in radians');Q3.1离散时间傅里叶变换的原始序列是H(e^jw)=(2+z^-1)/(1-0.6z^-1)。
Pause的作用是暂停等待用户输入任意键后接着执行以下命令。
Q3.2是周期函数,周期是2π。
实部和幅度谱是关于y轴对称,是偶函数;虚部和相位谱是关于原点对称,是奇函数。
Q3.3clf;N = 512;num = [0.7 -0.5 0.3 1];den = [1 0.3 -0.5 0.7];[h,w] = freqz(num, den, N);subplot(2,1,1)plot(w/pi,real(h));gridtitle('Real part of H(e^{j\omega})')xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,1,2)plot(w/pi,imag(h));gridtitle('Imaginary part of H(e^{j\omega})')xlabel('\omega /\pi');ylabel('Amplitude');pausesubplot(2,1,1)plot(w/pi,abs(h));gridtitle('Magnitude Spectrum |H(e^{j\omega})|')xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,1,2)plot(w/pi,angle(h));gridtitle('Phase Spectrum arg[H(e^{j\omega})]')xlabel('\omega /\pi');ylabel('Phase in radians');还是周期函数,周期是2π。
相位谱的跳变的原因是:在利用反正切函数计算角度的时候,其中的一个分支出现了衰减,造成了跳变。
clf;N = 512;num = [0.7 -0.5 0.3 1];den = [1 0.3 -0.5 0.7];[h,w] = freqz(num, den, N);subplot(2,1,1)plot(w/pi,unwrap(angle(h)));gridtitle('Phase Spectrum arg[H(e^{j\omega})]')xlabel('\omega /\pi');ylabel('Phase in radians');Q3.4 修改后的程序为clf;w = -4*pi:8*pi/511:4*pi;num = [1 3 5 7 9 11 13 15 17];den = 1;h = freqz(num, den, w);% Plot the DTFTsubplot(2,1,1)plot(w/pi,real(h));gridtitle('Real part of H(e^{j\omega})')xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,1,2)plot(w/pi,imag(h));gridtitle('Imaginary part of H(e^{j\omega})')xlabel('\omega /\pi');ylabel('Amplitude');pausesubplot(2,1,1)plot(w/pi,abs(h));gridtitle('Magnitude Spectrum |H(e^{j\omega})|')xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,1,2)plot(w/pi,angle(h));gridtitle('Phase Spectrum arg[H(e^{j\omega})]')xlabel('\omega /\pi');ylabel('Phase in radians');是周期函数,周期是2π。
实部和幅度谱是关于y轴对称,是偶函数;虚部和相位谱是关于原点对称,是奇函数。
Q3.5若要改为以度为单位,则将程序中的第二个图的程序改为subplot(2,1,2)plot(w/pi,180*angle(h)/pi);gridtitle('Phase Spectrum arg[H(e^{j\omega})]')xlabel('\omega /\pi');ylabel('Phase in degrees');就可以了。
3.2离散时间傅里叶变换的性质1.时移特性clf;w = -pi:2*pi/255:pi;D = 10;num = [1 2 3 4 5 6 7 8 9];h1 = freqz(num, 1, w);h2 = freqz([zeros(1,D) num], 1, w);subplot(2,2,1)plot(w/pi,abs(h1));gridtitle('Magnitude Spectrum of Original Sequence','FontSize',8)xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,2,2)plot(w/pi,abs(h2));gridtitle('Magnitude Spectrum of Time-Shifted Sequence','FontSize',8)xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,2,3)plot(w/pi,angle(h1));gridtitle('Phase Spectrum of Original Sequence','FontSize',8)xlabel('\omega /\pi');ylabel('Phase in radians');subplot(2,2,4)plot(w/pi,angle(h2));gridtitle('Phase Spectrum of Time-Shifted Sequence','FontSize',8)xlabel('\omega /\pi');ylabel('Phase in radians');Q3.6参数D控制时移量。
Q3.7D=10 D=50时移特性:信号在时域移动某个距离,则所得信号的幅度谱和原信号相同,而相位谱是原信号的相位谱再附加一个线性相移,由时移特性可以看到,信号的相位谱可以反映信号在时域中的位置信息,不同位置上的同一信号,它们具有不同的相频特性,而幅频特性相同。
Q3.8如上图所示Q3.9改变序列长度num = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29];所得的图像为D=10 D=50从上图中可以看出,增加序列的长度,使得幅度谱更加窄,而相位谱则更加密集和陡峭。
2.平移特性Q3.10clf;w = -pi:2*pi/255:pi;wo = 0.4*pi;num1 = [1 3 5 7 9 11 13 15 17];L = length(num1);h1 = freqz(num1, 1, w);n = 0:L-1;num2 = exp(wo*i*n).*num1;h2 = freqz(num2, 1, w);subplot(2,2,1)plot(w/pi,abs(h1));gridtitle('Magnitude Spectrum of Original Sequence','FontSize',8)xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,2,2)plot(w/pi,abs(h2));gridtitle('Magnitude Spectrum of Frequency-Shifted Sequence','FontSize',8)xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,2,3)plot(w/pi,angle(h1));gridtitle('Phase Spectrum of Original Sequence','FontSize',8)xlabel('\omega /\pi');ylabel('Phase in radians');subplot(2,2,4)plot(w/pi,angle(h2));gridtitle('Phase Spectrum of Frequency-Shifted Sequence','FontSize',8)xlabel('\omega /\pi');ylabel('Phase in radians');Wo控制平移量。