数字信号处理 程佩青PPT第三章
- 格式:pptx
- 大小:2.21 MB
- 文档页数:107
第一章离散时间信号与系统学习目标•掌握序列的概念及其几种典型序列的定义,掌握序列的基本运算,并会判断序列的周期性。
•掌握线性/移不变/因果/稳定的离散时间系统的概念并会判断,掌握线性移不变系统及其因果性/稳定性判断的充要条件。
•理解常系数线性差分方程及其用迭代法求解单位抽样响应。
•了解对连续时间信号的时域抽样,掌握奈奎斯特抽样定理,了解抽样的恢复过程。
1.1 离散时间信号——序列信号是传递信息的函数。
针对信号的自变量和函数值的取值,可分为三种信号:(1)连续时间信号-----自变量取连续值,而函数值可连续可离散。
当函数值是连续的,又常称模拟信号,如语音信号、电视信号等。
(2)离散时间信号-----自变量取离散值,而函数值连续。
(3)数字信号-----自变量和函数值均取离散值。
它是信号幅度离散化了的离散时间信号。
——序列的概念(t)进行等间隔这里n 取整数。
对于不同的n 值,x a (nT)是一个有序的数字序列,该数字序列就是离散时间信号。
注意,这里的n取整数,非整数时无定义,另外,在数值上它等于信号的采样值,即∞<<∞-=n nT x n x a ),()({},...9,8,7,3,2,1...)(=n x 离散时间信号的表示方法:公式表示法、图形表示法、集合符号表示法,如二、常用序列δ(n)δ(n)与u(n)之间的关系)1()()(--=n u n u n δ∑∞=-=0)()(k k n n u δ令n-k=m ,有∑-∞==nm m n u )()(δ3. 矩形序列R(n)N4. 实指数序列)()(n u a n x n ,a 为实数0n0<a<10n a>1a<-1或-1<a<0,序列的幅值摆动0n -1<a<00n a<-15. 正弦序列)sin()(φω+=n A n xnj en x 0)(ω=)sin()cos()(00n j n n x ωω+=()nj nM j ee002ωπω=+Λ2,1,0±±=M nj en x )(0)(ωσ+=6. 复指数序列这里ω为数字域频率,单位为弧度。
第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2x(m)()h n m -n1 1 1 0 0 0 0 y(n) 0 11 1 1 12 2 1 1 13 3 1 1 1 1 34 0 1 1 1 1 2 511111(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列, nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。