数学物理方程与特殊函数-模拟试题及参考答案(1)
- 格式:doc
- 大小:127.50 KB
- 文档页数:5
数学物理方程与特殊函数-模拟试题及参考答案成都理工大学《数学物理方程》模拟试题一、填空题(3分?10=30分)1.说明物理现象初始状态的条件叫(),说明边界上的约束情况的条件叫(),二者统称为().2.三维热传导齐次方程的一般形式是:() . 3 .在平面极坐标系下,拉普拉斯方程算符为() . 4.边界条件 f u nuS=+??)(σ是第()类边界条件,其中S 为边界.5.设函数),(t x u 的傅立叶变换式为),(t U ω,则方程22222xu a t u ??=??的傅立叶变换为() . 6.由贝塞尔函数的递推公式有=)(0x J dxd() . 7.根据勒让德多项式的表达式有)(31)(3202x P x P += (). 8.计算积分=?-dx x P 2112)]([() .9.勒让德多项式)(1x P 的微分表达式为() . 10.二维拉普拉斯方程的基本解是() .二、试用分离变量法求以下定解问题(30分):1.<<=??===><22222,0x t u x x t x x u t u t t x u u u2.===><t u u u u t x x 2,0,00,40,04022 3.<<=??===><<+??=??====20,0,8,00,20,162002022222x t u t x x u t u t t x x u u u三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分)=??=>+∞<<-∞+??=??==0,2sin 0,,cos 0022222t t t u x u t x x x u a t u四、用积分变换法求解下列定解问题(10分):=+=>>===,1,10,0,1002y x u y u y x y x u五、利用贝赛尔函数的递推公式证明下式(10分):)(1)()('0''02x J xx J x J -=六、在半径为1的球内求调和函数u ,使它在球面上满足θ21cos ==r u,即所提问题归结为以下定解问题(10分):.0,12cos 3,0,10,0)(sin sin 1)(11222πθθπθθθθθ≤≤+=≤≤<<=+=r u r ur r u r r r(本题的u 只与θ,r 有关,与?无关)《数学物理方程》模拟试题参考答案一、填空题:1.初始条件,边值条件,定解条件.2. )(2222222zu y u x u a t u ??+??+??=?? 3.01)(1222=??+θρρρρρu u . 4. 三.5.U a dt U d 2222ω-=. 6.)(1x J -. 7.2x . 8.52. 9.)1(212-x dxd . 10.2020)()(1ln y y x x u -+-=.二、试用分离变量法求以下定解问题1.解令)()(),(t T x X t x u =,代入原方程中得到两个常微分方程:0)()(2''=+t T a t T λ,0)()(''=+x X x X λ,由边界条件得到0)3()0(==X X ,对λ的情况讨论,只有当0>λ时才有非零解,令2βλ=,得到22223πβλn ==为特征值,特征函数3sin )(πn B x X n n =,再解)(t T ,得到32sin 32cos )(;;t n D t n C t T n n n ππ+=,于是,3sin )32sin 32cos(),(1xn t n D t n C t x u n n n πππ+=∑∞=再由初始条件得到0,)1(183sin 332130=-==+?n n n D n xdx n x C ππ,所以原定解问题的解为,3sin )32cos )1(18(),(11xn t n n t x u n n πππ+∞=-=∑2. 解令)()(),(t T x X t x u =,代入原方程中得到两个常微分方程:0)()('=+t T t T λ,0)()(''=+x X x X λ,由边界条件得到0)4()0(==X X ,对λ的情况讨论,只有当0>λ时才有非零解,令2βλ=,得到22224πβλn ==为特征值,特征函数4sin )(πn B x X n n =,再解)(t T ,得到16;22)(t n n n e C t T π-=,于是,4s i n (),(16122x n eC t x u tn n n ππ-∞=∑=再由初始条件得到140)1(164sin 242+-==n n n xdx n x C ππ,所以原定解问题的解为,4sin)1(16),(161122xn e n t x u t n n n πππ-+∞=-=∑3.解由于边界条件和自由项均与t 无关,令)(),(),(x w t x v t x u +=,代入原方程中,将方程与边界条件同时齐次化。
数学物理方程与特殊函数试题及答案猜你喜欢: 1. 2. 3. 4. 5.数学物理方程与特殊函数是一门专业性比拟强的课程,要学好这门课程,同学们还是要用心去学才能学好数学物理方程与特殊函数。
下面是给大家的数学物理方程与特殊函数试题及答案,欢送大家学习参考。
1.对于一般的二阶线性偏微分方程0(1) 它的特征方程为,假设在域内ACB那么此域内称(1) 椭圆型假设在域内B那么此域内称(1)为抛物型假设在域内 B 那么此域内称(1)为双曲型。
2. 第一类格林公式第二类格林公式 . 已那么 ;而函数按1xP的展开式4.一维热传导方程可用差分方程似代替。
二维拉普拉斯方程可用差分方0 近似代替。
5. 勒让德多项式的正交性???。
二.用别离变量法求?的解。
(15分) 解:用别离变量法求解,先设满足边界条件且是变量被别离形式的特解为tTxXtxu?代入方程(1)上式左端不含有x,右端不含有t,从而得到两个线性常微分方程解(6)得 x由(2)得,及相应的固有函数为xlnBxXnn?sin? 7?? ,再由(5)得,? 由(7),(8)得由(1),(3)得又由(3) 得所以,原定解问题的解为?三.求方程? 的解。
(15分) 解:对(1)两端积分的通解为任意二阶可导函数,令(4)满足(2),(3)得解之得6(5),(6)代入(4)得u 四.求柯西问题的解。
(12分) 解;先确定所给方程的特征线。
为此,写出它的特征方程 dy2-2dxdy-3dx20 它的两族积分曲线为作特征变换4?经过变换原方程化它的通解为中21ff 是两个任意二次连续可微的函数。
方程(1)的通解为由(2。
数学物理方程与特殊函数09级试题选讲一、求解定解问题22200,0,(0,0)x x lt u u a t x u u x l t xx u x ===ì¶¶=ï¶¶ï¶¶ï==<<>í¶¶ïï=ïî)()(),(t T x X t x u =)()()()(2t T x X a t T x X ¢¢=¢22)()()()(b -=¢¢=¢x X x X t T a t T 0>b 设,代入原方程得,则)()(22=+¢t T a t T b 0)()(2=+¢¢x X x X b 则,0x x lu u xx==¶¶==¶¶'(0)'()0X X l Þ==又因为得固有值问题2()()0'(0)'()0X x X x X X l b ¢¢ì+=í==î22)(ln pb =()cos 0,1,2,n n n xX x A n lp ==则固有值固有函数,数学物理方程与特殊函数09级试题选讲)()()(2=+¢t T la n t T p 2()()n a tl n T t C ep -Þ=2()01(,)cosn a tln n n x u x t C C elp p ¥-==+å从而0t ux==有因为01cosnn n x x C C lp ¥==+å所以220022[(1)1]cos 12n ln l n x l C x dx l l nl C xdx lp p --====òò2()2212(1)1(,)cos 2n a ntln l l n xu x t enlp p p¥-=--=+å数学物理方程与特殊函数09级试题选讲二、求解定解问题2222,,0(),0(),0(0)(0)t x t x u ut x t t t x ux x u x x =-=ì¶¶=-<<>ï¶¶ïï=F £íï=Y ³ïïF =Y î解:特征变换为x t x tx h =-ìí=+î2u x h¶=¶¶原方程化为12()()u f f x h =+则它的通解为00(),()()(),()()2222t xt x ux u x u u h x x h x h x h=-====F =Y +-Þ=F =F =Y =Y 又因为数学物理方程与特殊函数09级试题选讲1212(0)()()2()(0)()2f f f f h h xx +=Y +=F 2112()()(0)2()()(0)2f f f f h h x x ì=Y -ïïÞíï=F -ïî12()()((0)(0))22()()(0)22u f f x t x tx h=F +Y -+-+=F +Y -F 则它的解为三、求解定解问题)0,(,0,3,03202022222>+¥<<-¥ïïïîïïíì=¶¶==¶¶-¶¶¶+¶¶==y x y ux u y uy x u x u y y 解:原方程的特征方程为22()23()0dy dydx dx --=13C x y +=2C x y +-=,则特征线为3x y x yx h =-ìí=+î特征变换20ux h¶=¶¶原方程化为12()()u f f x h =+则它的通解为数学物理方程与特殊函数09级试题选讲12(,)(3)()u x y f x y f x y =-++即203,y y u ux y==¶==¶又因为21212(3)()3(3)()0f x f x xf x f x ì+=í¢¢-+=î则可得C x x f¢-=2149)3(C x x f ¢+=2243)(C x x f¢-=2141)(222234)(34)3(),(yx y x y x y x u +=++-=22()()C Du vv u u v d v u ds n n s ¶¶Ñ-Ñ=-¶¶òòò 四、证明平面上的格林公式其中n 为曲线的外法线向量。
一、选择题1.对于每个实数x ,设()f x 取24y x =-+,41y x =+,2y x =+三个函数值中的最小值,则()f x ( ) A .无最大值,无最小值 B .有最大值83,最小值1 C .有最大值3,无最小值 D .有最大值83,无最小值 2.定义,min(,),a a ba b b a b≤⎧=⎨>⎩,例如:min(1,2)2--=-,min(2,2)2=,若2()f x x =,2()46g x x x =--+,则()min((),())F x f x g x =的最大值为( )A .1B .8C .9D .103.高斯函数属于初等函数,以大数学家约翰·卡尔·弗里德里希·高斯的名字命名,其图形在形状上像一个倒悬着的钟,高斯函数应用范围很广,在自然科学、社会科学、数学以及工程学等领域都能看到它的身影,设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.14-=-,[]4.84=.则函数21()122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为( ) A .{}0,1B .{}1,1-C .{}1,0-D .{}1,0,1-4.已知定义在R 上的函数()2||·x f x x e =, (a f log =, 312b f log ⎛=⎫ ⎪⎝⎭,()ln3c f = ,则a ,b ,c 的大小关系是( )A .c a b >>B .b c a >>C .a b c >>D .c b a >>5.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .26.已知函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数,如果()31f =-,则不等式()110f x -+≥的解集为( ) A .](2-∞,B .[)2,+∞C .[]24-,D .[]14, 7.已知函数()f x 是R 上的单调函数,且对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦成立,则()2020f 的值是( ) A .202021- B .202021+C .202020202121+-D .202020202121-+8.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2C .()1,2D .(],1-∞ 9.设函数()y f x =在(),-∞+∞上有定义,对于给定的正数K ,定义函数(),()()()k f x f x K f x K f x K≤⎧=⎨>⎩,, 取函数()||()1x f x a a -=>,当1K a =时,函数()k f x 在下列区间上单调递减的是( )A .(),0-∞B .(),a -+∞C .(),1-∞-D .()1,+∞10.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .11.函数2log xy x x=的大致图象是( ) A . B . C . D .12.函数()()2212f x x a x =+--在(],4-∞上是减函数,则实数a 的取值范围是( )A .3a ≤-B .3a ≥-C .5a ≥D .3a ≥二、填空题13.设函数()42x f x e x =-()g x mx =,若对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立,则实数m 的取值范围是_________.14.自然下垂的铁链;空旷的田野上,两根电线杆之间的电线等这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()xxf ae ex b -=+(其中a ,b 是非零常数,无理数 2.71828e =…)(1)如果()f x 为单调函数.写出满足条件的一-组值:a =______,b =______. (2)如果()f x 的最小值为2,则+a b 的最小值为______.15.若函数()f x 满足()()1f x f x =-,()()13f x f x +=--当且仅当(]1,3x ∈时,()3log f x x =,则()57f =______.16.已知函数()2(1)mf x m m x =--是幂函数,且()f x 在(0,)+∞上单调递增,则实数m =________.17.若函数2()f x x k =+,若存在区间[,](,0]a b ⊆-∞,使得当[,]x a b ∈时,()f x 的取值范围恰为[,]a b ,则实数k 的取值范围是________.18.设集合10,2A ⎡⎫=⎪⎢⎣⎭,1,12B ⎡⎤=⎢⎥⎣⎦,函数()()1,221,x x A f x x x B⎧+∈⎪=⎨⎪-∈⎩,若()()0f f x A ∈,则0x 的取值范围是__________.19.已知函数()2()10f x x ax a =++>,若“()f x 的值域为[)0,+∞”为真命题,则()3f =________.20.对于函数()f x ,若在定义域内存在..实数x ,满足()()f x f x -=-,称()f x 为“局部奇函数”,若()12423xx f x m m +=-+-为定义域R 上的“局部奇函数”,则实数m 的取值范围是______三、解答题21.设函数()f x 的定义域是(0,)+∞,且对任意的正实数,x y 都有()()()f xy f x f y =+恒成立,已知(2)1f =,且1x >时,()0f x >. (1)求12f ⎛⎫⎪⎝⎭的值; (2)判断()y f x =在(0,)+∞上的单调性,并给出你的证明;(3)解不等式2()(86)1f x f x >--.22.已知函数1()(1)1x x a f x a a -=>+,求:(1)判断函数的奇偶性;(2)证明()f x 是R 上的增函数; (3)求该函数的值域. 23.已知函数()2()01axf x a x =≠+. (1)判断函数()f x 在()1,1-上的单调性,并用单调性的定义加以证明; (2)若2a =,函数满足44()55f x -≤≤,求x 的取值范围. 24.已知函数2()21,[1,3]f x ax bx x =++∈(,a b ∈R 且,a b 为常数) (1)若1a =,求()f x 的最大值;(2)若0a >,1b =-,且()f x 的最小值为4-,求a 的值. 25.已知a R ∈,函数2()25f x x ax =-+.(1)若不等式()0f x >对任意的x ∈R 恒成立,求实数a 的取值范围; (2)若1a >,且函数()f x 的定义域和值域都是[1,]a ,求实数a 的值; (3)函数()f x 在区间[1,1]a +的最大值为()g a ,求()g a 的表达式. 26.已知一次函数()y f x =满足()12f x x a -=+, . 在所给的三个条件中,任选一个补充到题目中,并解答. ①()5f a =,②142a f ⎛⎫=⎪⎝⎭,③()()41226f f -=. (1)求函数()y f x =的解析式;(2)若()()()g x x f x f x x λ=⋅++在[]0,2上的最大值为2,求实数λ的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】作出函数()f x 的图象,结合图象可得出结论. 【详解】由已知可得(){}min 24,41,2f x x x x =-+++,作出函数()f x 的图象如下图所示:函数()f x 的图象如上图中的实线部分,联立224y x y x =+⎧⎨=-+⎩,解得2383x y ⎧=⎪⎪⎨⎪=⎪⎩,由图象可知,函数()f x 有最大值83,无最小值. 故选:D. 【点睛】关键点点睛:本题考查函数最值的求解,解题的关键就是结合函数()f x 的定义,进而作出函数()f x 的图象,利用图象得出结论.2.C解析:C 【分析】根据定义确定()F x 的解析式及单调性后可得最大值. 【详解】由2246x x x <--+得2230x x +-<,31x -<<,所以()22,3146,31x x F x x x x x ⎧-<<=⎨--+≤-≥⎩或,所以()F x 在(,3)-∞-和(0,1)上都是增函数,在(3,0)-和(1,)+∞上都是减函数,(3)9F -=,(1)1F =,所以max ()9F x =.故选:C . 【点睛】关键点点睛:本题考查求函数的最大值.解题关键是根据新函数定义确定新函数的解析式,单调性.结合单调性易得最值.3.C解析:C 【分析】先求出函数()21122x x f x =-+的值域,再根据题干中要求即可得出()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域. 【详解】()21121111=122122212x x x x xf x +-=--=-+++, ()121,x +∈+∞,()10,112x∴∈+, ()11,012x∴-∈-+, 1111,21222x⎛⎫∴-∈- ⎪+⎝⎭, 即函数()21122x xf x =-+的值域为11,22⎛⎫- ⎪⎝⎭, 由高斯函数定义可知:函数()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为{}1,0- 故选:C. 【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.4.A解析:A 【分析】可看出()f x 在(0,)+∞上单调递增,且得出3(log 2)b f =,并且可得出33ln 3log log 2>,根据增函数的定义即可得出a ,b ,c 的大小关系.【详解】0x >时,2()x f x x e =是增函数,且()()f x f x -=,33(log 2)(log 2)b f f ∴=-=,33330log 1log 2log log 31=<<<=,ln3ln 1e >=,∴33ln 3log log 2>>,∴33(ln 3)(log (log 2)f f f >>,c a b ∴>>. 故选:A . 【点睛】解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.5.B解析:B 【分析】由已知结合对称轴与区间端点的远近可判断二次函数取得最值的位置,从而可求. 【详解】解:因为2()2af x x ax =-+的开口向上,对称轴2a x =, ①122a即1a 时,此时函数取得最大值()()112a g a f ==-,②当122a >即1a >时,此时函数取得最大值()()02ag a f ==,故()1,12,12aa g a a a ⎧-⎪⎪=⎨⎪>⎪⎩,故当1a =时,()g a 取得最小值12. 故选:B . 【点睛】本题主要考查了二次函数闭区间上最值的求解,体现了分类讨论思想的应用,属于中档题.6.C解析:C 【分析】根据题意可得()f x 在[0,)+∞上为减函数,结合奇偶性以及()31f =-可得(|1|)f x f ⇒-|1|3x -,解出x 的取值范围,即可得答案.【详解】函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数, 所以()f x 在(,0)-∞上是增函数,由f (3)1=-,则不等式(1)10(1)1(1)f x f x f x f -+⇒--⇒-(3)(|1|)f x f ⇒-(3)|1|3x ⇒-, 解之可得24x -, 故不等式的解集为[2-,4]. 故选:C . 【点睛】将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.7.D解析:D 【分析】采用换元法可构造方程()21213tf t t =-=+,进而求得()f x 解析式,代入2020x =即可得到结果. 【详解】由()f x 是R 上的单调函数,可设()221x f x t +=+,则()13f t =恒成立, 由()221x f x t +=+得:()221x f x t =-+,()21213t f t t ∴=-=+,解得:1t =, ()22112121x x xf x -∴=-=++,()2020202021202021f -∴=+. 故选:D . 【点睛】本题考查函数值的求解问题,解题关键是能够采用换元的方式,利用抽象函数关系式求解得到函数的解析式.8.B解析:B 【分析】计算出()24f -=,并由()()()0x y f x f y ⎡⎤--<⎣⎦可得出函数()y f x =在R 上为减函数,再由()()234f x f x-⋅≥,可得出()()232f xx f -≥-,再由函数()y f x =在R 上的单调性可得出232x x -≤-,解出该不等式即可. 【详解】由于对任意的实数x 、y ,()()()f x y f x f y +=⋅且()0f x >.令0x y ==,可得()()()000f f f =⋅,且()00f >,解得()01f =. 令y x =-,则()()()01f x f x f ⋅-==,()()1f x f x -=,()()1121f f -==. ()()()211224f f f ∴-=-⋅-=⨯=.设x y <,则0x y -<,由()()()0x y f x f y ⎡⎤--<⎣⎦,得()()f x f y >. 所以,函数()y f x =在R 上为减函数,由()()234f x f x-⋅≥,可得()()232f x x f -≥-.所以232x x -≤-,即2320x x -+≤,解得12x ≤≤. 因此,不等式()()234f x f x -⋅≥的解集为[]1,2.故选B. 【点睛】本题考查抽象函数的单调性解不等式,解题的关键就是将不等式左右两边转化为函数的两个函数值,并利用函数的单调性进行求解,考查分析问题和解决问题的能力,属于中等题.9.D解析:D 【分析】作出函数()y f x =与1y a=的图象,数形结合可得()k f x ,即可得解. 【详解】 令||1()x f x aa-==,解得1x =±, 在同一直角坐标系中作出()y f x =与1y a=的图象,如图,所以,11()11,1x k x a x f x x a a x --⎧≤-⎪⎪=-<<⎨⎪⎪≥⎩,,所以函数()k f x 的单调减区间为()1,+∞. 故选:D. 【点睛】本题考查了函数图象的应用及函数单调性的求解,考查了运算求解能力与数形结合思想,属于中档题.10.D解析:D 【解析】 因为()sin()sin sin()sin 11()2222x x x xf x y f x ---=+==+=,所以函数sin sin 122xxy =+是定义在R 上的偶函数,排除A 、B 项;又sin2sin2115()222222f πππ=+=+=,排除C ,综上,函数sin sin 122xxy =+大致的图象应为D 项,故选D.11.D解析:D 【解析】()222log ,0log log ,0x x x y x x x x >⎧==⎨--<⎩,所以当0x >时,函数22log log x y x x x ==为增函数,当0x <时,函数()22log log xy x x x==--也为增函数,故选D. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.12.A解析:A 【分析】分析函数()()2212f x x a x =+--的图象和性质,结合已知可得41a ≤-,解得答案.【详解】函数()()2212f x x a x =+--的图象是开口朝上,且以直线1x a =-为对称轴的抛物线,若函数()()2212f x x a x =+--在(],4-∞上是减函数,41a ∴≤-, 解得: 3a ≤-, 故选:A 【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.二、填空题13.【分析】首先判断函数的单调性依题意只需再对参数分三种情况讨论即可求出参数的取值范围;【详解】解:因为在定义域上单调递增又在定义域上单调递减所以根据复合函数的单调性可得在定义域上单调递减所以在定义域上解析:1,2⎛⎫-∞- ⎪⎝⎭【分析】首先判断函数()f x 的单调性,依题意只需()()12min min f x g x >,再对参数m 分三种情况讨论,即可求出参数的取值范围; 【详解】解:因为xy e =、y =42y x =-在定义域上单调递减,所以根据复合函数的单调性可得y =在定义域上单调递减,所以()x f x e =-[]0,1上单调递增,所以()()001min f x f e ===-对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立, 则只需()()12min min f x g x >因为()g x mx =,[]1,2x ∈,当0m =时()0g x =,而()1min f x =-,不符合题意; 当0m >时,()g x mx =,在[]1,2x ∈上单调递增,则()()min 1g x g m ==,所以1m <-矛盾,舍去;当0m <时,()g x mx =,在[]1,2x ∈上单调递减,则()()min 22g x g m ==,所以210m m <-⎧⎨<⎩解得12m <- 故m 的取值范围为1,2⎛⎫-∞-⎪⎝⎭故答案为:1,2⎛⎫-∞- ⎪⎝⎭【点睛】本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .14.2【分析】(1)取结合函数是单调函数利用复合函数的单调性求解的值即可;(2)根据的最小值为2分类讨论确定结合基本不等式进行求解即可【详解】(1)令则是增函数是减函数要使是单调函数只需综上当时时为增函解析:1- 2 【分析】(1)取1a =,结合函数是单调函数,利用复合函数的单调性求解b 的值即可; (2)根据()f x 的最小值为2,分类讨论确定0a >,0b >,结合基本不等式进行求解即可. 【详解】(1)令1a =,则()x x f x e be -=+,x y e =是增函数,x y e -=是减函数,要使()x x f x e be -=+是单调函数, 只需1b =-.综上,当1a =时,1b =-时,()xxf x e e -=-为增函数. (2)当0ab 时,()f x 为单调函数,此时函数没有最小值, 当0a <,0b <,()f x 有最大值,无最小值, 所以,若()f x 有最小值为2,则必有0a >,0b >,此时()22x x x f x ae be ae be -=+⨯,1=,即1ab =,则22a b ab +=,当1a b ==时等号成立, 即+a b 的最小值为2. 故答案为:1,1,2- 【点睛】利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).15.2【分析】根据函数满足的关系可得是以6最小正周期的周期函数根据代入解析式即可【详解】根据已知条件进而有于是显然则是以6最小正周期的周期函数∵当时则故答案为:2【点睛】本题以抽象函数为载体研究抽象函数解析:2 【分析】根据函数满足的关系可得()f x 是以6最小正周期的周期函数,根据()()573f f =代入解析式即可. 【详解】根据已知条件()()()()113f x f x f x f x ⎧=-⎪⎨+=--⎪⎩,进而有()()()()()1133f x f x f x f x f x =-=+-=⎡⎤⎡⎤⎣⎦⎣⎦---=-+, 于是()()3+=-f x f x ,显然()()()()()6333f x f x f x f x f x +=++=-⎡⎤⎡⎤+=--⎦⎦=⎣⎣, 则()f x 是以6最小正周期的周期函数, ∵当(]1,3x ∈时()f x x =,则()()()57693332f f f =⨯+===.故答案为:2. 【点睛】本题以抽象函数为载体,研究抽象函数的结构特征,且挖掘暗含条件,巧妙地对复合函数的连续变形,体现了数学抽象,数学化归等关键能力与学科素,属于中档题.16.2【分析】由函数是幂函数求得或结合幂函数的性质即可求解【详解】由题意函数是幂函数可得即解得或当时函数此时在上单调递增符合题意;当时函数此时在上单调递减不符合题意故答案为:【点睛】本题主要考查了幂函数解析:2 【分析】由函数()2(1)mf x m m x =--是幂函数,求得2m =或1m =-,结合幂函数的性质,即可求解. 【详解】由题意,函数()2(1)mf x m m x =--是幂函数,可得211m m --=,即220m m --=,解得2m =或1m =-,当2m =时,函数()2f x x =,此时()f x 在(0,)+∞上单调递增,符合题意;当1m =-时,函数()1f x x -=,此时()f x 在(0,)+∞上单调递减,不符合题意,故答案为:2. 【点睛】本题主要考查了幂函数的定义及图像与性质的应用,其中解答中熟记幂函数的定义,结合幂函数的图象与性质进行判定是解答的关键,着重考查运算能力.17.【分析】根据二次函数的单调性得出是上的减函数从而有整理得即关于的方程在区间内有实数解记由二次函数的单调性和零点存在定理建立不等式组可求得范围【详解】∵函数是上的减函数∴当时即两式相减得即代入得由且得解析:31,4⎡⎫--⎪⎢⎣⎭【分析】根据二次函数的单调性得出2()f x x k =+是(,0]-∞上的减函数,从而有()()f a bf b a =⎧⎨=⎩,整理得22a k b b k a⎧+=⎨+=⎩,即关于a 的方程210a a k +++=,在区间11,2⎡⎫--⎪⎢⎣⎭内有实数解,记2()1h a a a k =+++,由二次函数的单调性和零点存在定理建立不等式组,可求得范围.【详解】∵函数2()f x x k =+是(,0]-∞上的减函数,∴当[,]x a b ∈时,()()f a bf b a =⎧⎨=⎩,即22a k bb k a ⎧+=⎨+=⎩, 两式相减得22a b b a -=-,即(1)b a =-+,代入2a k b +=得210a a k +++=, 由0a b <≤,且(1)b a =-+得112a -≤<-, 故关于a 的方程210a a k +++=,在区间11,2⎡⎫--⎪⎢⎣⎭内有实数解, 记2()1h a a a k =+++,所以函数()h a 在11,2⎡⎫--⎪⎢⎣⎭上单调递减,则()10102h h ⎧-≥⎪⎨⎛⎫-< ⎪⎪⎝⎭⎩,即()()221110111022k k ⎧-+-++≥⎪⎨⎛⎫⎛⎫-+-++<⎪ ⎪ ⎪⎝⎭⎝⎭⎩,解得31,4k ⎡⎫∈--⎪⎢⎣⎭, 故答案为:31,4⎡⎫--⎪⎢⎣⎭. 【点睛】关键点点睛:在解决二次函数的值域问题,关键在于得出二次函数的对称轴与区间的关系,也即是判断出二次函数在区间上的单调性.18.【分析】采用换元法令分别在和两种情况下求得的范围进而继续通过讨论和来求得结果【详解】令则①若则解得:不满足舍去;②若则解得:即若则解得:;若则解得:综上所述:的取值范围为故答案为:【点睛】思路点睛:解析:15,48⎛⎫⎪⎝⎭【分析】采用换元法,令()0f x t =,分别在t A ∈和t B ∈两种情况下求得t 的范围,进而继续通过讨论0x A ∈和0x B ∈来求得结果. 【详解】令()0f x t =,则()f t A ∈. ①若t A ∈,则()12f t t =+,11022t ∴≤+<,解得:102t -≤<,不满足t A ∈,舍去;②若t B ∈,则()()21f t t =-,()10212t ∴≤-<,解得:314t <≤,即()0314f x <≤, 若0x A ∈,则()0012f x x =+,031142x ∴<+≤,解得:01142x <≤,011,42x ⎛⎫∴∈ ⎪⎝⎭; 若0x B ∈,则()()0021f x x =-,()032114x ∴<-≤,解得:01528x ≤<,015,28x ⎡⎫∴∈⎪⎢⎣⎭.综上所述:0x 的取值范围为15,48⎛⎫ ⎪⎝⎭. 故答案为:15,48⎛⎫⎪⎝⎭. 【点睛】思路点睛:求解复合函数()()f g x 类型的不等式或方程类问题时,通常采用换元法,令()g x t =,通过求解不等式或方程得到t 满足的条件,进一步继续求解x 所满足的条件. 19.16【分析】二次函数的值域为得到求得值得解【详解】因为的值域为所以则又所以故答案为:16【点睛】二次函数的值域为得到是解题关键解析:16 【分析】二次函数()f x 的值域为[)0,+∞得到240a ∆=-=求得a 值得解 【详解】因为()2()10f x x ax a =++>的值域为[0,)+∞,所以240a ∆=-=,则2a =±.又0a >,所以2,a =.22()21,(3)323116f x x x f ∴=++∴=+⨯+=故答案为:16 【点睛】二次函数()f x 的值域为[)0,+∞得到0∆=是解题关键.20.【解析】∵局部奇函数∴存在实数满足即令则即在上有解再令则在上有解函数的对称轴为分类讨论:①当时∴解得;②当时解得综合①②可知点睛:新定义主要是指即时定义新概念新公式新定理新法则新运算五种然后根据此新解析:1m ≤【解析】∵()f x “局部奇函数”,∴存在实数x 满足()()f x f x -=-,即2242234223x x x x m m m m ---⨯+-=-+⨯-+,令2(0)xt t =>, 则222112()260t m t m t t +-++-=, 即2211()2()280t m t m tt+-++-=在(0,)t ∈+∞上有解,再令1(2)h t h t=+≥,则22()2280g h h mh m =-+-=在[2,)h ∈+∞上有解,函数的对称轴为h m =,分类讨论:①当2m ≥时,()()g h g m ≥,∴222()2280g m m m m =-+-≤,解得2m ≤≤②当2m <时,()()2g h g ≥,2(2)44280g m m ∴=-+-≤,解得12m -≤<.综合①②,可知1m ≤点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.三、解答题21.(1)1-; (2)函数单调递增,证明见解析; (3)3{|14x x <<或3}x >. 【分析】(1)利用赋值法,即可求得所求的函数值,得到答案;(2)首先判定函数为增函数,然后利用函数的单调性的定义和所给条件进行证明即可; (3)利用函数的单调性和所得函数值对应的自变量得到函数不等式,得出不等式组,即可求解. 【详解】(1)由题意,函数()f x 对任意的正实数x ,y 都有()()()f xy f x f y =+恒成立, 令1x y ==,可得(1)(1)(1)f f f =+,所以()10f =, 令12,2x y ==,可得1(1)(2)()2f f f =+,即11()02f +=,解得1()12f =-. (2)函数()f x 为增函数,证明如下: 设12,(0,)x x ∈+∞且12x x <, 令211,x x x y x ==,根据题意,可得2121()()()x f x f f x x +=,即2211()()()x f x f x f x -=,又由1x >时,()0f x >,因为211x x >,可得21()0x f x >,即21()()0f x f x ->,即21()()f x f x >, 所以函数()y f x =在(0,)+∞上的单调性.(3)由题意和(1)可得11(86)1(86)()[(86)](43)22f x f x f f x f x --=-+=-=-, 又由不等式2()(86)1f x f x >--,即2()(43)f x f x >-,可得243430x x x ⎧>-⎨->⎩,解得314x <<或3x >,即不等式2()(86)1f x f x >--的解集为3{|14x x <<或3}x >. 【点睛】求解函数有关的不等式的方法及策略: 解函数不等式的依据是函数的单调性的定义,具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解. 22.(1)奇函数;(2)证明见解析;(3)()1,1-. 【分析】(1)根据函数奇偶性的定义即可判断函数的奇偶性; (2)结合单调性的定义可证明()f x 是R 上的增函数; (3)根据指数函数的性质即可求该函数的值域. 【详解】解:(1)函数的定义域为R ,则111()()111x x x x xx a a a f x f x a a a ------===-=-+++,则函数()f x 是奇函数;(2)1122()1111x x x x xa a f x a a a -+-===-+++,1a >,x y a ∴=是增函数,设12x x <,则()()()()()12122121122222211111111x x x x x xx x a a f x f x a a a a a a -⎛⎫⎛⎫-=---=-= ⎪ ⎪++++++⎝⎭⎝⎭, 因为120x x a a <<,所以()()120f x f x -<,即()()12f x f x <, 即2()11xf x a =-+为增函数,即()f x 是R 上的增函数; (3)1122()1111x x x x xa a f x a a a -+-===-+++,1a >, 11x a ∴+>,则1011x a <<+,所以2021x a <<+,即2201x a -<-<+, 所以21111x a -<-<+,即11y -<<,故函数的值域为(1,1)-. 【点睛】 方法点睛:高一阶段求函数的单调性常用的思路有:一、紧扣单调性的定义;二、画出函数的图象,结合图象进行求解;三、结合函数单调性的性质,如增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数. 23.(1)答案见解析;(2)(][)11,2,2,22⎡⎤-∞--+∞⎢⎥⎣⎦.【分析】(1)先设﹣1<x 1<x 2<1,然后利用作差法比较f (x 2)与f (x 1)的大小即可判断函数的单调性,(2)把a =2代入后,然后把分式不等式转化为二次不等式组求解即可. 【详解】(1)当0a >时,函数()f x 在()1,1-上是增函数;当0a <时,()f x 在()1,1-上是减函数. 理由如下:当0a >时,任取1211x x -<<<,21212221()()11ax ax f x f x x x -=-++ 21122221()(1)(1)(1)a x x x x x x --=++. 因为111x -<<,211x -<<,∴1211x x -<<,1210x x ->,2212(1)(1)0x x ++>,210x x ->,所以21122212()(1)0(1)(1)x x x x x x -->++,当0a >时,得21()()f x f x >,故函数()f x 在()1,1-上是增函数;同理可证,当0a <时,21()()f x f x <,所以函数()f x 在()1,1-上是减函数,得证.(2)2a =时,得22()1xf x x =+, ∴44()55f x -≤≤,即2424515x x -≤≤+,∴222520112,,2222520x x x x x x x ⎧++≥⇒≤--≤≤≥⎨-+≥⎩. 由此可得,x 的取值范围是(][)11,2,2,22⎡⎤-∞--+∞⎢⎥⎣⎦.【点睛】过程点睛:用定义证明单调性时,第一步,任取12,x x 并规定大小;第二步,将函数值作差并化简;第三步,判断每个因式符号进而得到函数值大小;第四步,下结论. 24.(1)答案见解析;(2)19. 【分析】(1)讨论2b -<和2b -≥两种情况根据二次函数性质求解; (2)讨论11a ≤,113a<<和13a ≥三种情况结合二次函数的单调性求解.【详解】(1)1a =时,2()21f x x bx =++,对称轴为x b =-,二次函数()f x 的图象开口向上,当2b -<,即2b >-时,max ()(3)106f x f b ==+; 当2b -≥,即2b ≤-时,max ()(1)22f x f b ==+.(2)2()21f x ax x =-+,对称轴为1x a=,二次函数()f x 的图象开口向上, 当11a≤,即1a ≥时,()f x 在[]1,3单调递增,()()min 114f x f a ==-=-,解得3a =-,不符合;当113a <<,即113a <<时,2min 112()14f x f a a a a ⎛⎫⎛⎫==⋅-+=- ⎪ ⎪⎝⎭⎝⎭,解得15a =,不符合;当13a ≥,即103a <≤时,()f x 在[]1,3单调递减,()()min 3954f x f a ==-=-,解得19a =,符合,综上,19a =. 【点睛】思路点睛:求二次函数在闭区间[],a b 的最值的思路; (1)二次函数开口向上时,求函数的最大值,讨论对称轴和2a b+的大小求解; (2)二次函数开口向上时,求函数的最小值,讨论对称轴在(]()[),,,,,a a b b -∞+∞三个区间的范围求解.25.(1)(a ∈;(2)2;(3)()g a 262,26,2a a a a ->⎧=⎨-⎩. 【分析】(1)利用二次函数的性质列出关系式求解即可.(2)根据二次函数定义域和值域之间的关系进行判断即可. (3)对对称轴分类讨论,得到最大值. 【详解】解:(1)a R ∈,函数2()25f x x ax =-+.开口向上,不等式()0f x >对任意的x ∈R 恒成立,可得:24200a -<,解得(a ∈.(2)函数2()25f x x ax =-+的对称轴为x a =,则函数在[1,]a 上为减函数,函数的值域为[1,]a ,∴()1f a =,即22251a a -+=,即24a =, 解得2a =-(舍)或2a =.(3)函数2()25f x x ax =-+的对称轴为x a =,开口向上,①当12a a +,即2a 时,()f x 在区间[1,1]a +上的最大值为2(1)6f a a +=-; ②2a >时,()f x 在区间[1,1]a +上的最大值为(1)f 62a =-.所以()g a 262,26,2a a a a ->⎧=⎨-⎩. 【点睛】方法点睛:求二次函数的最值或值域时,关键在于确定二次函数的对称轴与所求的区间的关系,也即是二次函数在所求区间上的单调性,利用单调性求得值域. 26.(1)()23f x x =+(2)2λ=- 【分析】利用待定系数法求出()22f x x a =++,(1)根据所选条件,都能求出1a =,可得()23f x x =+;(2)根据对称轴与区间中点值的大小分两种情况讨论求出最大值,结合已知最大值可求得λ的值.【详解】设()f x kx b =+(0)k ≠,则(1)2k x b x a -+=+,即2kx k b x a -+=+, 所以2k =,2b a ,所以()22f x x a =++,若选①,(1)由()5f a =得225a a ++=,得1a =,所以()23f x x =+.(2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++, 区间[]0,2的中点值为1,对称轴为()22x λ+=-, 当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max ()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-.若选②,(1)由142a f ⎛⎫= ⎪⎝⎭得14222a a =⨯++,解得1a =,所以()23f x x =+; (2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++,区间[]0,2的中点值为1,对称轴为()22x λ+=-, 当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max ()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-.若选③,(1)由()()41226f f -=得4(22)2(42)6a a ++-++=,解得1a =,所以()23f x x =+;(2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++,区间[]0,2的中点值为1,对称轴为()22x λ+=-, 当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-; 当()212λ+->,即4λ<-时,max ()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-.【点睛】关键点点睛:第二问,讨论对称轴与区间中点值的大小求最大值是解题关键.。
1.证明二维laplace 方程 在极坐标下 证:2.长为l 的均匀杆,侧面绝缘,一端温度为零,另一端有恒定热流q 进入(即单位时间内通过单位截面积流入的热量为q ), 杆的初始温度分布为x (l-x ) / 2 ,试写出相应的定解问题。
解:对于杆上的一个微元d x ,流入的热量为:温度变化所需的热量为:两式相等:定解问题为:02222=∂∂+∂∂y u x u 22,arctan y x x y+==ρθθρθρρθθρθθsin ,cos 221cos ,sin /1122222=∂∂=⋅+=∂∂=∂∂-=-⋅+=∂∂y x y x x y x y x y x 2222222222222sin cos cos 2sin sin ρθθρθρρθθρθρθθρ∂∂-∂∂+∂∂+∂∂∂+∂∂=∂∂u u u u u y u x u x u x u ∂∂∂∂+∂∂∂∂=∂∂θθρρ2222222222222sin sin sin 2sin cos ρθθρθρρθθρθρθθρ∂∂+∂∂+∂∂+∂∂∂-∂∂=∂∂u u u u u x u ρρθρρ∂∂+∂∂+∂∂=∂∂+∂∂u u u y u x u 11222222222ρθθθρθθρρcos sin ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂u u y u y u y u 011222=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=θρρρρρu u ρθθθρsin cos ∂∂-∂∂=u u 02222=∂∂+∂∂y ux u 011222=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂θρρρρρu u3.设弦的两端固定于x=0及x=l,弦的初始位移如图所示,初速度为零,又没有外力作用,求弦作横向振动时的位移函数u(x,t)。
解如果琴弦像上图的方法来放置,是不是边界条件将不再是齐次的。
4.解下列问题解:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤=>=∂∂=∂∂><<∂∂=∂∂lxxxutxt luxtut lxxuatu),()0,(,0),(,0),0(,,222ϕ)()(),(tTxXtxu=XTaXT''='2XXTaT''='22=+'=+''TaTXXλλ⎩⎨⎧='='<<=+'')(,0)0(lXXlxXXλ)()(),()()0(),0(='=∂∂='=∂∂tTlXxt lutTXxtu)(,0)0(='='lXX,3,2,1,22=⎪⎭⎫⎝⎛==nlnnnπβλsin)(=-='lBlXββ)0(=='βAXxlnBXnnπcos=lnnπβ=xBxAXββcossin+=2=+''XXβ2>=βλBX=BAxX+==''X=λ==BAll eBeAlXββββ--=')()0(=-='ββBAXxx BeAeXββ-+=2=-''XXβ2<-=βλ2=+'TaTλ=λ0='T00T A=>λ02222=+'nnTlnaTπtlnanneAT2222π-=nnnTXu=xlneC tlnanππcos2222-=CAB==∑∑∞=-∞=+==1cos2222ntlnannnxlneCCuuππTXu=xlneBA tlnannππcos2222-=001()d2l lC x xlϕ==⎰022()cos d2(1)1()lnnnC x x xl llnπϕπ=⎡⎤=--⎣⎦⎰xx=)(ϕ5.达朗贝尔公式推导 解:做如下代换得:所以 因为所以所以 又因为 因为 所以所以得:即因此⎪⎪⎩⎪⎪⎨⎧+∞<<∞-=∂∂=>+∞<<∞-∂∂=∂∂x x t x u x x u t x x u a t u ),()0,(),()0,(0,,22222ψϕ⎪⎭⎫ ⎝⎛∂∂⋅-∂∂=t a x 121⎪⎭⎫ ⎝⎛∂∂⋅+∂∂=t a x 121)()(21at x f at x f u -++=ηηη∂∂∂∂+∂∂∂∂=∂∂t t x x ξξξ∂∂∂∂+∂∂∂∂=∂∂t t x x a t 2ηξ-=2ηξ+=x at x -=ηat x +=ξ)()(21ηξf f u +=)(ξξf u =∂∂02=⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂ηξηξu u t a x ∂∂⋅-∂∂=∂∂1ηt a x ∂∂⋅+∂∂=∂∂1ξ011=⎥⎦⎤⎢⎣⎡∂∂⋅-∂∂⎥⎦⎤⎢⎣⎡∂∂⋅+∂∂u t a x t a x 0122=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂⋅-⎪⎭⎫ ⎝⎛∂∂u t a x 0122222=⎪⎪⎭⎫ ⎝⎛∂∂⋅-∂∂u t a x 0122222=∂∂⋅-∂∂t u a x u )()()()0,(21x x f x f x u ϕ=+=)()()()0,(21x x f a x f a t x u ψ='-'=∂∂C a x f x f x +=-⎰021d )(1)()(ξξψ2d )(21)(21)(01C a x x f x ++=⎰ξξψϕ2d )(21)(21)(02Ca x x f x --=⎰ξξψϕ2d )(21)(212d )(21)(2100C a at x C a at x u at x at x ---++++=⎰⎰-+ξξψϕξξψϕ[]11()()()d 22x atx at u x at x at a ϕϕψξξ+-=++-+⎰6.解定解问题解:令所以因为 所以得7.P81T1求方程0,1,22>>=∂∂∂y x y x yx u满足边界条件y y u x x u cos ),1(,)0,(2==的解解:用积分法求解:对y 进行积分)(2122x g y x x u ==∂∂,再对x 积分)()(612123y f x f y x u ++=利用边界条件得 ,再用一次边界条件用积分变换法求解:对y 取拉普拉斯变换利用边界条件 得22d 2d d 3d y x y x --x y +=η2=∂∂∂ηξu )()3()0,(21x f x f x x u +-==)()3(0)0,(21x f x f y x u '+-'==∂∂Cx f x f =+--)()3(3121Cx x f 4343)3(1-=-C x x f 4341)(21-=C x x f 4343)(2+=()2222343)(4343341y x C y x C y x u +=+++--=(d 3d )(d d )0y x y x =-+=)()3(21x y f x y f ++-=x y 3-=ξ)()(21ηξf f u +=y y f f y y u x f x f x u cos )()1(61),1(,)0()()0,(212221=++=+=⎪⎪⎩⎪⎪⎨⎧+∞<<∞-=∂∂=+∞<<-∞>=∂∂-∂∂∂+∂∂x y x u x x u x y y u y x u x u ,0)0,(,)0,(,0,032222228.推导空间格林公式由高斯公式⎰⎰⎰⎰⎰ΓΩ++=∂∂+∂∂+∂∂dS x n R y n Q x n P dV z R y Q x P )],cos(),cos(),cos([)(推导 证:设函数u(x,y,z)和υ(x,y,z)在Γ+Ω上具有一阶连续偏导数,在Ω内具有连续的所有二阶偏导数。
10---11-2 数学物理方程与特殊函数(A 卷)参考答案一.填空题1,自由项,齐次方程,非齐次方程,初值条件,(第三类)边界条件,初边值(混合)问题; 2,函数()t z y x u u ,,,= 1),具有二阶连续偏导函数;2),满足方程; 3,()xt t x w =,;4,)cos(t x π-;5,[]1,1-,t x t ≤≤-;6,4122≤+<y x ;122<+y x ; 7,()x x 35213-;()32331481-x dxd ;无界的; 8,⎪⎩⎪⎨⎧=+≠;,122,,0n m n n m ()()().,2,1,021211 =+⎰-n dx x P x f n n 二.解:相应方程的特征方程为:0)(2)(322=-+dt dxdt dx ,即:31=dt dx ,1-=dtdx。
由此得积分曲线:13C t x =-,2C t x =+。
作特征变换:t x -=3ξ,t x +=η,则:ηξ∂∂+∂∂-=∂∂u u t u ,ηξ∂∂+∂∂=∂∂u u x u 3;22222222ηηξξ∂∂+∂∂∂-∂∂=∂∂u u u t u , 22222223ηηξξ∂∂+∂∂∂+∂∂-=∂∂∂u u u x t u ,222222239ηηξξ∂∂+∂∂∂+∂∂=∂∂uu u x u 。
代入原方程,整理得:02=∂∂∂ηξu,则通解为:()()ηξ21f f u +=,其中21,f f 是任意两个连续二次可微函数。
因此原方程通解为: ()()()t x f t x f t x u ++-=213,。
由初值条件有: ()()22133x x f x f =+,()()0321='+'-x f x f 。
由微分方程有:()()C x f x f =-2133 因此 ()449321Cx x f +=,()44121C x x f +=,()44322C x x f -=。
一、选择题1.若关于x 的不等式342xx a+-在[0x ∈,1]2上恒成立,则实数a 的取值范围是( )A .(-∞,1]2-B .(0,1]C .1[2-,1]D .[1,)+∞2.已知函数()21f x mx mx =++的定义域为R ,则实数m 的取值范围是( )A .04m ≤≤B .04m <≤C .04m ≤<D .04m <<3.如图是二次函数2y ax bx c =++图象的一部分,图象过点()30A -,,对称轴为1x =-,给出下面四个结论:①24b ac >;②21a b -=;③0a b c -+=;④若0y >,则()3,1x ∈-.其中正确的是( ) A .①④B .②④C .①③D .①②③4.对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零,则x 的取值范围是( ) A .13x <<B .1x <或3x >C .12x <<D .1x <或2x >5.已知定义域为(0,)+∞的函数()f x 满足:()()()1f xy f x f y =++,当1x >时,()1f x <-,且128f ⎛⎫= ⎪⎝⎭,则不等式()(3)3f x f x +->-的解集为( )A .(0,3)B .(1,2)C .(1,3)D .(0,1)(2,3)6.已知函数f (x )满足f (x -1)=2f (x ),且x R ∈,当x ∈[-1,0)时,f (x )=-2x -2x +3,则当x ∈[1,2)时,f (x )的最大值为( ) A .52B .1C .0D .-17.已知函数2()(3)1f x mx m x =--+,()g x mx =,若对于任意实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( ) A .(1,9)B .(3,+)∞C .(,9)-∞D .(0,9)8.若函数2()34f x x x =--的定义域为[]0m ,,值域为2544⎡⎤--⎢⎥⎣⎦,,则m 的取值范围是( ) A .3,42⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .(]0,4D .3,2⎡⎫+∞⎪⎢⎣⎭9.已知()f x 在[],x a b ∈的最大值为M ,最小值为m ,给出下列五个命题:( ) ①若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],m -∞. ②若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],M -∞. ③若关于x 的方程()p f x =在区间[],a b 有解,则p 的取值范围是[],m M . ④若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],m -∞. ⑤若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],M -∞. A .4B .3C .2D .110.已知函数()f x 的定义域为R ,(1)f x -是奇函数,(1)f x +为偶函数,当11x -≤≤时,()13131x x f x +-=+,则以下各项中最小的是( )A .()2018fB .()2019fC .()2020fD .()2021f11.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( ) A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确12.已知定义在R 上的函数()f x 的图像关于y 轴对称,且当0x >时()f x 单调递减,若()()()1.360.5log 3,0.5,0.7,a f b f c f -===则,,a b c 的大小关系( )A .c a b >>B .b a c >>C .a c b >>D .c b a >>二、填空题13.已知函数211,0,22()13,,12x x f x x x ⎧⎡⎫+∈⎪⎪⎢⎪⎣⎭=⎨⎡⎤⎪∈⎢⎥⎪⎣⎦⎩,若存在12x x <,使得()()12f x f x =,则()12x f x ⋅的取值范围为_____________.14.已知()13=f x x ,则不等式(21)f x -() 230f x ++>的解集为_________. 15.已知函数()225f x x ax =-+在(],2-∞上是减函数,且对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则实数a 的取值范围是________.16.已知函数()f x 的定义域为[]2,2-,当[]0,2x ∈时,()1f x x =+,当[)2,0x ∈-时,()(2)f x f x =-+,求()f x =___________17.设函数2222,0(),0x x x f x x x ⎧++=⎨->⎩,若(())2f f a =,则a =___________.18.已知函数()f x 在定义域(0,)+∞上是单调函数,若对任意(0,)x ∈+∞,都有1()2f f x x ⎡⎤-=⎢⎥⎣⎦,则12020f ⎛⎫⎪⎝⎭的值是______________. 19.若关于x 的不等式2222x x a +-<在(),0-∞上有解,则实数a 的取值范围是______. 20.定义:如果函数()y f x =在定义域内给定区间[],a b 上存在()00x a x b <<,满足()()0)(f b f a f x b a-=-,则称函数()y f x =是[],a b 上的“平均值函数”.0x 是它的一个均值点,若函数()2f x x mx =+是[]1,1-上的平均值函数,则实数m 的取值范围是___________.三、解答题21.已知函数()4f x x x=+. (1)用单调性的定义证明()f x 在()0,2上单调递减; (2)判断()f x 在71,2⎡⎤⎢⎥⎣⎦上的单调情况,并求最值.22.已知函数()22mf x x x =-. (1)当1m =时,判断()f x 在()0,∞+上的单调性,并用定义法加以证明. (2)已知二次函数()g x 满足()()2446g x g x x =++,()13g =-.若不等式()()g x f x >恒成立,求m 的取值范围.23.已知22()2x af x x -=+.(1)若0a =,证明:()f x 在递增,若()f x 在区间(12,1)m m --递增,求实数m 的范围;(2)设关于x 的方程1()f x x=的两个非零实根为1x ,2x ,试问:是否存在实数m ,使得不等式2121m tm x x ++≥-对任意[1,1]a ∈-及[1,1]t ∈-恒成立?如果存在求出m 的范围,如果不存在请说明理由. 24.定义在11,22⎛⎫-⎪⎝⎭上的函数()f x 满足:对任意的11,,22x y ⎛⎫∈- ⎪⎝⎭都有()()()1()()f x f y f x y f x f y ,且当102x <<时,()0f x >.(1)判断()f x 在10,2⎛⎫ ⎪⎝⎭上的单调性并证明; (2)求实数t 的取值集合,使得关于x 的不等式1()02f t x f x ⎛⎫-+> ⎪⎝⎭在11,22⎛⎫- ⎪⎝⎭上恒成立.25.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求实数a 的取值范围;(3)若()f x 在区间[1,]m -上的最小值为1,最大值为9,求实数m 的取值范围.26.已知函数()f x =+ (1)求()f x 的定义域和值域; (2)设()h x =231()42h x m am ≤-对于任意[1,1]x ∈-及任意[1,1]a ∈-都恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用参数分离法进行转化,构造函数求函数的最大值即可得到结论. 【详解】解:由题意知,342xx a +-在(0x ∈,1]2上恒成立,设3()42x f x x =+-,则函数在102⎛⎤ ⎥⎝⎦,上为增函数,∴当12x =时,()12max 113()4211222f x f ==+-=-=, 则1a , 故选:D . 【点睛】 关键点睛:本题的关键是将已知不等式恒成立问题,通过参变分离得到参数的恒成立问题,结合函数的单调性求出最值.2.C解析:C 【分析】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立,然后分0m =和0m ≠,结合题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立. 当0m =时,则有10>,合乎题意;当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<. 综上所述,04m ≤<. 故选:C. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩; ②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩; ③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩. 3.A解析:A 【分析】由抛物线与x 轴有两个交点,可判定①正确;由对称轴方程为12bx a=-=-,可判定②不正确;由()10f ->,可判定③不正确;由根据函数的对称性和(3)0f -=,可判定④正确. 【详解】由函数2y ax bx c =++的图象,可得函数的图象开口向下,与x 轴有两个交点,所以0a <,240b ac ∆=->,所以①正确; 由对称轴方程为12bx a=-=-,可得2a b =,所以20a b -=,所以②不正确; 由()10f ->,可得0a b c -+>,所以③不正确;由图象可得(3)0f -=,根据函数的对称性,可得()10f =, 所以0y >,可得31x -<<,所以④正确. 故选:A. 【点睛】识别二次函数的图象应用学会“三看”:一看符号:看二次项系数的符号,它确定二次函数图象的开口方向; 二看对称轴:看对称轴和最值,它确定二次函数图象的具体位置;三看特殊点:看函数图象上的一些特殊点,如函数图象与y 轴的交点、与x 轴的交点、函数图象的最高点或最低点等.4.B解析:B 【分析】将函数()f x 的解析式变形为()2()244f x x a x x =-+-+,并构造函数()2()244g a x a x x =-+-+,由题意得出()()1010g g ⎧->⎪⎨>⎪⎩,解此不等式组可得出实数x 的取值范围 【详解】对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零设()()2244g a x a x x =-+-+,即()0g a >在[]1,1a ∈-上恒成立.()g a 在[]1,1a ∈-上是关于a 的一次函数或常数函数,其图象为一条线段.则只需线段的两个端点在x 轴上方,即()()2215601320g x x g x x ⎧-=-+>⎪⎨=-+>⎪⎩ ,解得3x >或1x < 故选:B 【点睛】关键点睛:本题考查不等式在区间上恒成立问题,解答本题的关键是构造函数()()2244g a x a x x =-+-+,将问题转化为()0g a >在[]1,1a ∈-上恒成立,从而得到()()1010g g ⎧->⎪⎨>⎪⎩,属于中档题.5.D解析:D 【分析】任设120x x <<,则211x x >,21()1x f x <-,根据定义可得()f x 在(0,)+∞上为递减函数,令1x y ==得(1)1f =-,令18,8x y ==可得(8)4f =-,可得(2)2f =-,将不等式化为[(3)](2)f x x f ->,利用单调性和定义域可解得结果. 【详解】任设120x x <<,则211x x >,21()1x f x <-,所以()()()()222111111111x x f x f x f x f f x f x x x ⎛⎫⎛⎫=⋅=++<-+= ⎪⎪⎝⎭⎝⎭, 所以()f x 在(0,)+∞上为递减函数,在()()()1f xy f x f y =++中,令1x y ==得(1)2(1)1f f =+,得(1)1f =-,令18,8x y ==得11(1)(8)(8)()188f f f f =⨯=++,所以(8)1124f =---=-, 又(8)(2)(4)1f f f =++(2)(2)(2)113(2)2f f f f =++++=+4=-,所以(2)2f =-,()(3)3f x f x +->-可化为()(3)12(2)f x f x f +-+>-=,所以[(3)](2)f x x f ->,所以030(3)2x x x x >⎧⎪->⎨⎪-<⎩,解得01x <<或23x <<.故选:D 【点睛】关键点点睛:利用定义判断函数的单调性以及求出(2)f 是解题关键.6.B解析:B 【分析】 首先设[)1,2x ∈,利用函数满足的关系式,求函数的解析式,并求最大值.【详解】 设[)1,2x ∈,[)21,0x -∈-,()()()222222323f x x x x x ∴-=----+=-++, ()()()()211214f x f x f x f x -=--=-=⎡⎤⎣⎦, ()()()()2211122311444f x f x x x x ∴=-=-++=--+, [)1,2x ∈,()f x ∴在区间[)1,2单调递减,函数的最大值是()11f =.故选:B 【点睛】思路点睛:一般利用函数的周期,对称性求函数的解析式时,一般求什么区间的解析式,就是将变量x 设在这个区间,根据条件,转化为已知区间,再根据关系时,转化求函数()f x 的解析式.7.D解析:D 【分析】根据所给条件,结合二次函数的图像与性质,分类讨论,即可得解. 【详解】当0m <时,二次函数2()(3)1f x mx m x =--+的图像开口向下,()g x mx =单调递减,故存在x 使得()f x 与()g x 同时为负,不符题意; 当0m =时,()31f x x =-+,()0g x =显然不成立; 当0m >时,2109m m ∆=-+, 若∆<0,即19m <<时,显然成立,0∆=,1m =或9m =,则1m =时成立,9m =时,13x =-时不成立,若0∆>,即01m <<或9m >,由(0)1f =可得:若要()f x 与()g x 的值至少有一个为正数,如图,则必须有302mm->,解得01m <<, 综上可得:09m <<, 故答案为:D. 【点睛】本题考查了二次函数和一次函数的图像与性质,考查了分类讨论思想和计算能力,属于中档题.解决此类问题的关键主要是讨论,涉及二次函数的讨论有: (1)如果平方项有参数,则先讨论; (2)再讨论根的判别式; (3)最后讨论根的分布.8.B解析:B 【分析】求出(0)4f =-,再计算出最小值为32524f ⎛⎫=- ⎪⎝⎭,然后求出()4f m =-的值后可得m 的范围.【详解】2325()24f x x ⎛⎫=-- ⎪⎝⎭,()f x 在3,2⎛⎫-∞ ⎪⎝⎭上递减,在3,2⎛⎫+∞ ⎪⎝⎭上递增, (0)4f =-,又32524f ⎛⎫=- ⎪⎝⎭,所以32m ≥,由2()344f m m m =--=-解得0m =或3m =,因此332m ≤≤. 故选:B . 【点睛】方程点睛:本题考查二次函数的性质,掌握其对称轴、单调性是解题关键.由此可得二次函数2()f x ax bx c =++在区间[,]m n 上的最值求法: 设0a >,函数的对称轴0x x =(02bx a=-), 当0x m <时,min ()()f x f m =,0m x n ≤≤时,min 0()()f x f x =,0x n >时,min ()()f x f n =,当02m n x +≤时,max ()()f x f n =,当02m nx +>时,max ()()f x f m =. 0a <类似讨论.9.B解析:B 【分析】这是一个对不等式恒成立,方程或不等式解集非空的理解,概念题.对各个选项分别加以判断,在①②中,得出①正确②错误,④⑤中得出⑤正确④错误,而不难发现③是一个真命题,由此可得正确答案. 【详解】对任何x ∈[a ,b]都有()p f x ≤,说明p 小于等于()f x 的最小值,①是正确的; 由于①正确,所以②是一个错误的理解,故不正确;关于x 的方程p =f (x )在区间[a ,b ]上有解,说明p 应属于函数f (x )在[a ,b ]上的值域[m ,M ]内,故③是正确的;关于x 的不等式p ≤f (x )在区间[a ,b ]上有解,说明p 小于或等于的最大值,所以④是错误的,而⑤是正确的 正确的选项应该为①③⑤ 故选: B. 【点睛】关键点点睛:本题考查了命题的真假判断与应用,属于基础题.不等式或方程解集非空,只要考虑有解;而不等式恒成立说明解集是一切实数,往往要考虑函数的最值了.10.D解析:D 【分析】利用已知条件可知(2)()0f x f x --+=、(2)()f x f x -=,进而得到(8)()f x f x +=,即周期为8,应用周期性结合已知区间解析式,即可知()2018f 、()2019f 、()2020f 、()2021f 中最小值.【详解】(1)f x -是奇函数,即(1)f x -关于(0,0)对称,()f x ∴的图象关于点(1,0)-对称,即(2)()0f x f x --+=.又)1(f x +为偶函数,即(1)f x +关于0x =对称,()f x ∴的图象关于直线1x =对称,即(2)()f x f x -=.(2)(2)0f x f x --+-=,(2)(2)0f x f x ∴-++=,即(8)()f x f x +=,函数()y f x =的周期为8, (2018)(2)(0)1f f f ∴===,(2019)(3)(1)0f f f ==-=,(2020)(4)(2)(0)1f f f f ==-=-=-,(2021)(5)(3)(1)2f f f f ==-=-=-,故(2021)f 最小.故选:D 【点睛】本题考查了函数的性质,根据已知奇偶性推导函数的周期,应用函数周期求函数值,进而比较大小,属于基础题.11.D解析:D 【分析】可举出反例判断①错误;根据奇偶性的性质可判断②正确,结合选项可得答案. 【详解】①错误,可举反例:21()31xx f x x x ⎧=⎨-+>⎩,230()30121x x g x x x x x +⎧⎪=-+<⎨⎪>⎩,0()20x x h x x x -⎧=⎨>⎩,均不是增函数;但()()f x g x +、()()f x h x +、()()g x h x +均为增函数; 故①错误; ②()()f x g x +,()()f x h x +,()()g x h x +均是奇函数;()()()()[()()]2()f x g x f x h x g x h x f x ∴+++-+=为奇函数;()f x ∴为奇函数;同理,()g x ,()h x 均是奇函数; 故②正确. 故选:D . 【点睛】本题考查增函数的定义,一次函数和分段函数的单调性,举反例说明命题错误的方法,以及奇函数的定义与性质,知道()f x 和()g x 均是奇函数时,()()f x g x ±也是奇函数.12.A解析:A 【分析】函数()f x 是偶函数,判断出自变量的大小,利用函数的单调性比较大小得出答案. 【详解】函数()f x 的图像关于y 轴对称, ∴函数()f x 为偶函数, ∵0.50.5log 3log 10<=,∴()()120.52log 3log 3log 3f f f ⎛⎫== ⎪⎝⎭, ∴2221log 2log 3log 42=<<=, 1.3 1.30.522-=>,600.71<<. ∵当0x >时,()f x 单调递减,∴c a b >>, 故选:A 【点睛】本题考查函数性质的综合应用,考查函数的单调性和奇偶性,考查指数和对数的单调性,属于中档题.二、填空题13.【分析】根据条件作出函数图象求解出的范围利用和换元法将变形为二次函数的形式从而求解出其取值范围【详解】由解析式得大致图象如下图所示:由图可知:当时且则令解得:又令则即故答案为:【点睛】思路点睛:根据解析:31,162⎡⎫⎪⎢⎣⎭【分析】根据条件作出函数图象求解出1x 的范围,利用()()12f x f x =和换元法将()12x f x ⋅变形为二次函数的形式,从而求解出其取值范围. 【详解】由解析式得()f x 大致图象如下图所示:由图可知:当12x x <时且()()12f x f x =,则令211322x ⎛⎫+=⋅ ⎪⎝⎭,解得:14x =, 111,42x ⎡⎫∴∈⎪⎢⎣⎭,又()()12f x f x =,221221333,124x x x ⎛⎫⎡⎫∴+=∈⎪ ⎪⎢⎣⎭⎝⎭,()2222121332x f x x x ⎛⎫∴⋅=⋅- ⎪⎝⎭,令2233,14x t ⎡⎫=∈⎪⎢⎣⎭,则()()2211113,124164x f x g t t t t t ⎛⎫⎛⎫⎛⎫⎡⎫⋅==-=--∈ ⎪ ⎪⎪ ⎪⎢⎝⎭⎝⎭⎣⎭⎝⎭,()31,162g t ⎡⎫∴∈⎪⎢⎣⎭,即()2131,162x f x ⎡⋅⎫∈⎪⎢⎣⎭.故答案为:31,162⎡⎫⎪⎢⎣⎭ 【点睛】思路点睛:根据分段函数的函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.14.【分析】先利用幂函数性质和奇函数定义判断是R 上单调递增的奇函数再结合奇偶性和单调性解不等式即可【详解】由幂函数性质知时在是增函数故函数在是增函数又定义域是R 而故是R 上的奇函数根据奇函数对称性知在R 上解析:1,2⎛⎫-+∞ ⎪⎝⎭【分析】先利用幂函数性质和奇函数定义判断()f x 是R 上单调递增的奇函数,再结合奇偶性和单调性解不等式即可. 【详解】由幂函数性质知,01α<<时y x α=在[)0,+∞是增函数,故函数()13=f x x 在[)0,+∞是增函数,又()f x 定义域是R ,而()()()1133=f x x x f x =-=---,故()f x 是R 上的奇函数,根据奇函数对称性知,()f x 在R 上单调递增.故不等式(21)f x -() 230f x ++>即(21)f x -()() 2323f x f x >-+=--,故2123x x ->--,即12x >-,故解集为1,2⎛⎫-+∞ ⎪⎝⎭. 故答案为:1,2⎛⎫-+∞ ⎪⎝⎭.【点睛】 思路点睛:利用函数奇偶性和单调性解不等式问题:(1)()f x 是奇函数,图像关于原点中心对称,利用奇函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可;(2)()f x 是偶函数,图像关于y 轴对称,利用偶函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可.15.【分析】根据二次函数的单调性求得求得函数在区间上的最大值和最小值由题意可得出可得出关于实数的不等式进而可求得实数的取值范围【详解】二次函数的图象开口向上对称轴为直线由于函数在上是减函数则则所以函数在 解析:[]2,3【分析】根据二次函数()y f x =的单调性求得2a ≥,求得函数()y f x =在区间[]1,1a +上的最大值和最小值,由题意可得出()()max min 4f x f x -≤,可得出关于实数a 的不等式,进而可求得实数a 的取值范围. 【详解】二次函数()225f x x ax =-+的图象开口向上,对称轴为直线x a =,由于函数()225f x x ax =-+在(],2-∞上是减函数,则2a ≥,则()1,1a a ∈+,所以,函数()y f x =在区间[)1,a 上单调递减,在区间(],1a a +上单调递增, 所以,()()2min 5f x f a a ==-,又()162f a =-,()216f a a +=-,则()()()211220f f a a a a a -+=-=-≥,()()max 162f x f a ∴==-,对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则()()()()22max min 625214f x f x a a a a -=---=-+≤,即2230a a --≤,解得13a -≤≤, 又2a ≥,则23a ≤≤,因此,实数a 的取值范围是[]2,3.故答案为:[]2,3. 【点睛】本题考查利用不等式恒成立求参数值,同时也考查了利用二次函数在区间上的单调性求参数,考查计算能力,属于中等题.16.【分析】当时可得可求出结合可求出时的表达式进而可得出答案【详解】当时;当时所以则所以故答案为:【点睛】本题考查分段函数解析式的求法考查学生的推理能力属于中档题解析:1,023,20x x x x +≤≤⎧⎨---≤<⎩【分析】当[)2,0x ∈-时,可得[)20,2x +∈,可求出(2)3f x x +=+,结合()(2)f x f x =-+,可求出[)2,0x ∈-时,()f x 的表达式,进而可得出答案.【详解】当[]0,2x ∈时,()1f x x =+;当[)2,0x ∈-时,[)20,2x +∈,所以(2)3f x x +=+, 则()(2)3f x f x x =-+=--. 所以1,02()3,20x x f x x x +≤≤⎧=⎨---≤<⎩.故答案为:1,023,20x x x x +≤≤⎧⎨---≤<⎩.【点睛】本题考查分段函数解析式的求法,考查学生的推理能力,属于中档题.17.【分析】先令则求解的值然后再分类讨论求解的值【详解】令则当时有无解当时有解得或所以或当时故无解;当时若则得若则即无解综上所述:故答案为:【点睛】本题考查分段函数的应用考查根据函数值求参难度一般解答时【分析】先令()f a t =,则()2f t =,求解t 的值,然后再分类讨论,求解a 的值. 【详解】令()f a t =,则()2f t =,当0t >时,有22t -=,无解, 当0t ≤时,有2222t t ++=,解得0t =,或2t =-, 所以()0f a =或()2f a =-,当()0f a =时,()2222110a a a ++=++>,20a -<,故 ()0f a =无解;当()2f a =-时,若0a >,则22a -=-,得a =若0a ≤,则2222a a ++=-,即2240a a ++=,无解,综上所述:a =【点睛】本题考查分段函数的应用,考查根据函数值求参,难度一般,解答时注意分类讨论思想的运用.18.2021【分析】由已知条件利用换元法求出f (x )然后代入计算即可求解【详解】已知函数f (x )在定义域(0+∞)上是单调函数且对任意x ∈(0+∞)都有ff (x )﹣=2可设f (x )﹣=c 故f (x )=+c解析:2021 【分析】由已知条件,利用换元法求出f (x ),然后代入计算即可求解. 【详解】已知函数f (x )在定义域(0,+∞)上是单调函数,且对任意x ∈(0,+∞),都有f [f (x )﹣1x]=2, 可设f (x )﹣1x =c ,故f (x )=1x +c ,且f (c )=c +1c=2(c >0),解可得c =1,f (x )=1x+1, 则f (12020)=2021. 故答案为:2021 【点睛】本题主要考查了利用函数的单调性求函数值,函数解析式的求法,注意函数性质的合理应用,属于中档题.19.【分析】由题意可知关于的不等式在上有解作出函数和函数的图象考虑直线与函数的图象相切以及直线过点数形结合可求得实数的取值范围【详解】关于的不等式在上有解即关于的不等式在上有解作出两函数图象当由与相切时解析:5,22⎛⎫- ⎪⎝⎭由题意可知关于x 的不等式2222x a x -<-在(),0-∞上有解,作出函数2y x a =-和函数222y x =-的图象,考虑直线2y x a =-与函数222y x =-的图象相切,以及直线()2y x a =--过点()0,2,数形结合可求得实数a 的取值范围.【详解】关于x 的不等式2222x x a +-<在(),0-∞上有解,即关于x 的不等式2222x a x -<-在(),0-∞上有解,作出两函数2y x a =-,222y x =-图象,当由2y x a =-与222y x =-相切时,则2222x a x -=-,即22220x x a +--=,()4828200a a ∆=++=+=,解得52a =-.由()2y x a =--过点()0,2得2a =. 由图可知5142a -<<,因此,522a -<<,即实数a 的取值范围为5,22⎛⎫- ⎪⎝⎭.故答案为:5,22⎛⎫- ⎪⎝⎭. 【点睛】本题考查利用含绝对值的不等式在区间上有解求参数,考查数形结合思想的应用,属于中等题.20.【分析】根据新定义可得在区间上有解利用分离变量法即可求出答案【详解】解:设∴在区间上有解即在区间上有解∵令单调递减时单调递增所以所以实数的取值范围是故答案为:【点睛】关键点点睛:此题考查了函数的新定 解析:[)0,+∞【分析】根据新定义可得2x mx m +=在区间()1,1-上有解,利用分离变量法即可求出答案.解:设11x -<<,()()()()1111f f f x m --==--,∴2x mx m +=在区间()1,1-上有解,即21x m x=-在区间()1,1-上有解,∵()()()()22212112211121111x x x x x y x x x x x-+----+====-+-----, 令()10,2x t -=∈,12y t t∴=+-,(]0,1t ∈单调递减,[)1,2t ∈时单调递增,所以120y t t=+-≥,所以实数m 的取值范围是[)0,+∞. 故答案为:[)0,+∞. 【点睛】关键点点睛:此题考查了函数的新定义题目,解题的关键是将问题转化为2x mx m +=在区间()1,1-上有解,分离参数求解,意在考查了分析能力、数学运算.三、解答题21.(1)证明见解析;(2)()f x 在[)1,2上单调递减,在72,2⎡⎤⎢⎥⎣⎦上单调递增,最小值4,最大值5.【分析】(1)任取1x 、()20,2x ∈且12x x <,作差()()12f x f x -、因式分解,判断()()12f x f x -的符号,进而可证得结论成立;(2)同(1)可证函数()f x 在区间()2,+∞上为增函数,由此可判断出函数()f x 在71,2⎡⎤⎢⎥⎣⎦上的单调性,并由此可求得函数()f x 在71,2⎡⎤⎢⎥⎣⎦上的最大值和最小值. 【详解】(1)证明:任取1x 、()20,2x ∈且12x x <,则()()()()()121212121212121244444x x x x f x f x x x x x x x x x x x --⎛⎫⎛⎫⎛⎫-=+-+=-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 1202x x <<<,120x x ∴-<,1204x x <<,1240x x ∴-<,()()()()1212121240x x x x f x f x x x --∴-=>,即()()12f x f x >,因此,函数()4f x x x=+在()0,2上单调递减; (2)由(1)可知,()f x 在()0,2上单调递减,同理(1)可证()f x 在()2,+∞上单调递增,当71,2x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 在[)1,2上为减函数,在72,2⎛⎤ ⎥⎝⎦上为增函数,故当2x =时,()f x 取最小值4, 又()15f =,765214f ⎛⎫= ⎪⎝⎭且65514>,故当1x =时,()f x 取最大值5. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论. 22.(1)减函数,证明见解析;(2)1m <-. 【分析】(1)()212f x x x =-在区间()0+∞,上为减函数,运用单调性的定义证明,注意取值、作差和变形、定符号、下结论等步骤;(2)设()()20g x ax bx c a =++≠,由题意可得关于,,a b c 的方程,解得,,a b c 的值,可得222mx x ->,由参数分离和二次函数的最值求法,可得所求范围. 【详解】 (1)当1m =时,()212f x x x=-,函数()f x 是区间()0+∞,上的减函数, 证明如下:设1x ,2x 是区间()0+∞,上的任意两个实数,且12x x <, 则()()121222121122f x f x x x x x -=--+ ()()22212121212222121222x x x x x x x x x x x x ⎛⎫-+=+-=-+ ⎪⎝⎭.∵120x x <<,∴210x x ->,210x x +>,22120x x >,∴()()120f x f x ->,()()12f x f x >, ∴函数()f x 是区间()0,∞+上的减函数.(2)设()()20g x ax bx c a =++≠,则()2242g x ax bx c =++,()()244644446g x x ax b x c ++=++++.又∵()()2446g x g x x =++, ∴442,46,b b c c +=⎧⎨+=⎩∴2b =-,2c =-,又∵()13g a b c =++=-,∴1a =,∴()222g x x x =--.∵()()g x f x >,∴222m x x->,∴()4220m x x x <-≠, 又∵()2422211x x x -=--,∴1m <-.【点睛】方法点睛:该题考查的是有关函数的问题,解题方法如下:(1)先判断函数()f x 在()0,∞+上的单调性,再用定义证明,在证明的过程中,注意其步骤要求;(2)先用待定系数法求得函数()g x 的解析式,将恒成立问题转化为最值来处理,求得结果.23.(1)证明见解析;2132m +<≤;(2)存在;2m ≥或2m ≤-. 【分析】(1)运用单调性的定义,注意取值、作差和变形、定符号和下结论等步骤,可得f (x)在递增,由奇函数的性质推得f (x)在(递增,可得m 的不等式组,解得m 的范围;(2)运用韦达定理和配方,可得|x 1﹣x 2|的最大值,再由m 2+tm ﹣2≥0对任意t ∈[﹣1,1]恒成立,设g (t )=m 2+tm ﹣2=tm +m 2﹣2,由一次函数的单调性可得m 的不等式组,解不等式可得所求范围. 【详解】(1)当0a =时,任取12,x x ∈,12x x <, 则()()()()()()()()()()2212212112121222222212212122222222222222x x x x x x x x x x f x f x x x x x x x +-+--⎛⎫⎛⎫-=-== ⎪ ⎪++++++⎝⎭⎝⎭,12x x <∈()()211220x x x x ∴--<,()()120f x f x ∴-<,即()f x在递增;∵()f x 为R 上的奇函数,∴()f x在(递增,又∵()f x 在区间(12,1)m m --递增,则121121m m m m ⎧≤-⎪⎪-≤⎨⎪-<-⎪⎩,解得2132m +<≤(2)由2212x a x x-=+,得220x ax --=,此时280a ∆=+>恒成立,由于1x ,2x 是方程220x ax --=的两实根,所以12122x x a x x +=⎧⎨=-⎩,从而12x x -==11a -≤≤,123x x ∴-=,不等式2121m tm x x ++≥-对任意[1,1]a ∈-及[1,1]t ∈-恒成立,当且仅当213m tm ++≥对任意[1,1]t ∈-恒成立,即220m tm +-≥对任意[1,1]t ∈-恒成立,设22()22g t m tm tm m =+-=+-,则()0g t ≥对任意[1,1]t ∈-恒成立,(1)0(1)0g g ≥⎧∴⎨-≥⎩,即222020m m m m ⎧+-≥⎨-+-≥⎩,解得2m ≥或2m ≤-. 【点睛】方法点睛:证明函数的单调性.定义法:在定义域内任意取值、作差和变形、定符号和下结论;导数法:给函数求导,在定义域内判断导数的正负,若导数为正,则函数递增,若导数为负,则函数递减.24.(1)单调递增;证明见解析;(2)14⎧⎫⎨⎬⎩⎭. 【分析】(1)首先判断()00f =,再令y x =-,判断函数的奇偶性,再设任意1210,2x x ⎛⎫>∈ ⎪⎝⎭,利用已知条件列式()()()()()()()()()121212121211f x f x f x f x f x x f x f x f x f x +---==-⋅-+⋅,判断符号,证明函数的单调性;(2)不等式转化为1()()2f t x f x f x ⎛⎫->-=- ⎪⎝⎭,再利用函数的单调性,去掉“f ”后,求t 的取值范围.【详解】解:(1)令0x y ==,则22(0)(0)1(0)f f f =-,得(0)0f =, 再令y x =-,则()()(0)01()()f x f x f f x f x +-==-⋅-, ∴()()0f x f x +-=,∴()f x 为奇函数, 对任意1210,2x x ⎛⎫>∈ ⎪⎝⎭, 令1x x =,2y x =-,则()()()()()()()()()121212121211f x f x f x f x f x x f x f x f x f x +---==-⋅-+⋅, ∵当102x <<时,()0f x >, ∴()120f x x ->,()()1210f x f x +>,从而()()120f x f x ->,∴()f x 在10,2⎛⎫ ⎪⎝⎭上的单调递增.(2)∵()f x 为奇函数,∴1()()2f t x f x f x ⎛⎫->-=- ⎪⎝⎭, ∵()f x 在10,2⎛⎫ ⎪⎝⎭上的单调递增,且(0)0f =,∴()f x 在11,22⎛⎫- ⎪⎝⎭上单调递增,由题意得: 111222t x -<-<及12t x x ->-在11,22x ⎛⎫∈- ⎪⎝⎭上恒成立, ∴max min11112222x t x ⎛⎫⎛⎫-≤≤+ ⎪ ⎪⎝⎭⎝⎭,得1144t -≤≤①; max 12t x ⎛⎫≥- ⎪⎝⎭,11,22x ⎛⎫∈- ⎪⎝⎭,得14t ≥②, 由①②可知,t 的取值集合是14⎧⎫⎨⎬⎩⎭.【点睛】关键点点睛:本题考查抽象函数证明单调性和奇偶性,以及不等式恒成立求参数的取值范围,一般抽象函数证明单调性和奇偶性时,采用赋值法,利用定义证明,本题不等式恒成立求参数,采用参变分离的方法,转化为求函数的最值.25.(1)2()243f x x x =-+;(2)102a <<;(3)13m ≤≤. 【分析】 (1)用顶点式先设函数()f x 的解析式,再利用(0)3f =求解未知量即可;(2)只需保证对称轴落在区间内部即可;(3)分三种情况讨论,结合二次函数的单调性,分别求出最值,再判断是否符合条件即可.【详解】(1)()f x 是二次函数,且(0)f f =(2)∴对称轴为1x =,又由函数最小值为1,设2()(1)1f x a x =-+,又(0)3f =2a ∴=22()2(1)1243f x x x x ∴=-+=-+(2)要使()f x 在区间[2a ,1]a +上不单调,则211a a <<+102a ∴<<; (3)因为2()243f x x x =-+,所以()(1)(3)9,11f f f -===,且()f x 的对称轴为1x =,若11m -<<,()f x 在区间[1-,]m 递减,()()()()max min ()19,11f x f f x f m f =-==>=,不合题意;若13m ≤≤,()f x 在区间[1-,1]递减,在区间[1,]m 递增,()()min 11f x f ==,因为()()()31f m f f ≤=-,所以()max ()19,f x f =-=符合题意;若3m >,()f x 在区间[1-,1]递减,在区间[1,]m 递增,()()min 11f x f ==,因为()()39f m f >=,所以()max ()9,f x f m =>不合题意;综上,13m ≤≤.【点睛】二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论26.(1)定义域为[1,1]-,值域为2](2)1m ≤-或1m ≥【分析】(1)由1010x x +≥⎧⎨-≥⎩可得定义域,先求出2()f x 的值域,再开方求出()f x 的值域;(2)换元,令t =2]∈,根据对勾函数的单调性求出2()()4t h x g t t ==+的最大值,则不等式转化为21310244am m -+-≥对任意[1,1]a ∈-都恒成立,利用一次函数的图象列式可解得结果.【详解】 (1)由函数有意义得1010x x +≥⎧⎨-≥⎩,解得11x -≤≤, 所以函数()f x 的定义域为[1,1]-,因为22()2f x ==+[2,4]∈,又()0f x ≥,所以()2]f x ∈.(2)()h x ==令t =2]∈,则22t =-, 所以2()()4t h x g t t ==+14t t=+, 因为()g t在2]上递增,所以当2t =时,()g t 取得最大值221(2)244g ==+,即max 1()4h x =, 所以不等式231()42h x m am ≤-对于任意[1,1]x ∈-恒成立,转化为2311424m am -≥对任意[1,1]a ∈-都恒成立,即21310244am m -+-≥对任意[1,1]a ∈-都恒成立, 所以2213102441310244m m m m ⎧+-≥⎪⎪⎨⎪-+-≥⎪⎩,即2232103210m m m m ⎧+-≥⎨--≥⎩,解得113113m m m m ⎧≤-≥⎪⎪⎨⎪≤-≥⎪⎩或或, 所以1m ≤-或1m ≥.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥;②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤;③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥;④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;。
《数学物理方程》模拟试题一、填空题(3分⨯10=30分)1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ).2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 f u nuS=+∂∂)(σ是第( )类边界条件,其中S 为边界.5.设函数),(t x u 的傅立叶变换式为),(t U ω,则方程22222x u a t u ∂∂=∂∂的傅立叶变换为 ( ) . 6.由贝塞尔函数的递推公式有=)(0x J dxd( ) . 7.根据勒让德多项式的表达式有)(31)(3202x P x P += ( ). 8.计算积分=⎰-dx x P 2112)]([( ) .9.勒让德多项式)(1x P 的微分表达式为( ) . 10.二维拉普拉斯方程的基本解是( ) .二、试用分离变量法求以下定解问题(30分):1.⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂===><<∂∂=∂∂====30,0,3,000,30,200322222,0x t u x x t x x u t u t t x u u u2.⎪⎪⎪⎩⎪⎪⎪⎨⎧===><<∂∂=∂∂===x t x x ut u u u u t x x 2,0,00,40,04022 3. ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂===><<+∂∂=∂∂====20,0,8,00,20,162002022222x t u t x x u t u t t x x u u u三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分)⎪⎩⎪⎨⎧=∂∂=>+∞<<-∞+∂∂=∂∂==0,2sin 0,,cos 0022222t t t u x u t x x x u a t u四、用积分变换法求解下列定解问题(10分):⎪⎪⎩⎪⎪⎨⎧=+=>>=∂∂∂==,1,10,0,1002y x u y u y x y x u五、利用贝赛尔函数的递推公式证明下式(10分):)(1)()('0''02x J xx J x J -=六、在半径为1的球内求调和函数u ,使它在球面上满足θ21cos ==r u ,即所提问题归结为以下定解问题(10分):.0,12cos 3,0,10,0)(sin sin 1)(11222πθθπθθθθθ≤≤+=≤≤<<=∂∂∂∂+∂∂∂∂=r u r ur r u r r r(本题的u 只与θ,r 有关,与ϕ无关)《数学物理方程》模拟试题参考答案一、 填空题:1.初始条件,边值条件,定解条件.2. )(2222222zu y u x u a t u ∂∂+∂∂+∂∂=∂∂ 3.01)(1222=∂∂+∂∂∂∂θρρρρρu u . 4. 三.5.U a dt U d 2222ω-=. 6.)(1x J -.7.2x .8.52.9.)1(212-x dxd . 10.2020)()(1lny y x x u -+-=.二、试用分离变量法求以下定解问题1.解 令)()(),(t T x X t x u =,代入原方程中得到两个常微分方程:0)()(2''=+t T a t T λ,0)()(''=+x X x X λ,由边界条件得到0)3()0(==X X ,对λ的情况讨论,只有当0>λ时才有非零解,令2βλ=,得到22223πβλn ==为特征值,特征函数3sin )(πn B x X n n =,再解)(t T ,得到32sin32cos )(;;t n D t n C t T n n n ππ+=,于是,3sin )32sin 32cos (),(1xn t n D t n C t x u n n n πππ+=∑∞=再由初始条件得到0,)1(183sin 332130=-==+⎰n n n D n xdx n x C ππ,所以原定解问题的解为,3sin )32cos )1(18(),(11xn t n n t x u n n πππ+∞=-=∑2. 解 令)()(),(t T x X t x u =,代入原方程中得到两个常微分方程:0)()('=+t T t T λ,0)()(''=+x X x X λ,由边界条件得到0)4()0(==X X ,对λ的情况讨论,只有当0>λ时才有非零解,令2βλ=,得到22224πβλn ==为特征值,特征函数4sin )(πn B x X n n =,再解)(t T ,得到16;22)(t n n n eC t T π-=,于是,4sin(),(16122xn eC t x u t n n n ππ-∞=∑=再由初始条件得到140)1(164sin 242+-==⎰n n n xdx n x C ππ,所以原定解问题的解为,4sin)1(16),(161122xn e n t x u t n n n πππ-+∞=-=∑3.解 由于边界条件和自由项均与t 无关,令)(),(),(x w t x v t x u +=,代入原方程中,将方程与边界条件同时齐次化。
因此212''''22222)(16)(416)]([4c x c x x w x w x w xvt v ++-=⇒=⇒++∂∂=∂∂,再由边界条件有8)2(,0)0(==w w ,于是0,821==c c ,x x x w 82)(2+-=.再求定解问题⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂-===><<∂∂=∂∂====20,0),(,000,20,200322222,0x t v x w x t x x v t v t t x v v v 用分离变量法求以上定解问题的解为,2sin cos ])1)1[(32)1(16(),(331xn t n n n t x v n n n ππππ--+-=∑∞=故,2sin cos ])1)1[(32)1(16(28),(3312x n t n n n x x t x u n n n ππππ--+-+-=∑∞=三.解:令)(),(),(x w t x v t x u +=,代入原方程中,将方程齐次化,因此x a x w x x w a x x w x v a t v cos 1)(0cos )(cos )]([2''2''22222=⇒=+⇒++∂∂=∂∂,再求定解问题⎪⎪⎩⎪⎪⎨⎧=∂∂-=>∂∂=∂∂==,0),(cos 12sin 0,02022222t t t vx xw a x t x v a t v v 由达朗贝尔公式得到以上问题的解为atx a at x at x aat x at a a at x t x v cos cos 1cos sin 0)]cos(1)(2sin )cos(1)(2[sin 21),(222-=+---++-+=故.cos 1cos cos 1cos sin ),(22x aat x a at x t x u +-=四.解 :对y 取拉普拉斯变换),()],([p x U y x u L =,对方程和边界条件同时对y 取拉普拉斯变换得到pp U pdx dU px 11,120+===,解这个微分方程得到p px p p x U 111),(22++=,再取拉普拉斯逆变换有1),(++=y yx y x u 所以原问题的解为1),(++=y yx y x u .五.证明:由公式)())((1x J x x J x dxd n n n n+---=有)()()(1'x J x x nJ x xJ n n n +-=-,令1=n 有)()()(211'x xJ x J x xJ -=-,所以)(1)()(11'2x J xx J x J +-=,又)()(),()(1'0''10'x J x J x J x J -=-=,所以)(1)()(0'0''2x J xx J x J -=.六.解:由分离变量法,令)()(),(θθΦ=r R r u ,得到∑∞==0)(cos ),(n n nn P r C r u θθ,由边界条件有∑∞===+=01)(cos 12cos 3n n n r P C u θθ,令x =θcos ,)()()(261)12(322110022x P c x P c x P c x x ++=-=+-∴,)13(212622102-++=-x c x c c x , 4,0,0210===∴c c c ,故222222cos 6)1cos 3(214),(r r r r u -=-=θθθ。