32
(二) 乘法公式:
由条件概 ,立率 即P 定 可 (A 义 0 得 )则 , 有 P(AP B()A)|A P)(.B
推广 P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB). 一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式: P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
(1P) (|A )0.
(2设 )B 1,B 2,,B n两两互 ,则 不相
n
n
P ( Bi |A) P(iB|A.)
30
i1
i1
(3P )B (|A )1P (B |A ).
(4P ) (C B |A P ) |( A B P ) |( A C ) -P(|A B)C .
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
不可能事件:空集φ不包含任何样本点, 它在每次试验中 都不发生,称为不可能事件。
6
例1. 试确定试验E2中样本空间, 样本点的个数, 并给出如
下事件的元素: 事件A1=“第一次出现正面”、事件A2=“ 恰好出现一次正面”、事件A3=“至少出现一次正面”.
7
(三)事件间的关系与事件的运算
1.包含关系和相等关系:
(1) 对任一事件A,有P(A)≥0; (非负性) (2) P(S)=1;(规范性) (3) 设A1,A2,…是两两互不相容的事件,则有
P(A1 A2 …)=P(A1)+P(A2)+… (可列可加性)
25
2.概率的性质: 性1质 . P()0.