高一数学对数函数及其性质4
- 格式:pdf
- 大小:1.06 MB
- 文档页数:10
高中数学人教必修第一册第四章知识点讲解对数函数及其性质1.对数函数的概念(1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的特征:a x 的系数:1a x 的底数:常数,且是不等于1的正实数a x 的真数:仅是自变量x判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因是不符合对数函数解析式的特点.【例1-1】函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =__________.解析:由a 2-a +1=1,解得a =0,1.又a +1>0,且a +1≠1,∴a =1.答案:1【例1-2】下列函数中是对数函数的为__________.(1)y =log(a >0,且a ≠1);(2)y =log 2x +2;(3)y =8log 2(x +1);(4)y =log x 6(x >0,且x ≠1);(5)y =log 6x .解析:答案:2.对数函数y =log a x (a >0,且a ≠1)的图象与性质(1)图象与性质a >10<a <1图象性质(1)定义域{x |x >0}(2)值域{y |y R }(3)当x =1时,y =0,即过定点(1,0)(4)当x >1时,y >0;当0<x <1时,y <0(4)当x >1时,y <0;当0<x <1时,y >0(5)在(0,+∞)上是增函数(5)在(0,+∞)上是减函数谈重点对对数函数图象与性质的理解对数函数的图象恒在y 轴右侧,其单调性取决于底数.a >1时,函数单调递增;0<a <1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.(2)指数函数与对数函数的性质比较解析式y =a x (a >0,且a ≠1)y =log a x (a >0,且a ≠1)性质定义域R (0,+∞)值域(0,+∞)R过定点(0,1)(1,0)单调性单调性一致,同为增函数或减函数奇偶性奇偶性一致,都既不是奇函数也不是偶函数(3)底数a 对对数函数的图象的影响①底数a 与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”.②底数的大小决定了图象相对位置的高低:不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.点技巧对数函数图象的记忆口诀两支喇叭花手中拿,(1,0)点处把花扎,若是底数小于1,左上穿点渐右下,若是底数大于1,左下穿点渐右上,绕点旋转底变化,顺时方向底变大,可用直线y =1来切,自左到右a 变大.【例2】如图所示的曲线是对数函数y =log a x 的图象.已知a,43,35,110中取值,则相应曲线C 1,C 2,C 3,C4的a 值依次为()A 43,35,110B 43,110,35C .43,,35,110D .43110,35解析:由底数对对数函数图象的影响这一性质可知,C 4的底数<C 3的底数<C 2的底数<C 1的底数.故相应于曲线C 1,C 2,C 3,C 4,43,35,110.答案:A点技巧根据图象判断对数函数的底数大小的方法(1)方法一:利用底数对对数函数图象影响的规律:在x 轴上方“底大图右”,在x 轴下方“底大图左”;(2)方法二:作直线y =1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小.3.反函数(1)对数函数的反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.(2)互为反函数的两个函数之间的关系①原函数的定义域、值域是其反函数的值域、定义域;②互为反函数的两个函数的图象关于直线y =x 对称.(3)求已知函数的反函数,一般步骤如下:①由y =f (x )解出x ,即用y 表示出x ;②把x 替换为y ,y 替换为x ;③根据y =f (x )的值域,写出其反函数的定义域.【例3-1】若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=()A .log 2xB .12xC .12log xD .2x-2解析:因为函数y =a x (a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以a =2.故f (x )=log 2x .答案:A【例3-2】函数f (x )=3x (0<x ≤2)的反函数的定义域为()A .(0,+∞)B .(1,9]C .(0,1)D .[9,+∞)解析:∵0<x ≤2,∴1<3x ≤9,即函数f (x )的值域为(1,9].故函数f (x )的反函数的定义域为(1,9].答案:B【例3-3】若函数y =f (x )的反函数图象过点(1,5),则函数y =f (x )的图象必过点()A .(5,1)B .(1,5)C .(1,1)D .(5,5)解析:由于原函数与反函数的图象关于直线y =x 对称,而点(1,5)关于直线y =x 的对称点为(5,1),所以函数y =f (x )的图象必经过点(5,1).答案:A 4.利用待定系数法求对数函数的解析式及函数值对数函数的解析式y =log a x (a >0,且a ≠1)中仅含有一个常数a ,则只需要一个条件即可确定对数函数的解析式,这样的条件往往是已知f (m )=n 或图象过点(m ,n )等等.通常利用待定系数法求解,设出对数函数的解析式f (x )=log a x (a >0,且a ≠1),利用已知条件列方程求出常数a 的值.利用待定系数法求对数函数的解析式时,常常遇到解方程,比如log a m =n ,这时先把对数式log a m =n 化为指数式的形式a n =m ,把m 化为以n 为指数的指数幂形式m =k n (k >0,且k ≠1),则解得a =k >0.还可以直接写出1na m =,再利用指数幂的运算性质化简1nm .例如:解方程log a 4=-2,则a -2=4,由于2142-⎛⎫= ⎪⎝⎭,所以12a =±.又a >0,所以12a =.当然,也可以直接写出124a -=,再利用指数幂的运算性质,得11212214(2)22a ---====.【例4-1】已知f (e x )=x ,则f (5)=()A .e 5B .5eC .ln 5D .log 5e解析:(方法一)令t =e x,则x =ln t ,所以f (t )=ln t ,即f (x )=ln x .所以f (5)=ln 5.(方法二)令e x =5,则x =ln 5,所以f (5)=ln 5.答案:C【例4-2】已知对数函数f (x )的图象经过点1,29⎛⎫⎪⎝⎭,试求f (3)的值.分析:设出函数f (x )的解析式,利用待定系数法即可求出.解:设f (x )=log a x (a >0,且a ≠1),∵对数函数f (x )的图象经过点1,29⎛⎫⎪⎝⎭,∴11log 299a f ⎛⎫== ⎪⎝⎭.∴a 2=19.∴a =11222111933⎡⎤⎛⎫⎛⎫==⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.∴f (x )=13log x .∴f (3)=111331log 3log 3-⎛⎫= ⎪⎝⎭=-1.【例4-3】已知对数函数f (x )的反函数的图象过点(2,9),且f (b )=12,试求b 的值.解:设f (x )=log a x (a >0,且a ≠1),则它的反函数为y =a x (a >0,且a ≠1),由条件知a 2=9=32,从而a =3.于是f (x )=log 3x ,则f (b )=log 3b =12,解得b=123=5.对数型函数的定义域的求解(1)对数函数的定义域为(0,+∞).(2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y =log a f (x )的定义域时,应首先保证f (x )>0.(3)求函数的定义域应满足以下原则:①分式中分母不等于零;②偶次根式中被开方数大于或等于零;③指数为零的幂的底数不等于零;④对数的底数大于零且不等于1;⑤对数的真数大于零,如果在一个函数中数条并存,求交集.【例5】求下列函数的定义域.(1)y =5(2x -1)(5x -4);(3)y =.分析:利用对数函数y =log a x (a >0,且a ≠1)的定义求解.解:(1)要使函数有意义,则1-x >0,解得x <1,所以函数y =log 5(1-x )的定义域是{x |x <1}.(2)要使函数有意义,则54>0,21>0,211,x x x -⎧⎪-⎨⎪-≠⎩解得x >45且x ≠1,所以函数y =log (2x -1)(5x -4)的定义域是4,15⎛⎫⎪⎝⎭(1,+∞).(3)要使函数有意义,则0.5430,log(43)0,x x ->⎧⎨-≥⎩解得34<x ≤1,所以函数y =的定义域是3<14x x ⎧⎫≤⎨⎬⎩⎭.6.对数型函数的值域的求解(1)充分利用函数的单调性和图象是求函数值域的常用方法.(2)对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下:①分解成y =log a u ,u =f (x )这两个函数;②求f (x )的定义域;③求u 的取值范围;④利用y =log a u 的单调性求解.(3)对于函数y =f (log a x )(a >0,且a ≠1),可利用换元法,设log a x =t ,则函数f (t )(t ∈R )的值域就是函数f (log a x )(a >0,且a ≠1)的值域.注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.【例6-1】求下列函数的值域:(1)y =log 2(x 2+4);(2)y =212log (32)x x +-.解:(1)∵x 2+4≥4,∴log 2(x 2+4)≥log 24=2.∴函数y =log 2(x 2+4)的值域为[2,+∞).(2)设u =3+2x -x 2,则u =-(x -1)2+4≤4.∵u >0,∴0<u ≤4.又y =12log u 在(0,+∞)上为减函数,∴12log u ≥-2.∴函数y =212log (32)x x +-的值域为[-2,+∞).【例6-2】已知f (x )=2+log 3x ,x ∈[1,3],求y =[f (x )]2+f (x 2)的最大值及相应的x 的值.分析:先确定y =[f (x )]2+f (x 2)的定义域,然后转化成关于log 3x 的一个一元二次函数,利用一元二次函数求最值.解:∵f (x )=2+log 3x ,x ∈[1,3],∴y =[f (x )]2+f (x 2)=(log 3x )2+6log 3x +6且定义域为[1,3].令t =log 3x (x ∈[1,3]).∵t =log 3x 在区间[1,3]上是增函数,∴0≤t ≤1.从而要求y =[f (x )]2+f (x 2)在区间[1,3]上的最大值,只需求y =t 2+6t +6在区间[0,1]上的最大值即可.∵y =t 2+6t +6在[-3,+∞)上是增函数,∴当t =1,即x =3时,y max =1+6+6=13.综上可知,当x =3时,y =[f (x )]2+f (x 2)的最大值为13.7.对数函数的图象变换及定点问题(1)与对数函数有关的函数图象过定点问题对数函数y =log a x (a >0,且a ≠1)过定点(1,0),即对任意的a >0,且a ≠1都有log a 1=0.这是解决与对数函数有关的函数图象问题的关键.对于函数y =b +k log a f (x )(k ,b 均为常数,且k ≠0),令f (x )=1,解方程得x =m ,则该函数恒过定点(m ,b ).方程f (x )=0的解的个数等于该函数图象恒过定点的个数.(2)对数函数的图象变换的问题①函数y =log a x (a >0,且a ≠1)――----------------→向左(b >0)或向右(b <0)平移|b |个单位长度函数y =log a (x +b )(a >0,且a ≠1)②函数y =log a x (a >0,且a ≠1)――---------------→向上(b >0)或向下(b <0)平移|b |个单位长度函数y =log a x +b (a >0,且a ≠1)③函数y =log a x (a >0,且a ≠1)―----------------―→当x >0时,两函数图象相同当x <0时,将x >0时的图象关于y 轴对称函数y =log a |x |(a >0,且a ≠1)④函数y =log a x (a >0,且a ≠1)――----------------------------------------→保留x 轴上方的图象同时将x 轴下方的图象作关于x 轴的对称变换函数y =|log a x |(a >0,且a ≠1)【例7-1】若函数y =log a (x +b )+c (a >0,且a ≠1)的图象恒过定点(3,2),则实数b ,c 的值分别为__________.解析:∵函数的图象恒过定点(3,2),∴将(3,2)代入y =log a (x +b )+c (a >0,且a ≠1),得2=log a (3+b )+c .又∵当a >0,且a ≠1时,log a 1=0恒成立,∴c =2.∴log a (3+b )=0.∴b =-2.答案:-2,2【例7-2】作出函数y =|log 2(x +1)|+2的图象.解:(第一步)作函数y =log 2x 的图象,如图①;(第二步)将函数y =log 2x 的图象沿x 轴向左平移1个单位长度,得函数y =log 2(x +1)的图象,如图②;(第三步)将函数y =log 2(x +1)在x 轴下方的图象作关于x 轴的对称变换,得函数y =|log 2(x +1)|的图象,如图③;(第四步)将函数y =|log 2(x +1)|的图象,沿y 轴方向向上平移2个单位长度,便得到所求函数的图象,如图④.8.利用对数函数的单调性比较大小两个对数式的大小比较有以下几种情况:(1)底数相同,真数不同.比较同底数(是具体的数值)的对数大小,构造对数函数,利用对数函数的单调性比较大小.要注意:明确所给的两个值是哪个对数函数的两个函数值;明确对数函数的底数与1的大小关系;最后根据对数函数的单调性判断大小.(2)底数不同,真数相同.若对数式的底数不同而真数相同时,可以利用顺时针方向底数增大画出函数的图象,再进行比较,也可以先用换底公式化为同底后,再进行比较.(3)底数不同,真数也不同.对数式的底数不同且指数也不同时,常借助中间量0,1进行比较.(4)对于多个对数式的大小比较,应先根据每个数的结构特征,以及它们与“0”和“1”的大小情况,进行分组,再比较各组内的数值的大小即可.注意:对于含有参数的两个对数值的大小比较,要注意对底数是否大于1进行分类讨论.【例8-1】比较下列各组中两个值的大小.(1)log31.9,log32;(2)log23,log0.32;(3)log aπ,log a3.141.分析:(1)构造函数y=log3x,利用其单调性比较;(2)分别比较与0的大小;(3)分类讨论底数的取值范围.解:(1)因为函数y=log3x在(0,+∞)上是增函数,所以f(1.9)<f(2).所以log31.9<log32.(2)因为log23>log21=0,log0.32<log0.31=0,所以log23>log0.32.(3)当a>1时,函数y=log a x在定义域上是增函数,则有log aπ>log a3.141;当0<a<1时,函数y=log a x在定义域上是减函数,则有log aπ<log a3.141.综上所得,当a>1时,log aπ>log a3.141;当0<a<1时,log aπ<log a3.141.【例8-2】若a2>b>a>1,试比较log a ab,log bba,log b a,log a b的大小.分析:利用对数函数的单调性或图象进行判断.解:∵b>a>1,∴0<ab<1.∴log a ab<0,log a b>log a a=1,log b1<log b a<log b b,即0<log b a<1.由于1<b a <b ,∴0<log b b a <1.由log b a -log b ba=2log b a b ,∵a 2>b >1,∴2ab>1.∴2log b a b >0,即log b a >log b b a.∴log a b >log b a >log b b a >log a ab.9.利用对数函数的单调性解对数不等式(1)根据对数函数的单调性,当a >0,且a ≠1时,有①log a f (x )=log a g (x )⇔f (x )=g (x )(f (x )>0,g (x )>0);②当a >1时,log a f (x )>log a g (x )⇔f (x )>g (x )(f (x )>0,g (x )>0);③当0<a <1时,log a f (x )>log a g (x )⇔f (x )<g (x )(f (x )>0,g (x )>0).(2)常见的对数不等式有三种类型:①形如log a f (x )>log a g (x )的不等式,借助函数y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.②形如log a f (x )>b 的不等式,应将b 化为以a 为对数的对数式的形式,再借助函数y =log a x 的单调性求解.③形如log a f (x )>log b g (x )的不等式,基本方法是将不等式两边化为同底的两个对数值,利用对数函数的单调性来脱去对数符号,同时应保证真数大于零,取交集作为不等式的解集.④形如f (log a x )>0的不等式,可用换元法(令t =log a x ),先解f (t )>0,得到t 的取值范围.然后再解x 的范围.【例9-1】解下列不等式:(1)1177log log (4)x x >-;(2)log x (2x +1)>log x (3-x ).解:(1)由已知,得>0,4>0,<4,x x x x ⎧⎪-⎨⎪-⎩解得0<x <2.所以原不等式的解集是{x |0<x <2}.(2)当x >1时,有21>3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得1<x <3;当0<x <1时,有21<3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得0<x <23.所以原不等式的解集是20<<1<<33x x x ⎧⎫⎨⎬⎩⎭或.【例9-2】若22log 3a ⎛⎫ ⎪⎝⎭<1,求a 的取值范围.解:∵22log 3a ⎛⎫ ⎪⎝⎭<1,∴-1<2log 3a <1,即12log log log 3a a a a a <<.(1)∵当a >1时,y =log a x 为增函数,∴123a a <<.∴a >32,结合a >1,可知a >32.(2)∵当0<a <1时,y =log a x 为减函数,∴12>>3a a .∴a <23,结合0<a <1,知0<a <23.∴a 的取值范围是230<<>32a a a ⎧⎫⎨⎬⎩⎭,或.10.对数型函数单调性的讨论(1)解决与对数函数有关的函数的单调性问题的关键:一是看底数是否大于1,当底数未明确给出时,则应对底数a 是否大于1进行讨论;二是运用复合法来判断其单调性;三是注意其定义域.(2)关于形如y =log a f (x )一类函数的单调性,有以下结论:函数y =log a f (x )的单调性与函数u =f (x )(f (x )>0)的单调性,当a >1时相同,当0<a <1时相反.例如:求函数y =log 2(3-2x )的单调区间.分析:首先确定函数的定义域,函数y =log 2(3-2x )是由对数函数y =log 2u 和一次函数u =3-2x 复合而成,求其单调区间或值域时,应从函数u =3-2x 的单调性、值域入手,并结合函数y =log 2u 的单调性考虑.解:由3-2x >0,解得函数y =log 2(3-2x )∞设u =3-2x ,x ∞∵u =3-2x ∞y =log 2u 在(0,+∞)上单调递增,∴函数y =log 2(3-2x )∞∴函数y =log 2(3-2x )∞【例10-1】求函数y =log a (a -a x )解:(1)若a >1,则函数y =log a t 递增,且函数t =a -a x 递减.又∵a -a x >0,即a x <a ,∴x <1.∴函数y =log a (a -a x )在(-∞,1)上递减.(2)若0<a <1,则函数y =log a t 递减,且函数t =a -a x 递增.又∵a -a x >0,即a x <a ,∴x >1.∴函数y =log a (a -a x )在(1,+∞)上递减.综上所述,函数y =log a (a -a x )在其定义域上递减.析规律判断函数y =log a f (x )的单调性的方法函数y =log a f (x )可看成是y =log a u 与u =f (x )两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.需特别注意的是,在求复合函数的单调性时,首先要考虑函数的定义域,即“定义域优先”.【例10-2】已知f (x )=12log (x 2-ax -a )在1,2⎛⎫-∞-⎪⎝⎭上是增函数,求a 的取值范围.解:1,2⎛⎫-∞-⎪⎝⎭是函数f (x )的递增区间,说明1,2⎛⎫-∞- ⎪⎝⎭是函数u =x 2-ax -a 的递减区间,由于是对数函数,还需保证真数大于0.令u (x )=x 2-ax -a ,∵f (x )=12log ()u x 在1,2⎛⎫-∞-⎪⎝⎭上是增函数,∴u (x )在1,2⎛⎫-∞-⎪⎝⎭上是减函数,且u (x )>0在1,2⎛⎫-∞- ⎪⎝⎭上恒成立.∴1,2210,2a u ⎧≥-⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩即1,10.42a aa ≥-⎧⎪⎨+-≥⎪⎩∴-1≤a ≤12.∴满足条件的a 的取值范围是112a a ⎧⎫-≤≤⎨⎬⎩⎭.11.对数型函数的奇偶性问题判断与对数函数有关的函数奇偶性的步骤是:(1)求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f (-x )与f (x )或-f (x )是否相等;(2)当f (-x )=f (x )时,此函数是偶函数;当f (-x )=-f (x )时,此函数是奇函数;(3)当f (-x )=f (x )且f (-x )=-f (x )时,此函数既是奇函数又是偶函数;(4)当f (-x )≠f (x )且f (-x )例如,判断函数f (x )=log )a x (x ∈R ,a >0,且a ≠1)的奇偶性.解:∵f (-x )+f (x )==log )a x -+log )a x )=log a (x 2+1-x 2)=log a 1=0,∴f (-x )=-f (x ).∴f (x )为奇函数.【例11】已知函数f (x )=1log 1axx+-(a >0,且a ≠1).(1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性;(3)求使f (x )>0的x 的取值范围.分析:对于第(2)问,依据函数奇偶性的定义证明即可.对于第(3)问,利用函数的单调性去掉对数符号,解出不等式.解:(1)由11xx+->0,得-1<x <1,故函数f (x )的定义域为(-1,1).(2)∵f (-x )=1log 1ax x -+=1log 1a xx+--=-f (x ),又由(1)知函数f (x )的定义域关于原点对称,∴函数f (x )是奇函数.(3)当a >1时,由1log 1a x x +->0=log a 1,得11xx+->1,解得0<x <1;当0<a <1时,由1log 1ax x +->0=log a 1,得0<11xx+-<1,解得-1<x <0.故当a >1时,x 的取值范围是{x |0<x <1};当0<a <1时,x 的取值范围是{x |-1<x <0}.12.对数型函数模型的实际应用地震震级的变化规律、溶液pH 的变化规律、航天问题等,可以用对数函数模型来研究.此类题目,通常给出函数解析式模型,但是解析式中含有其他字母参数.其解决步骤是:(1)审题:弄清题意,分清条件和结论,抓住关键的词和量,理顺数量关系;(2)建模:将文字语言转化成数学语言,利用数学知识,求出函数解析式模型中参数的值;(3)求模:求解函数模型,得到数学结论;(4)还原:将用数学方法得到的结论还原为实际问题的结论.由此看,直接给定参数待定的函数模型时,利用待定系数法的思想,代入已知的数据得到相关的方程而求得待定系数.一般求出函数模型后,还利用模型来研究一些其他问题.代入法、方程思想、对数运算性质,是解答此类问题的方法精髓.【例12】我国用长征二号F 型运载火箭成功发射了“神舟”七号载人飞船,实现了中国历史上第一次的太空漫步,令中国成为世界上第三个有能力把人送上太空并进行太空漫步的国家(其中,翟志刚完全出舱,刘伯明的头部和手部部分出舱).在不考虑空气阻力的条件下,假设火箭的最大速度y (单位:km/s)关于燃料重量x (单位:吨)的函数关系式为y =k ln(m +x )-k )+4ln 2(k ≠0),其中m 是箭体、搭载的飞行器、航天员的重量和.当燃料重量为-1)m 吨时,火箭的最大速度是4km/s .(1)求y =f (x );(2)已知长征二号F 型运载火箭的起飞重量是479.8吨(箭体、搭载的飞行器、航天员、燃料),火箭的最大速度为8km/s ,求装载的燃料重量(e =2.7,精确到0.1).解:(1)由题意得当x =(-1)m 时,y =4,则4=k ln[m +-1)m ]-k ln()+4ln 2,解得k =8.所以y =8ln(m +x )-)+4ln 2,即y =8ln m xm+.(2)由于m +x =479.8,则m =479.8-x ,令479.888ln479.8x=-,解得x ≈302.1.故火箭装载的燃料重量约为302.1吨.。
1.对数(1)对数的定义:如果ab=N(a>0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.(2)指数式与对数式的关系:ab=NlogaN=b(a>0,a≠1,N>0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①loga(MN)=logaM+logaN.②loga(M/N)=logaM-logaN.③logaMn=nlogaM.(M>0,N>0,a>0,a≠1)④对数换底公式:logbN=(logab/logaN)(a>0,a≠1,b>0,b≠1,N>0).2.对数函数(1)对数函数的`定义函数y=loga某(a>0,a≠1)叫做对数函数,其中某是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数那么要大于0且不为1对数函数的底数为什么要大于0且不为1呢在一个普通对数式里 a<0,或=1 的时候是会有相应b的值的。
但是,根据对数定义: logaa=1;如果a=1或=0那么logaa就可以等于一切实数(比方log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立 (比方,log(-2) 4^(-2) 就不等于(-2)某log(-2) 4;一个等于1/16,另一个等于-1/16(2)对数函数的性质:①定义域:(0,+∞).②值域:R.③过点(1,0),即当某=1时,y=0.④当a>1时,在(0,+∞)上是增函数;当0。
高一对数知识点高中总结对数是数学中的一个重要概念,它在高中数学中扮演着重要角色。
在高一阶段,我们学习了许多关于对数的知识点,通过总结和归纳,可以更好地理解和应用这些知识。
本文将对高一阶段的对数知识点进行整理和总结。
一、对数的定义和性质对数的定义是:如果一个正数a不等于1,且b大于0,那么称符号logₐb为以a为底b的对数,记作logₐb=c。
对数具有以下性质:1. logₐ1=0,因为a的0次方等于1。
2. logₐa=1,因为a的1次方等于a。
3. logₐ(㏑ₐb+㏑ₐc)=logₐb+c,对数的乘法公式。
4. logₐ(b/c)=logₐb-logₐc,对数的除法公式。
二、换底公式和常用对数对数的底数可以是任意正数,但常用的对数底数是10和e(自然对数)。
1. 换底公式:如果知道了一个数的对数以及底数,可以通过换底公式将其转化为另一个底数的对数。
换底公式为:logₐb=㏑b/㏑a。
2. 常用对数:以10为底的对数称为常用对数,常用对数的符号是㏑,常用对数表是我们常用的工具之一。
三、对数方程和对数不等式对数方程和对数不等式是对数的应用之一,要解决对数方程和对数不等式,需要利用对数的性质和换底公式,通过变量的替换和代数运算来求解。
1. 对数方程:是形如logₐx=b的方程,其中a、b为已知常数,x为未知数。
求解对数方程时,可以通过对数的性质和换底公式进行变换,最终得出x的值。
2. 对数不等式:是形如㏑ₐx>b的不等式,其中a、b为已知常数,x为未知数。
求解对数不等式时,需要注意不等式的取值范围,并通过对数的性质和换底公式进行变换,找到x的取值范围。
四、指数函数与对数函数的图像和性质在高一阶段,我们学习了指数函数和对数函数的图像和性质,这对我们理解对数与指数的关系、解决相关问题非常有帮助。
1. 指数函数的图像和性质:指数函数y=a^x的图像呈现出递增或递减的特点,且过原点。
指数函数具有指数遇加法、指数遇乘法和指数函数的值域等性质。
高一数学对数函数性质知识点对数函数是高中数学中重要的函数之一,它在解决各种实际问题中扮演着重要的角色。
在学习对数函数的性质时,我们需要掌握以下几个知识点。
一、对数函数的定义对数函数是指以一个常数为底数,求指数的运算。
常用的对数函数有以10为底的常用对数函数和以自然对数e为底的自然对数函数。
对于以10为底的对数函数,用log表示;对于以e为底的对数函数,用ln表示。
二、对数函数的性质1. 对数函数的定义域和值域以10为底的对数函数的定义域为正实数集(0, +∞),值域为实数集(-∞,+∞);以e为底的对数函数的定义域为正实数集(0, +∞),值域为实数集(-∞,+∞)。
2. 对数函数的单调性以10为底的对数函数是递增函数,即当x1 < x2时,logx1 < logx2;以e为底的对数函数是递增函数,即当x1 < x2时,lnx1 < lnx2。
3. 对数函数的图像和对称轴对数函数y = logx或y = ln x的图像都位于一、四象限,并且与y轴互为对称。
4. 对数函数的性质运算(1)对数函数的乘积性质:loga (mn) = loga m + loga n;(2)对数函数的商性质:loga (m/n) = loga m - loga n;(3)对数函数的幂性质:loga (m^k) = k loga m。
三、对数函数的应用对数函数的应用非常广泛,特别是在科学和工程领域。
以下是一些常见的应用示例:1. 指数增长模型对数函数可以用来描述指数增长模型,例如人口增长、病菌的传染速度等。
通过对数函数的计算,我们可以更好地理解和研究这些问题。
2. 负指数衰减模型对数函数也可以用来描述负指数衰减模型,例如放射性物质的衰变速度、温度的下降速度等。
对数函数能够提供我们更多的定量信息,使我们能够更好地预测和分析这些问题。
3. 声音的强度和音量声音的强度和音量与传播距离之间存在着对数关系。
通过对数函数的运算,我们可以计算声音在不同距离上的强度差异,并进行相关的声学研究和设计。
高一数学对数函数知识点一、对数函数的基本概念对数函数是数学中的一种基本函数,它与指数函数有着密切的关系。
在高一数学的学习中,对数函数的概念、性质和应用是重要的知识点。
对数函数可以定义为:如果a^b=c(其中a>0,且a≠1,b和c为实数),那么数b就称为以a为底c的对数,记作b=log_a c。
二、对数的运算法则对数的运算法则是解决对数问题的基础。
以下是几个基本的对数运算法则:1. 乘法变加法:log_a (xy) = log_a x + log_a y2. 除法变减法:log_a (x/y) = log_a x - log_a y3. 幂的对数:log_a (x^b) = b * log_a x4. 对数的换底公式:log_a x = log_c x / log_c a,其中c为新的底数。
掌握这些运算法则对于解决复杂的对数问题至关重要。
三、常用对数函数在高中数学中,最常用的对数函数是自然对数和常用对数。
1. 自然对数:以e(约等于2.71828)为底的对数称为自然对数,记作ln x。
自然对数在数学、物理和工程等领域有着广泛的应用。
2. 常用对数:以10为底的对数称为常用对数,记作log x。
常用对数在科学计数法中经常被使用。
四、对数函数的图像和性质对数函数的图像和性质是理解对数函数行为的关键。
对数函数y=log_a x具有以下性质:1. 函数图像总是通过点(1,0),因为任何底数的0次幂都等于1。
2. 对数函数是单调递增的,这意味着随着x的增加,y也会增加。
3. 当x>0时,函数有定义;当x<=0时,函数无定义。
4. 对数函数的图像是一条在y轴右侧的曲线,永远不会与x轴相交。
五、对数函数的应用对数函数在实际问题中有许多应用,例如:1. 复利计算:在金融领域,对数函数可以用来计算连续复利。
2. 地震强度:地震的强度常常用对数来表示,因为地震能量的增加与震级不是线性关系。
3. pH值计算:在化学中,pH值是衡量溶液酸碱度的指标,它是基于对数的计算。
数学高一上对数函数知识点对数函数是高中数学中的重要知识点之一,在高一上学期,学生首次接触到了对数函数的概念和基本性质。
下面我们就来系统地了解一下高一上对数函数的知识点。
1. 对数函数的定义和性质:对数函数是指满足一定条件的函数,其中最常见和常用的是以10为底的对数函数,即常用对数函数。
常用对数函数的定义是:y = log10x,其中x和y分别表示自变量和因变量,log10x表示以10为底的x的对数。
对数函数的性质有:- 定义域:对数函数的定义域是正实数集。
- 值域:对数函数的值域是实数集。
- 单调性:对于正数x1和x2,如果x1 > x2,则log10x1 >log10x2。
也就是说,对数函数是递增函数。
- 零点:对数函数的零点是x = 1,因为log101 = 0。
- 对称性:对数函数关于直线y = x对称。
- 拉伸和压缩:对数函数y = log10(x/a)表示将函数的图像沿x轴拉伸a倍,而y = log10(ax)表示将函数的图像沿x轴压缩a倍。
- 幂函数与对数函数的互逆关系:指数函数与对数函数是互为反函数的关系。
2. 对数函数的图像和性质:对数函数的图像特点与函数的性质密切相关。
对数函数y =log10x的图像在x轴的右侧是递增的,而在x轴的左侧是递减的。
当x取正数时,函数图像在y轴的右侧上方,当x取0时,函数图像经过(0, -∞)的点,当x取负数时,函数图像在y轴的左侧下方。
对数函数的图像是一个渐近线为y = 0的曲线,该曲线在点(1, 0)处与x轴相交。
当x趋近于无穷大时,函数的值也趋近于无穷大,反之亦然。
3. 对数函数的运算和性质:对数函数的运算是基于指数函数的运算规律的。
对数函数的运算包括:- 指数和对数之间的互化:指数函数和对数函数是互为反函数的关系,两者之间可以通过指数函数的计算特性进行换算。
- 对数的乘除法:log10(a * b) = log10a + log10b,log10(a / b) = log10a - log10b。
高一数学对数函数对数函数是高中数学中的重要内容之一,是指以某个既定的底数为基数,求一个数的对数时,使用的函数关系。
在实际生活和科学研究中,对数函数有着广泛的应用。
下面将介绍对数函数的定义、性质以及应用。
对数函数的定义:对数函数是指数函数的反函数。
设a为一个正实数且a≠1,x为一个正实数,那么以a为底x的对数函数定义为:y=loga(x),即x=a^y。
其中,a称为底数,x称为实际数,y称为对数。
对数函数的性质:1.对数函数的定义域为正实数集合,值域为所有实数。
2.底数小于1的对数函数是递减函数,底数大于1的对数函数是递增函数。
3.对数函数y=loga(x)与指数函数y=a^x是互为反函数的关系,即对于任何实数x,有(loga(x))^a=x。
4.对于同一个底数,loga(x1*x2)=loga(x1)+loga(x2),loga(x1/x2)=loga(x1)-loga(x2),loga(x^k)=k*loga(x)。
5.换底公式:loga(x)=logb(x)/logb(a),其中b为正实数且b≠1。
换底公式可以用来计算以外底数的对数。
对数函数的应用:1.求解指数方程:对数函数常用于求解指数方程。
通过将指数方程转化为对数方程,可以更容易地求解。
例如,求解2^x=8,可以转化为log2(8)=x,即使用对数函数求出x=3。
2.化简复杂计算:对数函数能够化简一些复杂的计算。
例如,计算log2(32),可以将32表示为2的某个次幂,即32=2^5,那么log2(32)=5。
3.描述增长趋势:对数函数广泛应用于描述各种日益增长的现象。
例如,人口增长、物质衰变、金融复利等。
对数函数能够将指数增长变为线性增长,便于分析和预测。
4.信号处理:在信号处理领域,对数函数常用于对音频和图像信号进行变换和处理。
对数函数可以将原始信号的动态范围缩小,并增强低强度信号的可视化效果。
总之,对数函数在数学和实际应用中具有重要地位。