概率论中心极限定理复习题
- 格式:ppt
- 大小:10.09 MB
- 文档页数:14
第四章 大数定律和中心极限定理一. 填空题1. 设Y n 是n 次伯努利试验中事件A 出现的次数, p 为A 在每次试验中出现的概率, 则对任意 ε > 0, 有=⎪⎭⎫ ⎝⎛≥-∞→ε||lim p n Y P n n __________. 解. =⎪⎭⎫ ⎝⎛≥-∞→ε||lim p n Y P n n 1-011||lim =-=⎪⎭⎫ ⎝⎛<-∞→εp n Y P n n 2. 设随机变量X 和Y 的数学期望是2, 方差分别为1和4, 而相关系数为0.5, 则根据切比雪夫不等式P(|X -Y| ≥ 6) ≤ _______.解. E(X -Y) = E(X)-E(Y) = 2-2 = 0D(X -Y) = D(X) + D(Y)-)()(2Y D X D XYρ= 1 + 4-2×0.5×1×2 = 3 所以 1213636)()6|(|2==-≤≥-Y X D Y X P二. 选择题1. 设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindberg)中心极限定理, n S 近似服从正态分布, 只要n X X X ,,,21 ( A ) 有相同的数学期望 ( B ) 有相同的方差( C ) 服从同一指数分布 ( D ) 服从同一离散型分布解. 列维-林德伯格(Levy-Lindberg)中心极限定理要求n X X X ,,,21 既有相同的数学期望, 又有相同的方差, 因此( A ) 、( B )、 ( D )都不是答案, ( C )为答案.三. 计算题1. 某厂有400台同型机器, 各台机器发生故障的概率均为0,02, 假如各台机器相互独立工作, 试求机器出现故障的台数不少于2台的概率.解. 假设X 表示400台机器中发生故障的台数, 所以X ~B(400, 0.02)由棣莫佛-拉普拉斯定理:)(2198.002.040002.0400lim 22x dt e x X P x t n Φ==⎪⎭⎫ ⎝⎛≤⨯⨯⨯-⎰∞--∞→π 所以 ⎪⎭⎫ ⎝⎛⨯⨯-≤⨯⨯--=≤-=≥98.002.0400798.002.040081)1(1)2(X P X P X P ≈ 1-Φ(-2.5) = Φ(2.5) = 0.9938.2. 设供电网中有10000盏灯, 夜晚每一盏灯开着的概率都是0.7, 假设各灯开、关时间彼此无关, 计算同时开着的灯数在6800与7200之间的概率.解. 假设X 表示10000盏灯中开着的灯数, 所以X ~B(10000, 0.7)由棣莫佛-拉普拉斯定理:)(217.03.010*******lim 22x dt e x X P xt n Φ==⎪⎭⎫ ⎝⎛≤⨯⨯-⎰∞--∞→π所以 )72006800(≤≤X P ⎪⎭⎫ ⎝⎛⨯⨯-≤⨯⨯-≤⨯⨯-=7.03.010000700072007.03.010********.03.01000070006800X P ≈ Φ(4.36)-Φ(-4.36) = 2Φ(4.36)-1 = 2×0.999993-1 = 0.999.。
如果X 是连续型随机变量.=≥-}|)X (E X {|P ε()dx x |)X (E x |⎰≥-εϕ()()dx x )X (E x |)X (E x |⎰≥--≤εϕε22()()⎰∞+∞--≤dx x )X (E x ϕε222εDX=思考题解答:本课程的主要内容:中心极限定理:1.李雅普诺夫定理;2.推论:独立同分布定理;3.拉普拉斯定理(独立同分布定理推论);4.拉普拉斯局部极限定理;抽样分布:设ΛΛn X ,X ,X 21是相互独立的随机变量有期望值i i EX α=及方差+∞<=2ii DX σ()Λ21,i =若每个i X 对总和∑=ni iX 1的影响不大.一.定理5.3: (李雅普诺夫定理)11()()n i i n i i E X x D X =→∞=⎫⎪⎪≤=⎬⎪⎪⎭∑∑2212tx e dt π--∞⎰()x Φ=1121lim n n i i i i n n i i X a P x σ===⎧⎫-⎪⎪⎪⎪≤=⎨⎬⎪⎪⎪⎪⎩⎭∑∑∑}{lim 1x nn XP ni in ≤-∑=∞→σμ⎰∞=x-2t -dt e 212π设X 1,X 2, …是独立同分布的随机变量序列,且E (X i )= ,D (X i )= ,i =1,2,…,则2σμ列维一林德伯格(Levy -Lindberg )定理.推论(独立同分布下的中心极限定理)请看演示中心极限定理的直观演示说明:在定理条件下:()()11~0,1nii Xn N nμσ=-∑()12~ni i X =∑()2,N n n μσ和函数的正态性;()11~0,1/ni i X n N nμσ=-∑算术均值的正态性;或()113~ni i X n =∑2,N n σμ⎛⎫⎪⎝⎭n 较大的情况下,一般n>30;例3在一个罐子中,装有10个编号为0-9的同样的球,从罐中有放回地抽取若干次,每次抽一个,并记下号码.问对序列{X k },能否应用大数定律?诸X k 独立同分布,且期望存在,故能使用大数定律.解: ,9.01.001~⎭⎬⎫⎩⎨⎧k X k =1,2, …E (X k )=0.1,⎩⎨⎧=否则次取到号码第001k X k (1) 设,k =1,2, …∑=∞→=<-nk k n X n P 11}|1.01{|lim ε即对任意的ε>0,解: ,9.01.001~⎭⎬⎫⎩⎨⎧k X k =1,2, …E (X k )=0.1,诸X k 独立同分布,且期望存在,故能使用大数定律.(2) 至少应取球多少次才能使“0”出现的频率在0.09-0.11之间的概率至少是0.95?解:设应取球n 次,0出现频率为∑=nk k X n 11,n .)X (E nk k 101=∑=n.)X (D nk k 0901=∑=由题可知:95011010901.}.X n .{P nk k ≥≤≤∑=由中心极限定理近似N (0,1)nnX nk k 3.01.01-∑=nX n nk k 3.01.011-=∑=}11.0109.0{1≤≤∑=nk k X n P 1)30(2-≈n ΦnX n nk k 3.01.011-∑=近似N (0,1)}n/...n /..X n n /...{P n k k 30101103010130100901-≤-≤-=∑=}n n/..X n n {P nk k 3030101301≤-≤-=∑=95.01)30(2≥-n Φ欲使975.0)30(≥n Φ即96.130≥n 查表得从中解得3458≥n 即至少应取球3458次才能使“0”出现的频率在0.09-0.11之间的概率至少是0.95.(3) 用中心极限定理计算在100次抽取中,数码“0”出现次数在7和13之间的概率.解:在100次抽取中, 数码“0”出现次数为∑=1001k k X 3101001-∑=k k X 即近似N (0,1)由题:所求概率为:∑=≤≤1001)137(k k X P =⎪⎪⎭⎫ ⎝⎛∑=1001k k X E 1010100=⨯.=⎪⎪⎭⎫ ⎝⎛∑=1001k k X D 9090100=⨯.即在100次抽取中,数码“0”出现次数在7和13之间的概率为0.6826.∑=≤≤1001)137(k k XP =0.68263101001-∑=k k X近似N (0,1))13101(1001≤-≤-=∑=k k X P )1()1(-Φ-Φ≈1)1(2-Φ=例1 根据以往经验,某种电器元件的寿命服从均值为100小时的指数分布. 现随机地取16只,设它们的寿命是相互独立的. 求这16只元件的寿命的总和大于1920小时的概率.由题给条件知,诸X i 独立,同分布.16只元件的寿命的总和为∑==161k kX Y 解: 设第i 只元件的寿命为X i , i =1,2, …,16E (X i )=100, D (X i )=10000依题意,所求为P (Y >1920)由于E (Y )=1600,D (Y )=160000由中心极限定理,近似N (0,1)4001600-Y P (Y >1920)=1-P (Y ≤1920)).(801Φ-≈=1-0.7881=0.2119⎪⎭⎫ ⎝⎛-≤--=4001600192040016001Y P ⎪⎭⎫ ⎝⎛≤--=8040016001.Y P})1({lim x p np np Y P n n ≤--∞→设随机变量服从参数n, p (0<p <1)的二项分布,则对任意x ,有n Y dte xt ⎰∞--=2221π定理表明,当n 很大,0<p <1是一个定值时(或者说,np (1-p )也不太小时),二项变量的分布近似正态分布N (np ,np (1-p )).n Y 二.定理(棣莫佛-拉普拉斯定理)例:一复杂的系统由100个相互独立起作用的部件组成,在整个运行期间每个部件损坏的概率为0.1,为使整个系统起作用,至少必须有85个部件正常工作求整个系统起作用的概率一复杂的系统由n 个相互独立起作用的部件所组成,每个部件的可靠性为0.9,且必须至少有80%的部件工作才能使整个的系统正常工作,问n 至少为多大才能使系统的可靠性不低于0.95?解:设100中个正常工作数为X,()~100,0.9X B ()85P X ≥=()185P X -<851000.911000.90.1-⨯⎛⎫=-Φ ⎪⨯⨯⎝⎭()1 1.67=-Φ-=0.95252) X~B(n, 0.9)()0.80.95P X n ≥≥()10.80.95P X n -<≥0.80.90.050.90.1n n n -⨯⎛⎫Φ≤ ⎪⨯⨯⎝⎭21.640.0924.20.01n ⨯=≈由题意可知即:()0.80.05P X n <≤0.90.8 1.960.90.1n n n -⨯≈⨯⨯查表得:解方程:至少25件.例2. (供电问题)某车间有200台车床,在生产期间由于需要检修、调换刀具、变换位置及调换工件等常需停车. 设开工率为0.6, 并设每台车床的工作是独立的,且在开工时需电力1千瓦.问应供应多少瓦电力就能以99.9%的概率保证该车间不会因供电不足而影响生产?设需要x千瓦电力.由题意得:()999≤0.P≥Xx用X 表示在某时刻工作着的车床数,解:对每台车床的观察作为一次试验,每次试验观察该台车床在某时刻是否工作,工作的概率为0.6,共进行200次试验.依题意,X ~B (200,0.6),现在的问题是:P (X ≤x )≥0.999的最小的x .求满足设需x 千瓦电力,(由于每台车床在开工时需电力1千瓦,x 台工作所需电力即x 千瓦.)由德莫佛-拉普拉斯极限定理)1(p np npX --近似N (0,1),于是P (X ≤x )= P (0≤X ≤x )这里np =120,np (1-p )=48)()x (4812048120---≈ΦΦ)x (48120-≈Φ查正态分布函数表得由≥0.999,)x (48120-Φ从中解得x ≥141.5,即所求x =142.(千瓦)也就是说, 应供应142 千瓦电力就能以99.9%的概率保证该车间不会因供电不足而影响生产.999.0)1.3(=Φ48120-x ≥3.1,故三.定理5.4(拉普拉斯局部极限定理)当时,n →∞()P X k =≈()2212k n p n p qen p qπ--01()k np npqnpqϕ-=例:10部机器独立工作,每部停机得概率为0.2,求3部机器同时停机的概率?解:设10部中同时停机的数为X,()~10,0.2X B ()3P X ==013100.2()100.20.8100.20.8ϕ-⨯⨯⨯⨯⨯01(0.79)1.265ϕ==0.2308统计量既然是依赖于样本的,而后者又是随机变量,故统计量也是随机变量,因而就有一定的分布,这个分布叫做统计量的“抽样分布”.§7.4几个常用统计量的分布主要介绍正态总体下的统计量的分布.设总体X ()2σμ,N ~()n X ,X ,X Λ21是总体X 的一个样本.由此构成的样本函数:∑==ni iX n X 11()∑=--=ni i X X n S 12211它们服从什么分布?()n,,i ,N ~X i Λ212=σμ一.关于样本均值的分布的定理设X 1,X 2,…,X n 是取自正态总体),(2σμN 的样本,则有),(~2nN X σμ)1,0(~N nX σμ-(1)(2)令U=)1,0(~N nX σμ-U-分布的临界值:它是指在一定的概率之下,随机变量取值落入某一区间内的区间上限或下限.例:P{ξ≤λ}=α,λ称为U 分布的临界值λα已知α的值可查表求临界值λ.即:由左边面积求U 的临界值二.关于样本方差S 2的分布定理(一)()2n χ分布()2n χ分布的密度函数为()1222102(2)00n x n x e x f x n x --⎧≥⎪=Γ⎨⎪<⎩来定义.1>=⎰∞--r ,dx e x )r (x r Γ其中伽玛函数通过积分)r (ΓE (X )=n , D (X )=2n演示χ2 分布()2n χ分布的上分位点:α2()n αχ例如:0.1,25n α==20.1(25)χ=34.4 当n 充分大时,有费歇(R.A.Fisher)公式:()221()212n z n ααχ≈+-例如:20.05(50)χ≈()21 1.65992+=67.28定理2.1: 设相互独立, 都服从标准正态分布N (0,1), 则随机变量:服从的分布为自由度为n 的分布.n X X X ,,,21Λ222212nX X X +++=Λχ2χ(0,1)N 定理2.2:设相互独立, 都服从标准正态分布n X X X ,,,21Λ则(二)标准正态分布下平方和分布定理∑==n i i X n X 11(1) 与()∑=-ni i X X 12相互独立.(2) ()21~ni i X X=-∑()21n χ-作业:1.预习:抽样分布2. 练习P116 7---163思考题:A组:甲乙两个戏院在竞争1000名观众,假定每个观众完全随机地选择一个戏院,且观众之间选择是彼此独立的,问每个戏院应该设有多少个座位才能保证因缺少座位而使观众离去的概率小于1%?B组:总结算术平均的分布.X。
中心极限定理考试题及答案# 中心极限定理考试题及答案## 一、选择题1. 中心极限定理描述的是:- A. 样本均值的分布- B. 样本方差的分布- C. 总体均值的分布- D. 总体方差的分布答案:A2. 在中心极限定理中,随着样本容量的增加,样本均值的分布将趋近于:- A. 正态分布- B. 均匀分布- C. 指数分布- D. 二项分布答案:A3. 中心极限定理适用于:- A. 任何总体分布- B. 正态分布的总体- C. 均匀分布的总体- D. 仅指数分布的总体答案:A## 二、简答题1. 简述中心极限定理的主要内容。
答案:中心极限定理是统计学中的一个重要定理,它指出,如果从总体中抽取足够大的随机样本,无论总体分布如何,样本均值的分布都将趋近于正态分布。
这一定理在实际应用中非常重要,因为它允许我们使用正态分布的性质来估计样本均值的分布,即使我们对总体的分布知之甚少。
2. 中心极限定理为什么在实际应用中非常有用?答案:中心极限定理在实际应用中非常有用,因为它允许我们对样本统计量进行推断,即使我们对总体的分布一无所知。
这在很多情况下是非常有用的,比如在质量控制、经济数据分析等领域,我们往往只能获得有限的样本数据,而无法获得总体数据。
通过中心极限定理,我们可以对样本均值进行估计,并计算其置信区间。
## 三、计算题1. 假设一个总体的均值为μ,标准差为σ,从这个总体中随机抽取了容量为n的样本。
如果样本均值的样本量足够大,样本均值的分布将趋近于什么分布?请给出其均值和标准差。
答案:如果样本容量足够大,样本均值的分布将趋近于正态分布。
其均值等于总体均值μ,标准差等于总体标准差σ除以样本容量n的平方根,即σ/√n。
2. 给定一个总体,其均值为100,标准差为15。
从这个总体中随机抽取了100个样本,计算样本均值的标准误差。
答案:样本均值的标准误差是总体标准差除以样本容量的平方根。
在这个例子中,样本均值的标准误差为15/√100 = 1.5。
考研数学一-概率论与数理统计大数定律和中心极限定理(总分:48.00,做题时间:90分钟)一、选择题(总题数:9,分数:9.00)1.设随机变量X1,X2,…,X n,…独立同分布,EX i=μ(i=1,2,…),则根据切比雪夫大数定律,X1,X2,…,X n,…依概率收敛于μ,只要X1,X2,…,X n,…(分数:1.00)A.共同的方差存在.B.服从指数分布.C.服从离散型分布.D.服从连续型分布.2.假设天平无系统误差.将一质量为10克的物品重复进行称量,则可以断定“当称量次数充分大时,称量结果的算术平均值以接近于1的概率近似等于10克”,其理论根据是(分数:1.00)A.切比雪夫大数定律.B.辛钦大数定律.C.伯努利大数定律.D.中心极限定理.3.下列命题正确的是(分数:1.00)A.由辛钦大数定律可以得出切比雪夫大数定律.B.由切比雪夫大数定律可以得出辛钦大数定律.C.由切比雪夫大数定律可以得出伯努利大数定律.D.由伯努利大数定律可以得出切比雪夫大数定律.4.设X1,…,X n…是相互独立的随机变量序列,X n服从参数为n的指数分布(n=1,2,…),则下列随机变量序列中不服从切比雪夫大数定律的是(分数:1.00)__________________________________________________________________________________________5.假设随机变量序列X1,…,X n…独立同分布且EX n=01.00)A.B.C.D.6.设X n,n≥1为相互独立的随机变量序列且都服从参数为λ的指数分布,则1.00)__________________________________________________________________________________________7.设随机变量X1,…,X n-林德伯格中心极限定理,当n充分大时,S n近似服从正态分布,只要X1,…,X n1.00)A.B.C.D.8.假设X1,…,X n,…为独立同分布随机变量序列,且EX n=0,DX n=σ21.00)A.B.C.D.9.假设X n,n≥1n充分大时,可以用正态分布作为S n的近似分布,如果1.00)A.B.C.D.二、填空题(总题数:4,分数:4.00)10.设某种电气元件不能承受超负荷试验的概率为0.05.现在对100个这样的元件进行超负荷试验,以X 表示不能承受试验而烧毁的元件数,则根据中心极限定理P5≤X≤10≈______.(分数:1.00)填空项1:__________________11.将一枚骰子重复掷n次,则当n→∞时,n 1.00)填空项1:__________________12.设随机变量序列X1,…,X n,…相互独立且都在(-1,1)上服从均匀分布, 1.00)填空项1:__________________13.设X1,X2,…,X100是独立同服从参数为4则数:1.00)填空项1:__________________三、解答题(总题数:7,分数:35.00)14.设某种元件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为40小时,在使用中,当一个元件损坏后立即更换另一个新的元件,如此继续下去,已知每个元件进价为a元,试求在年计划中应为购买此种元件作多少预算,才可以有95%的把握保证一年够用.(假定一年按2000个工作小时计算,Ф(1.64)=0.95.)(分数:5.00)__________________________________________________________________________________________ 15.假设每人每次打电话通话时间X(单位:分)服从参数为l的指数分布,试求800人次通话中至少有3次超过6分钟的概率α,并利用泊松定理与中心极限定理分别求出α的近似值(e-2=0.1353,e-6=0.00248,Ф(0.707)=0.7611,Ф(1.41)=0.9207).(分数:5.00)__________________________________________________________________________________________16.假设随机变量X与Y相互独立,且分别服从参数为λ与μ 5.00)__________________________________________________________________________________________17.编号为1,2,3的三个球随意放入编号为1,2,3的三个盒子中,每盒仅放一个球,令X i数:5.00)__________________________________________________________________________________________18.已知随机变量X,Y的概率分布分别为 5.00)__________________________________________________________________________________________19.已知随机变量X与Y0-1分布,即5.00)__________________________________________________________________________________________20.下列表格给出二维随机变量(X,Y)的联合分布、边缘分布的部分值,并已知试将其余数值填入空白处.5.00)__________________________________________________________________________________________。
第 5 章 大数定律与中心极限定理一、填空题:1.设随机变量μξ=)(E ,方差2σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 91 . 2.设nξξξ,,, 21是n 个相互独立同分布的随机变量,),,,(,)(,)(n i D E i i 218===ξμξ对于∑==ni in1ξξ,写出所满足的切彼雪夫不等式 228εεξεμξn D P =≤≥-)(}|{| ,并估计≥<-}|{|4μξP n 211- . 3. 设随机变量129,,,X X X 相互独立且同分布, 而且有1i EX =,1(1,2,,9)i DX i == , 令91i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式直接可得{}≥<-ε9X P 291ε-. 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有22{||}P X σμεε-≥≤, 或者22{||}1.P X σμεε-<≥-由于随机变量129,,,X X X 相互独立且同分布, 而且有 1,1(1,2,9),i i EX DX i === 所以999111()()19,i i i i i E X E X E X μ===⎛⎫===== ⎪⎝⎭∑∑∑9992111()()19.i i i i i D X D X D X σ===⎛⎫===== ⎪⎝⎭∑∑∑4. 设随机变量X 满足:2(),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 116≤. 解:切比雪夫不等式为:设随机变量X 满足2(),()E X D X μσ==, 则对任意的0ε>, 有22{||}.P X σμεε-≥≤由此得 221{||4}.(4)16P X σμσσ-≥≤=5、设随机变量2σξμξξ==)(,)(,D E ,则≥<-}|{|σμξ2P 43.6、设n ξξξ,,, 21为相互独立的随机变量序列,且),,( 21=i i ξ服从参数为λ的泊松分布,则≤-∑=∞→}{lim x n n P ni in λλξ1⎰∞--xt dt e22 .7、设n η表示n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则≈≤<}{b a P n η⎰-----)1()1(2221p np np b p np np a t dt e π.8. 设随机变量n ξ, 服从二项分布(,)B n p , 其中01,1,2,p n <<= , 那么, 对于任 一实数x , 有lim {|||}n n P np x ξ→+∞-<= 0 .9. 设12,,,n X X X 为随机变量序列,a 为常数, 则{}n X 依概率收敛于a 是指 {}=<->∀+∞>-εεa X P n n lim ,0 1 ,或{}=≥->∀+∞>-εεa X P n n lim ,0 0 。