- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高校教育精品PPT
14
§3. 概率的概念 一. 古典定义:
等可能概型的两个特点:
(1) 样本空间中的元素只有有限个;
(2) 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子,观察出现的点数.
概率的古典定义:
对于古典概型, 样本空间S={1, 2, … , n}, 设事件A包 含S的 k 个样本点,则事件A的概率定义为
高校教育精品PPT
5
(二) 随机事件
定义 样本空间S的子集称为随机事件, 简称事件. 在一 次试验中, 当且仅当这一子集中的一个样本点出现时, 称 这一事件发生.
基本事件: 由一个样本点组成的单点集. 如:{H},{T}.
复合事件: 由两个或两个以上的基本事件复合而成的事件 为复合事件. 如:E3中{出现正面次数为奇数}.
必然事件: 样本空间S是自身的子集,在每次试验中总是 发生的,称为必然事件。
不可能事件:空集φ不包含任何样本点, 它在每次试验中 都不发生,称为不可能事件。
高校教育精品PPT
6
例1. 试确定试验E2中样本空间, 样本点的个数, 并给出如
下事件的元素: 事件A1=“第一次出现正面”、事件A2=“ 恰好出现一次正面”、事件A3=“至少出现一次正面”.
(2)A B
A B
(3)A B
S 高校教育精品PPT
9
4.差事件:
事件A-B={x|xA且xB} 称为A与B的差. 当且仅当 A发生, B不发生时事件A-B发生. 即:
A - B A AB
显然: A-A=, A- =A, A-S=
s
A B
(4)A B
高校教育精品PPT
10
5.事件的互不相容(互斥): 若A B ,则称A与B是互不相容的,或互斥的,即
S
BA
高校教育精品PPT
12
7.事件的运算律:
交换律: A B B A;A B B A.
结合律: A (B C) (A B) C ; A (B C) (A B) C.
分配律: A (B C) (A B) (A C); A (B C) (A B) (A C).
即A, B中至少有一个发生, 称为A与B的和, 记A B.
可列个事件A1, A2 , 的和事件记为 Ak .
k 1
3.积事件: 事件A B={x|x A 且 x B}称A与B的
积,即事件A与BA同时发生. A B 可简记为AB.
类似地,
事件
SA
k 1
K
为可列B 个事件A1,
A2,
...的积事件.
A中的基本事件数 k
P( A) S中的基本事件总 高校教育精品PPT 数 n
15
古典概型概率的计算步骤:
(1) 选取适当的样本空间S, 使它满足有限等可能的要求, 且把事件A表示成S的某个子集.
(2) 计算样本点总数n及事件A包含的样本点数k.
(3) 用下列公式计算:
P( A)
SA中中的的基基本本事事件件总数数
高校教育精品PPT
17
例3. 某接待站在某一周曾接待过12次来访, 且都是在周二 和周四来访. 问是否可以推断接待时间是有规定的?
注
实际推断原理:“小概率事件在一次试 验中实际上是不可能发生的”.
高校教育精品PPT
18
二、几何定义:
定义若对于一随机试验, 每个样本点出现是等可能的,
高校教育精品PPT
4
§2. 样本空间与随机事件
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
概率论与数理统计
高校教育精品PPT
1
第一章 概率论的基本概念 前言
1. 确定性现象和不确定性现象. 2. 随机现象: 在个别试验中其结果呈现出不确定性, 在 大量重复试验中其结果又具有统计规律性.
3. 概率与数理统计的广泛应用.
高校教育精品PPT
2
§1.随机试验
我们将对自然现象的一次观察或进行一次科学试验 称为试验。
高校教育精品PPT
7
(三)事件间的关系与事件的运算
1.包含关系和相等关系:
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
B
A S
(1) A B 高校教育 { x | x A或x B}称为A与B的和事件.
A与B不能同时发生.
B
AB
A
高校教育精品PPT
11
6. 对立事件(逆事件):
若A B S且A B ,则称A与B互为逆事件,也称
为对立事件. 即 : 在一次实验中, 事件A与B中必然有一 个发生, 且仅有一个发生.
A的对立事件记为A.若A与B互为对立事件,则记为A B, 或B A.
B A
对偶律: A B A B;
A B A B.
证明 对偶律.
高校教育精品PPT
13
例.事件A、B、C两两互不相容,则有
ABC 反之不成立
例. 甲、乙、丙三人各射击一次,事件A1,A2,A3分别表示 甲、乙、丙射中,试说明下列事件所表示的结果:
A2 , A2 A3 , A1 A2 , A1 A2 , A1 A2 A3 , A1 A2 A2 A3 A1 A3 .
举例:
E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况. E2: 将一枚硬币抛三次,观察正反面出现的情况. E3: 将一枚硬币抛三次,观察出现正面的情况. E4: 电话交换台一分钟内接到的呼唤次数. E5: 在一批灯泡中任取一只, 测试它的寿命.
高校教育精品PPT
3
随机试验:
(1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的 结果; (3) 一次试验前不能确定会出现哪个结果.
k n
高校教育精品PPT
16
例1. 袋中装有4只白球和2只红球. 从袋中摸球两次,每次任取一球.有两种式: (a)放回抽样; (b)不放回抽样.
求: (1)两球颜色相同的概率; (2)两球中至少有一只白球的概率.
例2. 设一袋中有编号为1,2,…,9的球共9只, 现从中任取3 只, 试求: (1)取到1号球的概率,(事件A) (2)最小号码为5的概率.(事件B)