23等腰三角形的判定
- 格式:ppt
- 大小:352.50 KB
- 文档页数:12
等腰三角形的性质和判定等腰三角形是一种特殊三角形,它除具有一般三角形所有的性质外,还有许多特殊性,正是由于它的这些特殊性,使得它比一般三角形的应用更广泛。
因此,我们有必要把这部分内容学得更扎实些。
【重点、难点】重点:等腰三角形的性质与判定。
难点:灵活利用等腰三角形的性质与判定。
关键:掌握好等腰三角形的性质及判定。
【知识要点】1、等腰三角形的一些重要性质:①等腰三角形的两底角相等。
这一性质是今后论证两角相等的常用依据之一。
②等腰三角形的顶角平分线,底边上的中线,底边上的高互相重合(“三合一”)。
这一性质是今后论证两条线段相等,两角相等及两直线垂直的重要依据。
2、以上的两条重要性质在教科书中被当作两条重要定理。
除此外,根据等腰三角形的对称性还应有如下重要的性质,虽在证明中不能直接引用,但对于填空、选择则可直接运用,并且这些性质对今后的推理证明都有非常重要的作用。
①等腰三角形两腰上的中线相等已知:在ΔABC 中,AB=AC,若BD,CE分别是AC,AB边上的中线,则有BD=CE。
证明:∵BD,CE是AB,AC边上的中线(已知)∴AD=AC,AE=AB(中线定义)∵AB=AC(已知)∴AD=AE在ΔABD和ΔACE中,∴ΔABD≌ΔACE(SAS)∴BD=CE(全等三角形对应边相等)。
②等腰三角形两腰上的高相等已知:在ΔABC中,AB=AC,如果BD,CE分别是AC,AB边上的高,那么BD=CE。
同学可以试着证明一下,还用全等三角形去证。
③等腰三角形两底角的平分线相等已知:在ΔABC中,AB=AC,如果BD,CE分别是∠ABC和∠ACB的平分线,那么BD=CE。
同学可利用全等三角形法证明。
3、等腰三角形的判定判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。
已知:如图,在ΔABC中,∠B=∠C,求证:AB=AC。
分析:要想证出AB=AC需构造全等三角形。
考虑学过等腰三角形性质中的“三合一”,我们不妨作顶角的平分线,或过A作AD⊥BC于D。
第05讲等腰三角形的性质与判定【学习目标】1.了解等腰三角形的有关概念,探索并掌握性质及判定方法。
【基础知识】一.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.二.等腰三角形的判定判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.【简称:等角对等边】说明:①等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.②等腰三角形的判定和性质互逆;③在判定定理的证明中,可以作未来底边的高线也可以作未来顶角的角平分线,但不能作未来底边的中线;④判定定理在同一个三角形中才能适用.三.等腰三角形的判定与性质1、等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.2、在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线,虽然“三线合一”,但添加辅助线时,有时作哪条线都可以,有时不同的做法引起解决问题的复杂程度不同,需要具体问题具体分析.3、等腰三角形性质问题都可以利用三角形全等来解决,但要注意纠正不顾条件,一概依赖全等三角形的思维定势,凡可以直接利用等腰三角形的问题,应当优先选择简便方法来解决.【考点剖析】一.等腰三角形的性质(共7小题)1.(2021秋•盱眙县期末)如果等腰三角形两边长是5cm和2cm,那么它的周长是()A.7cm B.9cm C.9cm或12cm D.12cm2.(2021秋•抚远市期末)等腰三角形的两边长分别为3和6,则这个三角形的周长是()A.15B.12C.12或15D.93.(2022春•鼓楼区校级期中)如图,在△ABC中,∠A=α,∠B=∠C,点D是△ABC外一点,E,F分别在AB,AC上,ED与AC交于点G,且∠D=∠B,若∠1=2∠2,则∠EGF的度数为()A.180°﹣2αB.60°+13αC.90°−32αD.30°+23α4.(2022春•镇江期中)三角形的三边长为2,a,5,如果这个三角形中有两条边相等,那么它的周长是.5.(2022春•金湖县校级月考)在△ABC中,∠C=30°,且∠A=∠B;求∠A的度数.6.(2022春•睢宁县月考)一个等腰三角形的两条边长为4,7,那么它的周长是多少?7.(2021秋•邗江区期末)如图,△ABC中,AB=AC,AB的垂直平分线DE分别交AC、AB于点D、E.(1)若∠A=50°,求∠CBD的度数;(2)若AB=7,△CBD周长为12,求BC的长.二.等腰三角形的判定(共7小题)8.(2021秋•仪征市期末)在△ABC中,∠A=100°,当∠B=°时,△ABC是等腰三角形.9.(2021秋•靖江市期末)已知a,b是△ABC的两条边长,且a2+b2﹣2ab=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.锐角三角形D.不确定10.(2021秋•滨海县期末)用三根木棒首尾相连围成一个等腰三角形,其中两根木棒的长度分别为3cm和6cm,则第三根木棒长为cm.11.(2021秋•泗阳县期中)如图,∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC.(1)求证:AB=AC;(2)若点H是BC的中点,求证:AH⊥AD.12.(2021秋•鼓楼区校级期末)下列长度的三条线段能组成等腰三角形的是()A.1,2,3B.3,4,5C.2,2,3D.2,2,413.(2021秋•龙华区校级期末)如图,在3×3的正方形网格中,点A、B在格点上,要找一个格点C,使△ABC是等腰三角形(AB是其中一腰),则图中符合条件的格点有()A.2个B.3个C.4个D.5个14.(2020秋•定西期末)如图,在△ABC中,∠B=90°,AB=16cm,BC=12cm,AC=20cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当点Q在边BC上运动时,出发几秒后,△PQB是等腰三角形?(2)当点Q在边CA上运动时,出发几秒后,△BCQ是以BC或BQ为底边的等腰三角形?三.等腰三角形的判定与性质(共6小题)15.(2020秋•绿园区期末)如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD 于点G,若∠1=∠BEF,若EF=3,则FG为()A.4B.3C.5D.1.516.(2021•建湖县二模)若一条长为32cm的细线能围成一边长等于8cm的等腰三角形,则该等腰三角形的腰长为cm.17.(2021秋•句容市期末)如图,BD平分∠ABC,DE∥BC交BA于点E,若DE=52,则EB=.18.(2021秋•射阳县校级期末)已知:如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,且MN ∥BC,分别交AB、AC于点M、N.求证:MN=BM+CN.19.(2021秋•盱眙县期末)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.20.(2021秋•苏州期末)如图,在△ABC中,AD⊥BC,∠B=62°,AB+BD=CD,则∠BAC的度数为()A.87°B.88°C.89°D.90°【过关检测】一.选择题(共6小题)1.(2021秋•溧阳市期末)若等腰三角形边长别为6cm和3cm,则该等腰三角形的周长是()A.9cm B.12cm C.15cm D.12cm或15cm2.(2021秋•江阴市期末)等腰三角形的周长为21cm,其中一边长为5cm,则该等腰三角形的底边长为()A.5cm B.11cm C.8cm或5cm D.11cm或5cm3.(2022•陕西模拟)如图,在△ABC中,AB=AC,BD=CD,点E为AC的中点,连接DE.若△ABC 的周长为20cm,则△CDE的周长为()A.10 cm B.12 cm C.14 cm D.16cm4.(2022•黔东南州模拟)如图,在△ABC中,AB=AC,BD为△ABC的高.若∠CBD=20°,则∠BAC 的度数是()A.30°B.40°C.50°D.60°5.(2021秋•鼓楼区校级期末)下列长度的三条线段能组成等腰三角形的是()A.1,2,3B.3,4,5C.2,2,3D.2,2,46.(2021秋•靖江市期末)已知a,b是△ABC的两条边长,且a2+b2﹣2ab=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.锐角三角形D.不确定二.填空题(共3小题)7.(2021秋•溧水区期末)如图,在△ABC中,∠ABC、∠ACB的平分线交于点O,MN经过点O,且MN ∥BC,分别交AB、AC于点M、N.若BM=3cm,MN=5cm,则CN=cm.8.(2021秋•宁津县期末)如图,△ABC中,∠A=∠ACB,CP平分∠ACB,BD,CD分别是△ABC的两外角的平分线,下列结论中:①CP⊥CD;②∠P=12∠A;③BC=CD;④∠D=90°−12∠A;⑤PD∥AC.其中正确的结论是(直接填写序号).9.(2021秋•东城区校级期末)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE=3,CD=4,ED=5,则FG的长为.三.解答题(共3小题)10.(2022春•无锡期中)如图①,△ABC的角平分线BD、CE相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,过P点作直线MN,分别交AB和AC于点M和N,且MN平行于BC,试求∠MPB+∠NPC 的度数(用含∠A的代数式表示);(3)将(2)中的直线MN绕点P旋转,分别交线段AB于点M(不与A、B重合),交直线AC于N,试探索∠MPB、∠NPC、∠A三者之间的数量关系,并说明理由.11.(2021秋•淮安区期末)如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线MN交AC于点D,交AB于点E,求∠DBC的度数.12.(2021秋•泗洪县期末)如图,在△ABC中,AB=AC,角平分线BD,CE相交于点O,求证:OB=OC.第05讲等腰三角形的性质与判定【学习目标】1.了解等腰三角形的有关概念,探索并掌握性质及判定方法。
中考数学复习考点知识与题型专题讲解专题22等腰三角形【知识要点】等腰三角形概念:有两边相等的三角形角等腰三角形。
等腰三角形性质:1:等腰三角形的两个底角相等(简写成“等边对等角”)2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
(三线合一)等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”). 等边三角形概念:三条边都相等的三角形,叫等边三角形。
它是特殊的等腰三角形。
等边三角形性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60º。
(2)三个角都相等的三角形是等边三角形。
(3)有一个角是60º的等腰三角形是等边三角形。
(4)在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。
(补充:(1)三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
(2)三角形三个边的中垂线交于一点,并且这一点到三个顶点的距离相等。
(3)常用辅助线:①三线合一;②过中点做平行线【考查题型】考查题型一等腰三角形的定义【解题思路】考查等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.典例1.(2021·贵州黔南布依族苗族自治州·中考真题)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A.9B.17或22C.17D.22变式1-1.(2021·广西玉林市·中考真题)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35度方向,B岛在A岛的北偏东80度方向,C岛在B岛的北偏西55度方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形变式1-2.(2021·青海中考真题)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°变式1-3.(2021·湖南张家界市·中考真题)已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为()A .2B .4C .8D .2或4考查题型二 根据等边对等角求角度典例2.(2021·广西中考真题)如图,AB 是⊙O 的弦,AC 与⊙O 相切于点A ,连接OA ,OB ,若∠O =130°,则∠BAC 的度数是( )A .60°B .65°C .70°D .75°变式2-1.(2021·甘肃兰州市·中考真题)如图,//AB CD ,AD CD =,165∠=︒,则2∠的度数是()A .50︒B .60︒C .65︒D .70︒变式2-2.(2021·山东临沂市·中考真题)如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒变式2-3.(2021·浙江温州市·中考真题)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作□BCDE,则∠E的度数为()A.40°B.50°C.60°D.70°考查题型三根据三线合一求解典例3.(2021·广东深圳市·中考真题)如图,已知AB=AC,BC=6,尺规作图痕迹可求出BD=()A.2B.3C.4D.5变式3-1.(2021·铜仁市·中考真题)已知等边三角形一边上的高为)A.2B.3C.4D.变式3-2.(2021·四川中考真题)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P 为该平面内一动点,且满足PC=2,则PM的最小值为()A.2B.﹣2C.+2D.考查题型四格点中画等腰三角形典例4在如图所示的网格纸中,有A、B两个格点,试取格点C,使得△ABC是等腰三角形,则这样的格点C的个数是()A.4B.6C.8D.10变式4-1.(2021·山东枣庄市一模)如图,A、B是4×5网格中的格点,网格中的每个小正方形的边长都是1,图中使以A、B、C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个变式4-2.如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若△ABC为等腰三角形,且S△ABC=1.5,则满足条件的格点C有()A.1个B.2个C.3个D.4个考查题型五根据等角对等边证明等腰三角形典例5.要使得△ABC是等腰三角形,则需要满足下列条件中的()A.∠A=50°,∠B=60°B.∠A=50°,∠B=100°C.∠A+∠B=90°D.∠A+12∠B=90°变式5-1.(2021·无锡市模拟)下列能断定△ABC为等腰三角形的是()A.∠A=40°,∠B=50°B.∠A=2∠B=70°C.∠A=40°,∠B=70°D.AB=3,BC=6,周长为14变式5-2.如图,在△ABC 中,AB=AC,BO、CO 分别平分∠ABC、∠ACB,DE 经过点O,且DE∥BC,DE 分别交AB、AC 于D、E,则图中等腰三角形的个数为( )A .2B .3C .4D .5考查题型六 根据等角对等边求边长典例6.(2021·山东青岛市·中考真题)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点.O 若5AE =,3BF =,则AO 的长为()A C ..变式6-1.(2021·山东济宁市·中考真题)一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛在海岛A 的北偏西42°方向上,在海岛B 的北偏西84°方向上.则海岛B 到灯塔C 的距离是()A .15海里B .20海里C .30海里D .60海里变式6-2.(2021·河北九年级其他模拟)如图,在▱ABCD 中,AB =8,BC =5,以点A 为圆心,以任意长为半径作弧,分别交AD 、AB 于点P 、Q ,再分别以P 、Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠DAB 内交于点M ,连接AM 并延长交CD 于点E ,则CE 的长为( )A .3B .5C .2D .6.5考查题型七 等腰三角形性质与判定的综合典例7.(2021·浙江绍兴市·中考真题)问题:如图,在△ABD 中,BA =BD .在BD 的延长线上取点E ,C ,作△AEC ,使EA =EC ,若∠BAE =90°,∠B =45°,求∠DAC 的度数.答案:∠DAC =45°思考:(1)如果把以上“问题”中的条件“∠B =45°”去掉,其余条件不变,那么∠DAC 的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B =45°”去掉,再将“∠BAE =90°”改为“∠BAE =n °”,其余条件不变,求∠DAC 的度数.变式7-1.(2021·江苏淮安市·中考真题)如图,三条笔直公路两两相交,交点分别为A 、B 、C ,测得30CAB ∠=︒,45ABC ∠=︒,8AC =千米,求A 、B 两点间的距离.(参考数据: 1.4≈,1.7≈,结果精确到1千米).变式7-2.(2021·辽宁鞍山市·中考真题)图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN 为立柱的一部分,灯臂AC ,支架BC 与立柱MN 分别交于A ,B 两点,灯臂AC 与支架BC 交于点C ,已知60MAC ∠=︒,15ACB ∠=︒,40cm AC =,求支架BC 的长.(结果精确到1cm ,参考1.414≈ 1.732≈2.449≈)考查题型八 等边三角形的性质典例8.(2021·福建中考真题)如图,面积为1的等边三角形ABC 中,,,D E F 分别是AB ,BC ,CA 的中点,则DEF ∆的面积是()A .1B .12C .13D .14变式8-1.(2021·山西中考真题)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为4cm ,圆心角为60︒,则图中摆盘的面积是()A .280cm πB .240cm πC .224cm πD .22cm π变式8-2.(2021·甘肃天水市·中考真题)如图,等边OAB 的边长为2,则点B 的坐标为()1,1B.C.D.A.()考查题型九等边三角形的性质与判定的综合典例9.(2021·内蒙古中考真题)如图,一个人骑自行车由A地到C地途经B地当他由A地出发时,发现他的北偏东45︒方向有一电视塔P,他由A地向正北方向骑行了到达B地,发现电视塔P在他北偏东75︒方向,然后他由B地向北偏东15︒方向骑行了6km到达C地.(1)求A地与电视塔P的距离;(2)求C地与电视塔P的距离.变式9-1.(2021·内蒙古鄂尔多斯市·中考真题)(1)(操作发现)如图1,在边长为1个单位长度的小正方形组成的网格中,ABC的三个顶点均在格点上.①请按要求画图:将ABC绕点A顺时针方向旋转90°,点B的对应点为点B',点C的对应点为点C'.连接BB';∠AB B=°.②在①中所画图形中,'(2)(问题解决)如图2,在Rt ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE ,连接DE ,求∠ADE 的度数.(3)(拓展延伸)如图3,在四边形ABCD 中,AE ⊥BC ,垂足为E ,∠BAE =∠ADC ,BE =CE =1,CD =3,AD =kAB (k 为常数),求BD 的长(用含k 的式子表示).考查题型十 含30°角的直角三角形典例10.(2021·海南中考真题)如图,在Rt ABC 中, 90,30,1,C ABC AC cm ∠=︒∠=︒=将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连接BB ',则BB '的长度是( )A .1cmB .2cmCD .变式10-1.(2021·湖北中考真题)如图,点,,,A B C D 在O 上,OA BC ⊥,垂足为E .若30ADC ∠=︒,1AE =,则BC =( )A .2B .4C .11 / 11 变式10-2.(2021·山东枣庄市·中考真题)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB ∆绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是()A.(1,2-+ B.() C.(2+D.(-。
等腰三角形的五个判定一、等腰三角形的五个判定1、两条边相等:等腰三角形最典型的特点就是它的三条边长度都相等。
所以当我们有一个三角形,只需要找出它的三个边中有两个边长度相等的时候,就可以判定这个三角形为等腰三角形。
2、直角三角形:这个判定方式更为复杂,对于等腰三角形即解释为直角三角形,验证直角三角形充分必要条件是通过直角符号在三个角上标出一个直角,此时另外两边的斜边相等,即可判定这个三角形为等腰三角形。
3、边分两廓:另一种判定等腰三角形的方式也很常见,就是将一个等腰三角形从其中的一条边中间分成两块,然后另外两个边就会构成两个等边三角形,这种方式判定最为快捷。
4、两直角三角形:等腰三角形与两个直角三角形联系紧密,也就是一旦可以在等腰三角形中找到两个直角三角形,那么就可以判断这个三角形是等腰三角形。
5、其他外角相等:对于等腰三角形,可以判定它的其他外角是相等的,如果其他外角相等的话,那就可以判断这个三角形为等腰三角形。
二、等腰三角形的重要性等腰三角形既有美学价值又被广泛的应用于很多领域,它的出现让我们更加意识到规律性与美的存在,令我们对自然有更深刻的理解。
在运筹学中,等腰三角形被应用在路线规划中,不仅可以帮助人们快速计算出单位距离经过时间,还能帮助准确计算出距离,从而为物流事业或外出旅游带来便利。
此外,等腰三角形也是建筑工程中不可或缺的结构形式,能把结构力学中的重力集中起来支撑起桥梁和大楼,是以节省材料的形式帮助我们构筑物理环境的重要部分。
综上所述,可见等腰三角形的重要性不言而喻。
并且,由于各种判断等腰三角形的方法有了相应的技术支持,等腰三角形的应用在日益广泛,即使在精密的科技测量中也能。
湘教版数学八年级上册2.3《等腰(边)三角形的判定》教学设计一. 教材分析湘教版数学八年级上册2.3《等腰(边)三角形的判定》是学生在学习了三角形的基本概念和性质之后的一个拓展内容。
本节内容主要引导学生探究等腰三角形的性质,并通过一系列的实践活动让学生理解和掌握等腰三角形的判定方法。
教材通过丰富的几何图形和实际的例题,激发学生的学习兴趣,培养学生动手操作和解决问题的能力。
二. 学情分析学生在学习本节内容之前,已经掌握了三角形的基本概念和性质,能够识别各种类型的三角形。
但是,对于等腰三角形的判定,学生可能还比较陌生,需要通过实际的操作和例题来理解和掌握。
此外,学生可能对等腰三角形的性质和判定方法在实际应用中的灵活运用还需要进一步的引导和培养。
三. 教学目标1.知识与技能:让学生理解和掌握等腰三角形的判定方法,能够运用等腰三角形的性质解决实际问题。
2.过程与方法:通过观察、操作、探究等腰三角形的性质,培养学生的动手操作和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的决心。
四. 教学重难点1.重点:等腰三角形的判定方法。
2.难点:等腰三角形性质在实际问题中的灵活运用。
五. 教学方法1.情境教学法:通过丰富的几何图形和实际的例题,激发学生的学习兴趣,引导学生主动探究。
2.实践活动法:让学生通过实际的操作和例题,理解和掌握等腰三角形的判定方法。
3.小组合作学习法:引导学生进行团队合作,培养学生的团队合作意识和解决问题的能力。
六. 教学准备1.教具:几何画板、直尺、三角板、多媒体设备等。
2.学具:学生用书、练习册、铅笔、橡皮等。
七. 教学过程1.导入(5分钟)教师通过多媒体展示一些实际的例子,引导学生观察和思考:什么是等腰三角形?等腰三角形有哪些性质?2.呈现(10分钟)教师通过几何画板展示等腰三角形的判定过程,引导学生观察和思考等腰三角形的判定方法。
3.操练(10分钟)教师给出一些实际的例题,让学生运用所学的判定方法进行解答,并及时给予反馈和指导。