概率论中心极限定理
- 格式:ppt
- 大小:285.00 KB
- 文档页数:17
中心极限定理中心极限定理(Central Limit Theorems)什么是中心极限定理大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。
而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。
中心极限定理是概率论中最著名的结果之一。
它提出,大量的独立随机变量之和具有近似于正态的分布。
因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。
中心极限定理的表现形式中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理:(一)辛钦中心极限定理设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时,将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。
(二)德莫佛——拉普拉斯中心极限定理设μn是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n无限大时,频率设μn / n趋于服从参数为的正态分布。
即:该定理是辛钦中心极限定理的特例。
在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。
(三)李亚普洛夫中心极限定理设是一个相互独立的随机变量序列,它们具有有限的数学期望和方差:。
记,如果能选择这一个正数δ>0,使当n→∞时,,则对任意的x有:该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。
(四)林德贝尔格定理设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x,有。
中心极限定理是概率论中的一个重要定理,它表明在一定条件下,大量独立同分布随机变量的和的分布会趋近于正态分布。
正态分布在统计学和自然科学中具有重要地位,因此中心极限定理的证明过程对于理解正态分布的性质和应用具有重要意义。
本文将通过以下几个方面解析为什么中心极限定理是正态分布的证明过程。
1. 中心极限定理的概念和表述中心极限定理是指在一定条件下,大量独立同分布随机变量的和的分布会趋近于正态分布。
具体来说,设X1,X2,...,Xn是n个独立同分布的随机变量,它们具有相同的数学期望μ和方差σ^2,那么它们的和Sn=(X1+X2+...+Xn)在n趋向于无穷大时,其分布函数将趋近于正态分布的分布函数。
2. 大数定律与中心极限定理的关系中心极限定理与大数定律都是描述随机变量序列的性质的定理,但它们的对象不同。
大数定律是描述随机变量序列的数学期望的性质,而中心极限定理是描述随机变量序列的和的分布的性质。
在证明过程中,我们会分析这两个定理之间的通联和区别。
3. 极限定理的数学推导为了证明中心极限定理,首先需要利用数学分析和概率论的理论知识,对随机变量序列的和的分布进行推导。
我们将会详细介绍中心极限定理的数学推导过程,包括利用特征函数进行推导、应用Moments生成函数以及利用独立同分布的性质等。
4. 中心极限定理的应用与意义我们将讨论中心极限定理在实际问题中的应用和意义。
正态分布在自然界和社会现象中具有广泛的应用,而中心极限定理为我们理解和应用正态分布提供了重要的理论基础。
我们也将介绍中心极限定理在统计学、金融学、医学等领域中的实际应用,以及它对于风险管理、决策分析和科学研究的重要意义。
5. 总结通过对中心极限定理的证明过程进行分析和讨论,我们将更深入地理解中心极限定理的内在含义和数学原理,以及它在现实生活中的重要应用。
也能够更好地理解正态分布的性质和特点,为进一步深入研究概率论和统计学提供理论基础和指导。
中心极限定理是概率论中的一个基本概念,它向我们展示了独立随机变量的和的分布是如何趋向于正态分布的。
林德伯格勒维中心极限定理公式
林德伯格勒维中心极限定理(Lindeberg–Lévy Central Limit Theorem)是概率论和统计学中一个重要的结果,它描述了独立随机变量和的和的极限分布。
该定理是中心极限定理的一个特例,它对于每个随机变量都允许有不同的均值和方差。
设X, X, ..., X是n个独立同分布的随机变量,它们的均值为μ,方差为σ。
令S = X + X + ... + X,那么根据林德伯格勒维中心极限定理,当n趋向于无穷大时,标准化后的随机变量(S - nμ)/√(n σ)的分布趋近于标准正态分布。
具体而言,对于给定的ε > 0,当n足够大时,有以下的近似概率:
P((S - nμ)/√(nσ) ≤ x) ≈Φ(x),其中Φ(x)为标准正态分布的累积分布函数。
林德伯格勒维中心极限定理的意义在于,它指出了当我们把大量独立随机变量的和标准化后,其极限分布接近于标准正态分布。
这一结果在统计推断和假设检验中具有广泛的应用。
需要注意的是,林德伯格勒维中心极限定理对于随机变量的独立性和同分布性假设是非常重要的。
如果这些假设不满足,那么该定理可能
不适用。
总结起来,林德伯格勒维中心极限定理提供了一种在统计学中处理大量独立同分布随机变量和的方法。
它指出,当样本容量足够大时,我们可以使用标准正态分布来近似描述和的分布情况。
这个定理在实际应用中具有重要的意义,因为它为我们提供了一种处理和的统计推断方法。
列维林德伯格中心极限定律公式列维-林德伯格中心极限定理是概率论中一个非常重要的定理,它给出了随机变量和平均值之间的关系。
这个定理在统计学和大数据分析中有着广泛的应用,能够帮助我们更好地理解和解释数据。
中心极限定理的核心思想是,当独立随机变量的个数足够大时,这些随机变量的平均值的分布将呈现出一种稳定的形态,称为正态分布。
正态分布也被称为高斯分布,具有均值和标准差来刻画其特征。
为了更好地说明中心极限定理,让我们举一个例子。
假设我们有一组骰子投掷的数据,每次投掷结果是一个1到6的整数。
我们重复投掷骰子1000次,并记录每次投掷的结果。
然后我们计算这1000次投掷中的平均值。
根据中心极限定理,当我们在足够多的次数内重复进行该实验时,这1000个平均值将呈现出一个正态分布的特征。
这意味着,这些平均值将围绕着骰子的期望值(3.5)上下波动,波动范围与实验的次数和骰子的标准差有关。
中心极限定理的一大优点是,它适用于大多数随机变量,不论其分布形态如何。
例如,我们可以将其应用于人口普查数据、股票市场收益率等各种不同的数据类型中。
通过计算这些数据的平均值,我们可以获得更准确、更稳定的结果,并且可以更好地理解和分析数据。
在实际应用中,中心极限定理也为我们提供了一种估计总体参数的方法。
通过计算样本数据的平均值和标准差,我们可以利用中心极限定理来推断总体的平均值和标准差。
这为我们在实际问题中的决策提供了指导,例如在质量控制中确定产品的合格范围、在市场调研中估计总体的偏好等。
总之,列维-林德伯格中心极限定理是概率论中的一项重要成果,它揭示了随机变量和平均值之间的关系。
通过该定理,我们可以更好地理解和分析数据,并且可以利用它在实际问题中进行估计和决策。
无论是在统计学领域还是大数据分析中,中心极限定理都有着广泛的应用,为我们的研究和实践提供了重要的指导意义。
高考数学中的概率统计中的中心极限定理概率统计是高考数学中非常重要的一部分,它与我们日常生活息息相关。
而中心极限定理则是概率统计中非常重要的一个定理,这个定理集成了众多科学家的智慧,为我们提供了一个可靠的方法来研究随机事件的概率与分布。
一、中心极限定理的概念中心极限定理是指在一定条件下,对于一个总体随机变量X,由n个相互独立的随机变量X1、X2、…、Xn所组成的样本平均值所满足的一些统计规律。
简单来说,中心极限定理是在满足一些条件的情况下,样本的均值会服从于一个特定的分布。
二、中心极限定理的条件中心极限定理并不是所有情况下都适用的,它需要满足一些特定的条件,这些条件包括:(1)总体分布必须存在方差;(2)样本数量n足够大;(3)样本的选取必须是独立的。
三、中心极限定理的应用中心极限定理在实际生活中的应用非常广泛,特别是在大数据分析领域中,中心极限定理被广泛地应用于数据的分布与统计分析。
以投掷一颗骰子为例,假设我们将骰子投掷10000次,那么我们可以通过中心极限定理来研究投掷结果所服从的分布规律。
根据中心极限定理,当选取的样本数量够大时,样本的平均值将在正态分布之间波动。
这个例子中,我们可以通过投掷骰子的结果来观察到中心极限定理在实际应用中的作用。
当我们投掷骰子的数量越来越多,投掷结果的分布也会越来越接近正态分布,这是中心极限定理的一个典型表现。
四、中心极限定理的意义中心极限定理是概率论中的一项重要成果,它为我们研究随机事件的概率分布提供了一个可靠的方法。
中心极限定理不仅限于数学领域,它在生物学、物理学、社会学等领域中的应用也是非常广泛的。
总之,中心极限定理是高考数学概率统计中非常重要的一个定理。
了解中心极限定理的概念、条件及应用,对我们在概率统计的学习和实践中都有着重要的作用。
如果X 是连续型随机变量.=≥-}|)X (E X {|P ε()dx x |)X (E x |⎰≥-εϕ()()dx x )X (E x |)X (E x |⎰≥--≤εϕε22()()⎰∞+∞--≤dx x )X (E x ϕε222εDX=思考题解答:本课程的主要内容:中心极限定理:1.李雅普诺夫定理;2.推论:独立同分布定理;3.拉普拉斯定理(独立同分布定理推论);4.拉普拉斯局部极限定理;抽样分布:设ΛΛn X ,X ,X 21是相互独立的随机变量有期望值i i EX α=及方差+∞<=2ii DX σ()Λ21,i =若每个i X 对总和∑=ni iX 1的影响不大.一.定理5.3: (李雅普诺夫定理)11()()n i i n i i E X x D X =→∞=⎫⎪⎪≤=⎬⎪⎪⎭∑∑2212tx e dt π--∞⎰()x Φ=1121lim n n i i i i n n i i X a P x σ===⎧⎫-⎪⎪⎪⎪≤=⎨⎬⎪⎪⎪⎪⎩⎭∑∑∑}{lim 1x nn XP ni in ≤-∑=∞→σμ⎰∞=x-2t -dt e 212π设X 1,X 2, …是独立同分布的随机变量序列,且E (X i )= ,D (X i )= ,i =1,2,…,则2σμ列维一林德伯格(Levy -Lindberg )定理.推论(独立同分布下的中心极限定理)请看演示中心极限定理的直观演示说明:在定理条件下:()()11~0,1nii Xn N nμσ=-∑()12~ni i X =∑()2,N n n μσ和函数的正态性;()11~0,1/ni i X n N nμσ=-∑算术均值的正态性;或()113~ni i X n =∑2,N n σμ⎛⎫⎪⎝⎭n 较大的情况下,一般n>30;例3在一个罐子中,装有10个编号为0-9的同样的球,从罐中有放回地抽取若干次,每次抽一个,并记下号码.问对序列{X k },能否应用大数定律?诸X k 独立同分布,且期望存在,故能使用大数定律.解: ,9.01.001~⎭⎬⎫⎩⎨⎧k X k =1,2, …E (X k )=0.1,⎩⎨⎧=否则次取到号码第001k X k (1) 设,k =1,2, …∑=∞→=<-nk k n X n P 11}|1.01{|lim ε即对任意的ε>0,解: ,9.01.001~⎭⎬⎫⎩⎨⎧k X k =1,2, …E (X k )=0.1,诸X k 独立同分布,且期望存在,故能使用大数定律.(2) 至少应取球多少次才能使“0”出现的频率在0.09-0.11之间的概率至少是0.95?解:设应取球n 次,0出现频率为∑=nk k X n 11,n .)X (E nk k 101=∑=n.)X (D nk k 0901=∑=由题可知:95011010901.}.X n .{P nk k ≥≤≤∑=由中心极限定理近似N (0,1)nnX nk k 3.01.01-∑=nX n nk k 3.01.011-=∑=}11.0109.0{1≤≤∑=nk k X n P 1)30(2-≈n ΦnX n nk k 3.01.011-∑=近似N (0,1)}n/...n /..X n n /...{P n k k 30101103010130100901-≤-≤-=∑=}n n/..X n n {P nk k 3030101301≤-≤-=∑=95.01)30(2≥-n Φ欲使975.0)30(≥n Φ即96.130≥n 查表得从中解得3458≥n 即至少应取球3458次才能使“0”出现的频率在0.09-0.11之间的概率至少是0.95.(3) 用中心极限定理计算在100次抽取中,数码“0”出现次数在7和13之间的概率.解:在100次抽取中, 数码“0”出现次数为∑=1001k k X 3101001-∑=k k X 即近似N (0,1)由题:所求概率为:∑=≤≤1001)137(k k X P =⎪⎪⎭⎫ ⎝⎛∑=1001k k X E 1010100=⨯.=⎪⎪⎭⎫ ⎝⎛∑=1001k k X D 9090100=⨯.即在100次抽取中,数码“0”出现次数在7和13之间的概率为0.6826.∑=≤≤1001)137(k k XP =0.68263101001-∑=k k X近似N (0,1))13101(1001≤-≤-=∑=k k X P )1()1(-Φ-Φ≈1)1(2-Φ=例1 根据以往经验,某种电器元件的寿命服从均值为100小时的指数分布. 现随机地取16只,设它们的寿命是相互独立的. 求这16只元件的寿命的总和大于1920小时的概率.由题给条件知,诸X i 独立,同分布.16只元件的寿命的总和为∑==161k kX Y 解: 设第i 只元件的寿命为X i , i =1,2, …,16E (X i )=100, D (X i )=10000依题意,所求为P (Y >1920)由于E (Y )=1600,D (Y )=160000由中心极限定理,近似N (0,1)4001600-Y P (Y >1920)=1-P (Y ≤1920)).(801Φ-≈=1-0.7881=0.2119⎪⎭⎫ ⎝⎛-≤--=4001600192040016001Y P ⎪⎭⎫ ⎝⎛≤--=8040016001.Y P})1({lim x p np np Y P n n ≤--∞→设随机变量服从参数n, p (0<p <1)的二项分布,则对任意x ,有n Y dte xt ⎰∞--=2221π定理表明,当n 很大,0<p <1是一个定值时(或者说,np (1-p )也不太小时),二项变量的分布近似正态分布N (np ,np (1-p )).n Y 二.定理(棣莫佛-拉普拉斯定理)例:一复杂的系统由100个相互独立起作用的部件组成,在整个运行期间每个部件损坏的概率为0.1,为使整个系统起作用,至少必须有85个部件正常工作求整个系统起作用的概率一复杂的系统由n 个相互独立起作用的部件所组成,每个部件的可靠性为0.9,且必须至少有80%的部件工作才能使整个的系统正常工作,问n 至少为多大才能使系统的可靠性不低于0.95?解:设100中个正常工作数为X,()~100,0.9X B ()85P X ≥=()185P X -<851000.911000.90.1-⨯⎛⎫=-Φ ⎪⨯⨯⎝⎭()1 1.67=-Φ-=0.95252) X~B(n, 0.9)()0.80.95P X n ≥≥()10.80.95P X n -<≥0.80.90.050.90.1n n n -⨯⎛⎫Φ≤ ⎪⨯⨯⎝⎭21.640.0924.20.01n ⨯=≈由题意可知即:()0.80.05P X n <≤0.90.8 1.960.90.1n n n -⨯≈⨯⨯查表得:解方程:至少25件.例2. (供电问题)某车间有200台车床,在生产期间由于需要检修、调换刀具、变换位置及调换工件等常需停车. 设开工率为0.6, 并设每台车床的工作是独立的,且在开工时需电力1千瓦.问应供应多少瓦电力就能以99.9%的概率保证该车间不会因供电不足而影响生产?设需要x千瓦电力.由题意得:()999≤0.P≥Xx用X 表示在某时刻工作着的车床数,解:对每台车床的观察作为一次试验,每次试验观察该台车床在某时刻是否工作,工作的概率为0.6,共进行200次试验.依题意,X ~B (200,0.6),现在的问题是:P (X ≤x )≥0.999的最小的x .求满足设需x 千瓦电力,(由于每台车床在开工时需电力1千瓦,x 台工作所需电力即x 千瓦.)由德莫佛-拉普拉斯极限定理)1(p np npX --近似N (0,1),于是P (X ≤x )= P (0≤X ≤x )这里np =120,np (1-p )=48)()x (4812048120---≈ΦΦ)x (48120-≈Φ查正态分布函数表得由≥0.999,)x (48120-Φ从中解得x ≥141.5,即所求x =142.(千瓦)也就是说, 应供应142 千瓦电力就能以99.9%的概率保证该车间不会因供电不足而影响生产.999.0)1.3(=Φ48120-x ≥3.1,故三.定理5.4(拉普拉斯局部极限定理)当时,n →∞()P X k =≈()2212k n p n p qen p qπ--01()k np npqnpqϕ-=例:10部机器独立工作,每部停机得概率为0.2,求3部机器同时停机的概率?解:设10部中同时停机的数为X,()~10,0.2X B ()3P X ==013100.2()100.20.8100.20.8ϕ-⨯⨯⨯⨯⨯01(0.79)1.265ϕ==0.2308统计量既然是依赖于样本的,而后者又是随机变量,故统计量也是随机变量,因而就有一定的分布,这个分布叫做统计量的“抽样分布”.§7.4几个常用统计量的分布主要介绍正态总体下的统计量的分布.设总体X ()2σμ,N ~()n X ,X ,X Λ21是总体X 的一个样本.由此构成的样本函数:∑==ni iX n X 11()∑=--=ni i X X n S 12211它们服从什么分布?()n,,i ,N ~X i Λ212=σμ一.关于样本均值的分布的定理设X 1,X 2,…,X n 是取自正态总体),(2σμN 的样本,则有),(~2nN X σμ)1,0(~N nX σμ-(1)(2)令U=)1,0(~N nX σμ-U-分布的临界值:它是指在一定的概率之下,随机变量取值落入某一区间内的区间上限或下限.例:P{ξ≤λ}=α,λ称为U 分布的临界值λα已知α的值可查表求临界值λ.即:由左边面积求U 的临界值二.关于样本方差S 2的分布定理(一)()2n χ分布()2n χ分布的密度函数为()1222102(2)00n x n x e x f x n x --⎧≥⎪=Γ⎨⎪<⎩来定义.1>=⎰∞--r ,dx e x )r (x r Γ其中伽玛函数通过积分)r (ΓE (X )=n , D (X )=2n演示χ2 分布()2n χ分布的上分位点:α2()n αχ例如:0.1,25n α==20.1(25)χ=34.4 当n 充分大时,有费歇(R.A.Fisher)公式:()221()212n z n ααχ≈+-例如:20.05(50)χ≈()21 1.65992+=67.28定理2.1: 设相互独立, 都服从标准正态分布N (0,1), 则随机变量:服从的分布为自由度为n 的分布.n X X X ,,,21Λ222212nX X X +++=Λχ2χ(0,1)N 定理2.2:设相互独立, 都服从标准正态分布n X X X ,,,21Λ则(二)标准正态分布下平方和分布定理∑==n i i X n X 11(1) 与()∑=-ni i X X 12相互独立.(2) ()21~ni i X X=-∑()21n χ-作业:1.预习:抽样分布2. 练习P116 7---163思考题:A组:甲乙两个戏院在竞争1000名观众,假定每个观众完全随机地选择一个戏院,且观众之间选择是彼此独立的,问每个戏院应该设有多少个座位才能保证因缺少座位而使观众离去的概率小于1%?B组:总结算术平均的分布.X。