概率论与数理统计_20_中心极限定理
- 格式:pdf
- 大小:1.44 MB
- 文档页数:27
概率论与数理统计第五章大数定律及中心极限定理课前导读概率论是研究大量试验后呈现出的统计规律性的一门理论。
数学中研究大量的工具是极限。
因此这一章学习概率论中的极限定理。
第一节大数定律随着试验次数的增大,事件的频率逐步稳定到事件的概率。
意味着随着试验次数的增多,在其中一种收敛意义下,频率的极限是概率。
大数定律解释了这一结论。
首先介绍切比雪夫不等式。
一、切比雪夫(Chebyshev)不等式随机变量X的取值总是围绕着其期望变动,若X的分布已知时,可以计算事件\{,X-E(X),\geq \epsilon \}的概率。
切比雪夫不等式:对切比雪夫不等式的直观理解:方差越小,X在其期望附近取值的密集程度越高,原理期望的区域的概率上加越小。
进一步说明了方差的概率意义,方差时随机变量取值与其中心位置的偏离程度的一种度量指标。
当随机变量X的分布未知时,可由X的观测数据估计得到X的期望和方差,然后使用切比雪夫不等式估计X关于E(X)的偏离程度。
二、依概率收敛随机变量序列即由随机变量构成的一个序列。
不能用类似定义数列极限的方式定义随机变量序列的极限,因为序列中的每一个元素X_n是随机变量,取值不确定,不可能和一个常数c的距离任意小。
只能说一些事件A发生的频率f_n(A)收敛到A的概率P(A)。
依概率收敛的定义:定理2:三、大数定律三个大数定律:切比雪夫大数定律、辛钦大数定律和伯努利大数定律。
注意这三个大数定律的条件有何异同。
定理3 切比雪夫大数定律:若随机变量序列相互不相关,方差存在且一致有上界,当n充分大时,随机序列的前n项的算术平均值和自身的期望充分接近几乎总是发生的。
定理4 相互独立同分布的大数定律(辛钦大数定律):辛钦大数定律为算术平均值法则提供了理论依据。
伯努利大数定律:伯努利大数定律是相互独立同分布大数定律的特例,限定分布为两点分布。
伯努利大数定律体现了:随着试验次数的增大,事件的频率逐步稳定到时间的概率,这里的稳定即为依概率收敛。
中心极限定理无论随机变量12,,,,n X X X 服从什么分布,当n 充分大时,其和的极限分布是正态分布,这就是我们今天要讲的中心极限定理。
定理 5.5(独立同分布中心极限定理)设随机变量12,,,,n X X X 相互独立,服从同一分布,且具有数学期望和方差2(),()0,i i E X D X μσ==>1,2,i =,则随机变量之和1ni i X =∑的标准化变量nin Xn Y μ-=∑的分布函数()n F x 对于任意X 满足2/2lim ()lim d ()n i x t n n n X n F x P x t x μΦ-→∞→∞⎧⎫-⎪⎪⎪=≤==⎬⎪⎪⎩⎭∑⎰定理 5.5表明,对于均值为,μ方差为20σ>的独立同分布的随机变量的和1ni i X =∑的标准化随机变量,不论12,,,,n X X X 服从什么分布,当n 充分大时,都有~(0,1)nin Xn Y N μ-=∑近似,从而,当n 充分大时21~(,)nii XN n n μσ=∑近似.定理5.5′ 设随机变量列12,,,,n X X X 相互独立,服从同一分布,且具有数学期望和方差2(),()0,i i E X D X μσ==>1,2,i =,令11nn i i X X n ==∑,则当n 充分大时~(0,1)N 近似,即2~(,/)n X N n μσ近似.例5.3 一盒同型号螺丝钉共有100个,已知该型号的螺丝钉的重量是一个随机变量,期望值是100 g,标准差是10 g,求一盒螺丝钉的重量超过10.2 kg 的概率.解 设i X 为第i 个螺丝钉的重量,,100,,2,1 =i Y 为一盒螺丝钉的重量,则1001,i i Y X ==∑12100,,,X X X 相互独立,由()100,i E X=10,σ= 100n =知()100()10 000,i E X E X =⨯=()100()10 000,i D X D X =⨯=由独立同分布中心极限定理,~(10000,10000)Y N 近似,{}{10 200}110 200P Y P Y >=-≤10 00010 20010 0001100100Y P --⎧⎫=-≤⎨⎬⎩⎭1(2)10.977 20.022 8.Φ≈-=-=定理5.6(李雅普诺夫定理)设随机变量 ,,,,21n X X X 相互独立,它们具有数学期望和方差2(),()0,1,2,k k k kE X D X k μσ==>=,记.122∑==nk k nB σ若存在正数δ,使得当∞→n 时,,0}|{|1122→-∑=++nk k knXE B δδμ则随机变量之和∑=n k k X 1的标准化变量nnk kn k kn k k n k k nk k n B X X D X E X Z ∑∑∑∑∑=====-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=11111μ的分布函数)(x F n 对于任意x ,满足2/211lim ()lim d ().n nk k x t k k n n n n X F x P x t x B μΦ-==→∞→∞⎧⎫-⎪⎪⎪⎪=≤==⎨⎬⎪⎪⎪⎪⎩⎭∑∑⎰ 定理5.7(棣莫佛—拉普拉斯定理)设随机变量(1,2,)~(,)(01),n n b n p p η=<<则对任意x ,有22lim d ().t x n P x t x Φ--∞→∞⎧⎫⎪≤==⎬⎪⎭⎰证明 由于n η可视为n 个相互独立、服从同一参数p 的(01)-分布的随机变量12,,,n X X X 的和,即有1nn i i X η==∑,其中(),()(1),i i E X p D X p p ==-1,2,i =,故由独立同分布中心极限定理可得22lim lim d ().n i n n t xX np P x P x t x Φ→∞→∞-⎧⎫-⎪⎪⎧⎫⎪⎪≤=≤⎬⎬⎪⎪⎭⎪⎭==∑⎰, 定理5.7表明:若随机变量n η服从二项分布,即~(,)n b n p η,则当n 充分大时,有~(0,1)npN η-近似,从而,当n 充分大时~(,(1))n N np np p η-近似例5.4 假如某保险公司开设人寿保险业务,该保险有1万人购买(每人一份),每人每年付100元保险费,若被保险人在年度内死亡, 保险公司赔付其家属1万元.设一年内一个人死亡的概率为0.005试问:在此项业务中保险公司亏本的概率有多大?保险公司每年利润不少于10万的概率是多少?解 设X 表示一年内被保险人的死亡人数,则,~(10000,0.005)X b ,于是()100000.00550,()100000.0050.99549.75E X D X =⨯==⨯⨯=由棣莫佛—拉普拉斯定理,~(50,49.75)X N 近似.保险公司亏本,也就是赔偿金额大于10 000100100⨯=万元,即死亡人数大于100人的概率所以保险公司亏本的概率为(){100}1{100}117.050P X P X P Φ>=-≤=-≈-= 这说明,保险公司亏本的概率几乎是零.如果保险公司每年的利润不少于10万元,即赔偿人数不超过90人,则保险公司每年利润不少于10万的概率为(){90} 5.671P X ≤≈Φ≈Φ=.可见,保险公司每年利润不少于10万元的概率几乎是100%.。
大数定律与中心极限定理总结大数定律与中心极限定理是概率论与数理统计中的两个重要定理,用于描述随机变量序列的性质。
下面我将分别对这两个定理进行总结,并给出相关的参考内容。
一、大数定律大数定律是概率论中的一个基本定理,描述了随机变量序列的极限性质。
大数定律可以分为弱大数定律和强大数定律两种。
1. 弱大数定律弱大数定律是指对于一个随机变量序列,如果序列的均值存在,并且均值收敛于某个常数,那么这个序列就满足弱大数定律。
弱大数定律的代表是辛钦大数定律。
具体来说,如果一个随机变量序列X1, X2, ..., Xn,其中Xi是相互独立、同样分布的随机变量序列,它们的均值为μ,方差为σ^2。
那么对于任意给定的正数ε,有:lim(n→∞)P( |X1+X2+...+Xn)/n - μ| ≤ ε ) = 1这意味着当样本数量趋向于无穷大时,样本均值的概率逼近于1,即样本均值趋近于总体均值μ。
2. 强大数定律强大数定律是指对于一个随机变量序列,如果序列的均值存在,并且均值以概率1收敛于某个常数,那么这个序列就满足强大数定律。
强大数定律的代表是伯努利大数定律和切比雪夫大数定律。
伯努利大数定律是对于一个独立随机变量序列X1, X2, ..., Xn,其中每个随机变量取值为0或1,概率为p或1-p,那么对于任意给定的正数ε,有:lim(n→∞)P( |X1+X2+...+Xn)/n - p| ≤ ε ) = 1切比雪夫大数定律是对于一个独立随机变量序列X1, X2, ..., Xn,其具有相同的均值μ和方差σ^2,那么对于任意给定的正数ε,有:lim(n→∞)P( |X1+X2+...+Xn)/n - μ| ≤ ε ) = 1以上的大数定律说明了随机变量序列的均值具有稳定的性质,当样本数量足够大时,样本均值可以准确地反映总体均值。
二、中心极限定理中心极限定理是概率论与数理统计中的一个基本定理,描述了独立随机变量和的分布的极限性质。
大数定律与中心极限定理知识点整理大数定律和中心极限定理是概率论与数理统计中两个重要的概念,它们在统计学和经济学等领域中具有广泛的应用。
下面将对它们的主要知识点进行整理。
一、大数定律(Law of Large Numbers)大数定律是关于随机变量序列均值的收敛性的一个法则。
它表明,当独立同分布的随机变量不断增加时,其均值将会趋近于理论期望。
具体来说,大数定律包含以下几个重要概念:1. 弱大数定律(Weak Law of Large Numbers)弱大数定律指的是当随机变量序列无限增加时,其均值以概率1收敛于理论期望。
这个定律要求序列中的随机变量具有有限的方差和独立同分布的性质。
2. 强大数定律(Strong Law of Large Numbers)强大数定律指的是当随机变量序列无限增加时,其均值几乎处处收敛于理论期望。
与弱大数定律相比,强大数定律要求序列中的随机变量只需要具有独立性,而不需要具有方差的有限性。
二、中心极限定理(Central Limit Theorem)中心极限定理是关于随机变量和其样本均值之间关系的一个重要定理。
它表明,当样本量增加时,随机变量的分布将趋近于正态分布。
中心极限定理包含以下几个关键点:1. 独立同分布的随机变量之和的分布趋近于正态分布。
2. 标准化后的样本均值的分布趋近于标准正态分布。
3. 样本量越大,越接近正态分布。
总结:大数定律和中心极限定理是概率论与数理统计中非常重要的概念。
大数定律研究随机变量序列均值的收敛性,而中心极限定理研究随机变量和其样本均值的分布趋近于正态分布的关系。
它们的应用广泛,对于统计学、经济学等领域的研究与实践具有重要意义。
概率论与数理统计完整公式概率论与数理统计是数学的一个分支,研究随机现象和随机变量之间的关系、随机变量的分布规律、经验规律及参数估计等内容。
在概率论与数理统计的学习中,有许多重要的公式需要掌握。
以下是概率论与数理统计的完整公式。
一、概率论公式:1.全概率公式:设A1,A2,…,An为样本空间S的一个划分,则对任意事件B,有:P(B)=P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P(B│An)·P(An)2.贝叶斯公式:对于样本空间S的一划分A1,A2,…,An,其中P(Ai)>0,i=1,2,…,n,并且B是S的任一事件,有:P(Ai│B)=[P(B│Ai)·P(Ai)]/[P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P (B│An)·P(An)]3.事件的独立性:若对事件A,B有P(AB)=P(A)·P(B),则称事件A,B相互独立。
4.概率的乘法公式:对于独立事件A1,A2,…,An,有:P(A1A2…An)=P(A1)·P(A2)·…·P(An)5.概率的加法公式:对事件A,B有:P(A∪B)=P(A)+P(B)-P(AB)6.条件概率的计算:对事件A,B有:P(A,B)=P(AB)/P(B)7.古典概型的概率计算:设事件A在n次试验中发生k次的次数服从二项分布B(n,p),则其概率可表示为:P(X=k)=C(n,k)·p^k·(1-p)^(n-k),其中C(n,k)=n!/[k!(n-k)!]二、数理统计公式:1.样本均值的期望和方差:样本的均值X̄的期望和方差分别为: E(X̄) = μ,Var(X̄) = σ^2 / n,其中μ 为总体的均值,σ^2 为总体方差,n 为样本容量。
2.样本方差的期望:样本方差S^2的期望为:E(S^2)=σ^2,其中σ^2为总体方差。
中心极限定理的内涵和应用在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。
中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。
这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。
故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。
一、独立同分布下的中心极限定理及其应用在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1:定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记nn X Y n i i n σμ-=∑=1 则对任意实数y ,有 {}⎰∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22(1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。
由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。
为此,设μ-n X 的特征函数为)(t ϕ,则n Y 的特征函数为nY n t t n ⎥⎦⎤⎢⎣⎡=)()(σϕϕ 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0ϕ'=0,2)0(σϕ-=''。
于是,特征函数)(t ϕ有展开式)(211)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σϕϕϕϕ 从而有=⎥⎦⎤⎢⎣⎡+-=+∞→+∞→n n Y n n t o nt t n )(21lim )(lim 22ϕ22t e - 而22t e -正是N(0,1)分布的特征函数,定理得证。