- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
Yn x
lim P i1 n
n
x
x
证明略。
在实用上,n≥30
1
t2
e 2 dt
2
此定理表明,当n充分大时,Yn近似服从N 0,1.
n
即: X(i 近似)~N (n, n 2 ), i=1
从而,P(a
n i 1
Xi
b)
(b n ) ( a n ).
n
n
答案:N (, 2 )
关键词: 总体 个体 样本 统计量
2 分布 t 分布 F 分布
23
引言:数理统计学是一门关于数据收集、整理、分析 和推断的科学。在概率论中已经知道,由于大 量的 随机试验中各种结果的出现必然呈现它的 规律 性,因而从理论上讲只要对随机现象进行 足够多次观察,各种结果的规律性一定能清楚 地呈现,但是实际上所允许的观察永远是有限 的,甚至是 少量的。 例如:若规定灯泡寿命低于1000小时者 为次 品,如何确定次品率?由于灯泡寿命试验是 破坏性试验,不可能把整批灯泡逐一检测,只 能抽取一部分灯泡作为样本进行检验,以样本 的信 息来推断总体的信息,这是数理统计学研 究的问题之一。
24
§1 总体和样本
总体:研究对象的全体。如一批灯泡。 个体:组成总体的每个元素。如某个灯泡。 抽样:从总体X中抽取有限个个体对总体进行观察的取值过程。 随机样本:随机抽取的n个个体的集合(X1,X2,…,Xn), n为样本容量 简单随机样本:满足以下两个条件的随机样本(X1,X2,…,Xn)称
2. 用泊松分布近似计算
np 400 0.02 8 查表得
P X 2 1 P X 0 P X 1 1 0.000335 0.002684 0.9969
3. 用正态分布近似计算
npq 400 0.02 0.98 2.8
P
X
2
1
P( X
1)
1
1 np npq
贝努里大数定律建立了在大量重复独立试验中事件出现频 率的稳定性,正因为这种稳定性,概率的概念才有客观意 义,贝努里大数定律还提供了通过试验来确定事件概率的 方 们法便,可既以然通频过率做试nA/验n与确概定率某p事有件较发大生偏的差频的率可并能把性它很作小为,相我 应的概率估计,这种方法即是在第7章将要介绍的参数估 计法,参数估计的重要理论基础之一就是大数定理。
n
定理5.5 德莫佛--拉普拉斯定理
设nA为n次贝努里试验中A发生的次数,P A p 0 p 1,
则对任意x,有:lim n
P
nA np np(1 p)
x
x
1
e
t2 2
dt
(x),
2
证明:令X i
1 0
第i次试验时A发生 第i次试验时A未发生
则X 1
,
X
2
,
, Xn,
相互独立同分布,Xi ~ b(1, p).
1
lim
n
P
n
n i 1
Xi
1
或者,
序列
X
1 n
n i=1
Xi
以概率收敛于
即 X P
03,3,4分
7
定理5.3 贝努里大数定理
设事件A在每次试验中发生的概率为p,记nA为n次独立重复试验
中A发生的次数, 则
0, 有:lim
P
式,因nA bn, p,故:
3
随机变量序列依概率收敛的定义
定义5.1:设随机变量序列X1, X2, X3, ,若存在某常数,
使得 0,均有:lim P n
Xn
0,
则称随机变量序列 X n 依概率收敛于常数,
记为:Xn p 。
性质:已知Xn p ,并知函数g(x)在x=处连续,
则g Xn p g
4
定理5.2 契比雪夫不等式的特殊情形:
解:设X为一年中投保老人的死亡数,则X bn, p,n 10000, p 0.017
由德莫佛--拉普拉斯中心极限定理,保险公司亏本的概率为:
P10000X 10000200 P X 200
1
200 np
np 1 p
思考题: 求保险公司至少 盈利10万元的概率。
12.321 0.01 答案:0.937
由于nA X1 X 2 X n ,
Pa nA b
( b np ) np(1 p)
( a np ) np(1 p)
由定理5.4,
lim
n
P
nA np np(1 p)
x
x
1
t2
e 2 dt
2
即:nA (近似) ~ N (np, np(1 p)). 二项分布和正态分布的关系
第六章 样本及抽样分布
x 2
x
2
f x dx
1
2
x 2 f x dx
DX
2
2 2
17
定理5.2 契比雪夫不等式的特殊情形:
设随机变量序列X 1
,
X
2
,
, Xn,
相互独立,
且具有相同的数学期望和相同的方差 2,
作前n个随机变量的算术平均:Yn
1 n
n k 1
Xk
则 0,有:
lim P
设随机变量序列X 1
,
X
2
,
, Xn,
相互独立,
且具有相同的数学期望和相同的方差 2,
作前n个随机变量的算术平均:Yn
1 n
n k 1
Xk
则 0,有:
lim P
n
Yn
lim
n
P
1 n
n
Xk
k 1
1
证明:由于E
Yn
E
1 n
n k 1
Xk
1 n
n
,
D
Yn
D
1 n
n k 1
定理5.4 独立同分布的中心极限定理
设随机变量X 1
,
X
2
,
, Xn,
相互独立同分布,
E Xi , D Xi 2 0,i 1, 2,
n
Xi n
则前n个变量的和的标准化变量为:Yn i1 n
思考题:
X
1 n
n
Xi的近似
i=1
分布是什么?
x R,有:
n
Xi n
lim P
相互独立同分布,Xi ~ b(1, p).
由于nA X1 X 2 X n ,
Pa nA b
( b np ) np(1 p)
( a np ) np(1 p)
由定理5.4,
lim
n
P
nA np np(1 p)
x
x
1
t2
e 2 dt
2
即:nA (近似) ~ N (np, np(1 p)). 二项分布和正态分布的关12 系
证明:仅就X为连续型时证之 设X的概率密度为f x,
则 P X f x dx x
f (x)
x 2
x
2
f x dx
1
2
x 2 f x dx
DX
2
2 2
例1:在n重贝努里试验中,若已知每次试验事件A 出现的概率为0.75,试利用契比雪夫不等式估 计n,使A出现的频率在0.74至0.76之间的概率不 小于0.90。
根据独立同分布的中心极限定理:
16
Y
i 1
Xi 16100 4 100
X
1600 400
近似服从N
0,1
P X 1920 1 P X 1920
1
1920 1600 400
1 0.8 0.2119
14
例3:某保险公司的老年人寿保险有1万人参加,每人每年交200元, 若老人在该年内死亡,公司付给受益人1万元。设老年人死亡 率为0.017,试求保险公司在一年内这项保险亏本的概率。
§1 大数定律
背景 本章的大数定律,对第一章中提出的 “频率稳定性”,给出理论上的论证
为了证明大数定理,先介绍一个重要不等式
1
定理5.1 契比雪夫不等式:
设随机变量X具有数学期望E X ,方差D X 2
则对于任意 0,都有:P
X EX
2 2
定理的等价形式为:P
X
E
X
1
2 2
n
Yn
lim
n
P
1 n
n
Xk
k 1
1
证明:由于E
Yn
E
1 n
n k 1
Xk
1 n
n
,
D
Yn
D
1 n
n k 1
Xk
1 n2
n
D Xk
k 1
1 n2
n 2
2
n
由契比雪夫不等式得:P
1 n
n k 1
Xk
1
2
2
n
lim P n
1 n
n k 1
Xk
1
18
定理5.4 独立同分布的中心极限定理
设随机变量X 1
,
X
2
,
, Xn,
相互独立同分布,
E Xi , D Xi 2 0,i 1, 2,
n
Xi n
则前n个变量的和的标准化变量为:Yn i1 n
思考题:
X
1 n
n
Xi的近似
i=1
分布是什么?
x R,有:
n
Xi n
lim P
E
nA n
1 n
E
nA
1 n
np
p,
D
nA n