中考数学试题分类23 等腰三角形
- 格式:docx
- 大小:1.09 MB
- 文档页数:21
(2022•桂林中考)如图,在△ABC中,∠B=22.5°,∠C=45°,若AC=2,则△ABC的面积是()A.3+√22B.1+√2C.2√2D.2+√2【解析】选D.如图,过点A作AD⊥AC于A,交BC于D,过点A作AE⊥BC于E,因为∠C=45°,所以△ADC是等腰直角三角形,所以AD=AC=2,∠ADC=45°,CD=√2AC=2√2,因为∠ADC=∠B+∠BAD,∠B=22.5°,所以∠DAB=22.5°,所以∠B=∠DAB,所以AD=BD=2,因为AD=AC,AE⊥CD,所以DE=CE,所以AE=12CD=√2,所以△ABC的面积为12•BC•AE=12×√2×(2+2√2)=2+√2.(2022·安徽中考)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA(2022•泰安中考)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是()A.70°B.65°C.60°D.55°【解析】选A.如图,因为AB=BC,∠C=25°,所以∠C=∠BAC=25°,因为l1∥l2,∠1=60°,所以∠BEA=180°﹣60°﹣25°=95°,因为∠BEA=∠C+∠2,所以∠2=95°﹣25°=70°(2022•宜宾中考)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则CFAF =45;④在△ABC内存在唯一一点P,使得PA+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+√3.其中含所有正确结论的选项是()A.①②④ B.①②③ C.①③④ D.①②③④【解析】选B.如图1中,因为∠BAC=∠DAE=90°,所以∠BAD=∠CAE,因为AB=AC,AD=AE,所以△BAD≌△DAE(SAS),所以BD=EC,∠ADB=∠AEC,故①正确,因为∠ADB+∠ADC=180°,所以∠AEC+∠ADC=180°,所以∠DAE+∠DCE=180°,所以∠DAE=∠DCE=90°,取DE的中点O,连接OA,OA,OC,则OA=OD=OE=OC,所以A,D,C,E四点共圆,所以∠DAC=∠CED,故②正确,设CD=m,则BD=CE=2m.DE=√5m,OA=√52m,过点C作CJ⊥DF于点J,因为tan∠CDF=CJDJ =CECD=2,所以CJ=2√55m,因为AO⊥DE,CJ⊥DE,所以AO∥CJ,所以CFAF =CJAO=2√55m√52m=45,故③正确.如图2中,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,所以BP=BN,PC=NM,∠PBN=60°,所以△BPN是等边三角形,所以BP=PN,所以PA+PB+PC=AP+PN+MN,所以当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时∠APB=∠APC=∠BPC=120°,PB=PC,AD⊥BC,所以∠BPD=∠CPD=60°,设PD=t,则BD=AD=√3t,所以2+t=√3t,所以t=√3+1,所以CE=BD=√3t=3+√3,故④错误,故正确的结论是①②③.(2022•福建中考)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44cm,则高AD约为()(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.9.90cm B.11.22cm C.19.58cm D.22.44cm【解析】选B.因为AB=AC,BC=44cm,所以BD=CD=22cm,AD⊥BC,因为∠ABC=27°,所以tan∠ABC=ADBD≈0.51,所以AD≈0.51×22=11.22cm.(2022•永州中考)如图,在Rt△ABC中,∠ABC=90°,∠C=60°,点D为边AC的中点,BD=2,则BC 的长为()A.√3B.2√3C.2D.4【解析】选C.在Rt△ABC中,∠ABC=90°,点D为边AC的中点,BD=2,所以AC=2BD=4,因为∠C=60°,所以∠A=30°,所以BC=12AC=2.(2022•鄂州中考)如图,直线l1∥l2,点C、A分别在l1、l2上,以点C为圆心,CA长为半径画弧,交l1于点B,连接AB.若∠BCA=150°,则∠1的度数为()A.10°B.15°C.20°D.30°【解析】选B.由题意可得AC=BC,所以∠CAB=∠CBA,因为∠BCA=150°,∠BCA+∠CAB+∠CBA=180°,所以∠CAB=∠CBA=15°,因为l1∥l2,所以∠1=∠CBA=15°.(2022•梧州中考)如图,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别是点E ,F ,则下列结论错误的是( )A .∠ADC =90°B .DE =DFC .AD =BC D .BD =CD【解析】选C .因为AB =AC ,AD 是△ABC 的角平分线,所以AD ⊥BC ,BD =CD ,∠B =∠C ,所以∠ADC =90°,在△BDE 和△CDF 中,{∠B =∠C ∠BED =∠CFD BD =CD,所以△BDE ≌△CDF (AAS ),所以DE =DF .(2022•龙东中考)如图,△ABC 中,AB =AC ,AD 平分∠BAC 与BC 相交于点D ,点E 是AB 的中点,点F是DC 的中点,连接EF 交AD 于点P .若△ABC 的面积是24,PD =1.5,则PE 的长是( )A .2.5B .2C .3.5D .3【解析】选A .如图,过点E 作EG ⊥AD 于G ,因为AB =AC ,AD 平分∠BAC ,所以AD ⊥BC ,BD =CD ,所以∠PDF =∠EGP =90°,EG ∥BC , 因为点E 是AB 的中点,所以G 是AD 的中点,所以EG =12BD ,因为F 是CD 的中点,所以DF =12CD ,所以EG =DF ,因为∠EPG =∠DPF ,所以△EGP ≌△FDP (AAS ),所以PG =PD =1.5,所以AD =2DG =6,因为△ABC 的面积是24,所以12•BC •AD =24,所以BC =48÷6=8, 所以DF =14BC =2,所以EG =DF =2,由勾股定理得:PE =√22+1.52=2.5.A .36°B .54°C .72°D .108°【解析】选A .由题意可得BP 为∠ABC 的角平分线,所以∠ABD =∠CBD ,因为AD =BD ,所以∠A =∠ABD ,所以∠A =∠ABD =∠CBD ,所以∠ABC =2∠A ,因为AB =AC ,所以∠ABC =∠C =2∠A ,所以∠A +∠ABC +∠C =∠A +2∠A +2∠A =180°,解得∠A =36°.(2022•滨州中考)如图,屋顶钢架外框是等腰三角形,其中AB =AC ,立柱AD ⊥BC ,且顶角∠BAC =120°,则∠C 的大小为 30° .【解析】因为AB =AC 且∠BAC =120°,所以∠B =∠C =12(180°﹣∠BAC )=12×60°=30°.答案:30°.(2022•绍兴中考)如图,在△ABC 中,∠ABC =40°,∠BAC =80°,以点A 为圆心,AC 长为半径作弧,交射线BA 于点D ,连结CD ,则∠BCD 的度数是 10°或100° .【解析】如图,点D 即为所求;在△ABC中,∠ABC=40°,∠BAC=80°,所以∠ACB=180°﹣40°﹣80°=60°,由作图可知:AC=AD,所以∠ACD=∠ADC=12(180°﹣80°)=50°,所以∠BCD=∠ACB﹣∠ACD=60°﹣50°=10°;由作图可知:AC=AD′,所以∠ACD′=∠AD′C,因为∠ACD′+∠AD′C=∠BAC=80°,所以∠AD′C=40°,所以∠BCD′=180°﹣∠ABC﹣∠AD′C=180°﹣40°﹣40°=100°.综上所述:∠BCD的度数是10°或100°.答案:10°或100°.(2022•娄底中考)如图,已知等腰△ABC的顶角∠BAC的大小为θ,点D为边BC上的动点(与B、C不重合),将AD绕点A沿顺时针方向旋转θ角度时点D落在D′处,连接BD′.给出下列结论:①△ACD≌△ABD′;②△ACB∽△ADD′;③当BD=CD时,△ADD′的面积取得最小值.其中正确的结论有①②③(填结论对应的应号).【解析】由题意可知AC=AB,AD=AD′,∠CAD=∠BAD′,所以△ACD≌△ABD′,故①正确;因为AC=AB,AD=AD′,∠BAC=∠D′AD=θ,所以ACAD =ABAD′,所以△ACB∽△ADD′,故②正确;因为△ACB∽△ADD′,所以S△ADD′S△ACB=(ADAC)2,因为当AD⊥BC时,AD最小,△ADD′的面积取得最小值.而AB=AC,所以BD=CD,所以当BD=CD时,△ADD′的面积取得最小值,故③正确;(2022•岳阳中考)如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD= 3 .【解析】因为AB=AC,AD⊥BC,所以CD=BD,因为BC=6,所以CD=3.答案:3(2022•德阳中考)如图,直角三角形ABC纸片中,∠ACB=90°,点D是AB边上的中点,连结CD,将△ACD沿CD折叠,点A落在点E处,此时恰好有CE⊥AB.若CB=1,那么CE=√3.【解析】如图,设CE交AB于点O.因为∠ACB=90°,AD=DB,所以CD=AD=DB,所以∠A=∠ACD,由翻折的性质可知∠ACD=∠DCE,因为CE⊥AB,所以∠BCE+∠B=90°,因为∠A+∠B=90°,所以∠BCE=∠A,所以∠BCE=∠ACD=∠DCE=30°,,所以CO=CB•cos30°=√32因为DA=DE,DA=DC,所以DC=DE,,所以CE=√3.因为DO⊥CE,所以CO=OE=√32答案:√3.(2022•嘉兴中考)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件∠B=60°.【解析】有一个角是60°的等腰三角形是等边三角形,答案:∠B=60°(2022•无锡中考)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE 交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=80°;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是4−√3.【解析】因为△ACB,△DEC都是等边三角形,所以AC=CB,DC=EC,∠ACB=∠DCE=60°,所以∠BCD=∠ACE,在△BCD和△ACE中,{CB=CA∠BCD=∠ACE CD=CE,所以△BCD≌△ACE(SAS),所以∠DBC=∠EAC=20°,因为∠BAC=60°,所以∠BAF=∠BAC+∠CAE=80°.如图1中,设BE交AC于点T.同法可证△BCD ≌△ACE ,所以∠CBD =∠CAF ,因为∠BTC =∠ATF ,所以∠BCT =∠AFT =60°,所以点F 在△ABC 的外接圆上运动,当∠ABF 最小时,AF 的值最小,此时CD ⊥BD ,所以BD =√BC 2−CD 2=√52−32=4,所以AE =BD =4,∠BDC =∠AEC =90°,因为CD =CE ,CF =CF ,所以Rt △CFD ≌Rt △CFE (HL ),所以∠DCF =∠ECF =30°,所以EF =CE •tan30°=√3,所以AF 的最小值为AE ﹣EF =4−√3.答案:80,4−√3(2022•鄂州中考)如图,在边长为6的等边△ABC 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD =CE =2,则△ABP 的周长为 42+18√77 .【解析】因为△ABC 是等边三角形,所以AB =BC ,∠ABD =∠C =60°,在△ABD 和△BCE 中,{AB =BC∠ABD =∠C BD =CE所以△ABD ≌△BCE (SAS ),所以∠BAD =∠CBE ,所以∠APE =∠ABP +∠BAD =∠ABP +∠CBE =∠ABD =60°,所以∠APB =120°,在CB 上取一点F 使CF =CE =2,则BF =BC ﹣CF =4,所以∠C =60°,所以△CEF 是等边三角形,所以∠BFE =120°,即∠APB =∠BFE ,所以△APB ∽△BFE ,所以AP BP =BF EF =42=2, 设BP =x ,则AP =2x ,作BH ⊥AD 延长线于H ,因为∠BPD =∠APE =60°,所以∠PBH =30°,所以PH =x 2,BH =√32x ,所以AH =AP +PH =2x +x 2=52x ,在Rt △ABH 中,AH 2+BH 2=AB 2,即(52x )2+(√32x )2=62, 解得x =6√77或−6√77(舍去),所以AP =12√77,BP =6√77, 所以△ABP 的周长为AB +AP +BP =6+12√77+6√77=6+18√77=42+18√77, 答案:42+18√77. (2022•泰州中考)如图,△ABC 中,∠C =90°,AC =8,BC =6,O 为内心,过点O 的直线分别与AC 、AB边相交于点D 、E .若DE =CD +BE ,则线段CD 的长为 2或12 .【解析】如图,过点O 的直线分别与AC 、AB 边相交于点D 、E ,连接BO ,CO ,因为O 为△ABC 的内心,所以CO 平分∠ACB ,BO 平分∠ABC ,所以∠BCO =∠ACO ,∠CBO =∠ABO ,当CD =OD 时,则∠OCD =∠COD ,所以∠BCO =∠COD ,所以BC ∥DE ,所以∠CBO =∠BOE ,所以BE =OE ,则DE =CD +BE ,设CD =OD =x ,BE =OE =y ,在Rt △ABC 中,AB =√AC 2+BC 2=10,所以{AD AC =DE BC AE AB =DE BC ,即{8−x 8=x+y 610−y 10=8−x 8,解得{x =2y =52,所以CD =2,过点O 作D ′E ′⊥AB ,作DE ∥BC ,因为点O 为△ABC 的内心,所以OD =OE ′,在Rt △ODD ′和Rt △OE ′E 中,{∠OE′E =∠ODD′OE′=OD ∠EOE′=∠D′OD,所以△ODD ′≌△OE ′E (ASA ),所以OE =OD ′,所以D ′E ′=DE =CD +BE =CD ′+BE ′=2+52=92,在△AD ′E ′和△ABC 中,{∠A =∠A ∠D′E′A =∠BCA,所以△AD ′E ′∽△ABC , 所以AD′AB =D′E′BC ,所以AD′10=926,解得:AD ′=152,所以CD ′=AC ﹣AD ′=12. 答案:2或12. (2022•包头中考)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =3,D 为AB 边上一点,且BD =BC ,连接CD ,以点D 为圆心,DC 的长为半径作弧,交BC 于点E (异于点C ),连接DE ,则BE 的长为 3√2−3 .【解析】因为∠ACB =90°,AC =BC =3,所以AB =√2AC =3√2,∠A =∠B =45°,因为BD =BC =3,AC =BC ,所以BD =AC ,AD =3√2−3.因为DC =DE ,所以∠DCE =∠DEC .因为BD =BC ,所以∠DCE =∠CDB ,所以∠CED =∠CDB ,因为∠CDB =∠CDE +∠EDB ,∠CED =∠B +∠EDB ,所以∠CDE =∠B =45°.所以∠ADC +∠EDB =180°﹣∠CDE =135°.因为∠ADC +∠ACD =180°﹣∠A =135°,所以∠ACD =∠EDB .在△ADC 和△BED 中,{AC =BD ∠ACD =∠EDB CD =DE,所以△ADC ≌△BED (SAS ).所以BE =AD =3√2−3.答案:3√2−3.【解析】过点A作AH⊥BC于点H.设AN=CM=x.因为AB=AC=√2,∠BAC=90°,所以BC=√(√2)2+(√2)2=2,因为AH⊥BC,所以BH=AH=1,所以AH=BH=CH=1,所以AM+BN=√12+(1−x)2+√(√2)2+x2,欲求AM+BN的最小值,相当于在x轴上寻找一点P(x,0),到E(1,1),F(0,√2)的距离和的最小值,如图1中,作点F关于x轴的对称点F′,当E,P,F′共线时,PE+PF的值最小,此时直线EF′的解析式为y=(√2+1)x−√2,当y=0时,x=2−√2,所以AM+BN的值最小时,CM的值为2−√2.答案:2−√2(2022•自贡中考)如图,△ABC是等边三角形,D、E在直线BC上,DB=EC.求证:∠D=∠E.【证明】因为△ABC是等边三角形,所以AB=AC,∠ABC=∠ACB=60°,所以∠ABD=∠ACE=120°,在△ABD和△ACE中,{AB=AC∠ABD=∠ACE BD=CE,所以△ABD≌△ACE(SAS),所以∠D=∠E.(2022•怀化中考)如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【解析】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,因为MQ∥BC,所以∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,所以△AMQ是等边三角形,所以AM=QM,因为AM=CN,所以QM=CN,在△QMP和△CNP中,{∠QPM=∠CPN ∠QMP=∠N QM=CN,所以△QMP≌△CNP(AAS),所以MP=NP;(2)因为△AMQ是等边三角形,且MH⊥AC,所以AH=HQ,因为△QMP≌△CNP,所以QP=CP,所以PH=HQ+QP=12 AC,因为AB=a,AB=AC,所以PH=1 2 a(2022•杭州中考)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC 于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.(1)求证:CE=CM.(2)若AB=4,求线段FC的长.(2022•绥化中考)我们可以通过面积运算的方法,得到等腰三角形底边上的任意一点到两腰的距离之和与一腰上的高之间的数量关系,并利用这个关系解决相关问题.(1)如图一,在等腰△ABC 中,AB =AC ,BC 边上有一点D ,过点D 作DE ⊥AB 于E ,DF ⊥AC 于F ,过点C 作CG ⊥AB 于G .利用面积证明:DE +DF =CG .(2)如图二,将矩形ABCD 沿着EF 折叠,使点A 与点C 重合,点B 落在B '处,点G 为折痕EF 上一点,过点G 作GM ⊥FC 于M ,GN ⊥BC 于N .若BC =8,BE =3,求GM +GN 的长.(3)如图三,在四边形ABCD 中,E 为线段BC 上的一点,EA ⊥AB ,ED ⊥CD ,连接BD ,且AB CD =AE DE ,BC =√51,CD =3,BD =6,求ED +EA 的长.【解析】(1)连接AD ,因为S △ABC =S △ABD +S △ACD ,所以12×AB ×CG =12×AB ×DE +12×AC ×DF ,因为AB =AC ,所以DE +DF =CG ;(2)因为将矩形ABCD 沿着EF 折叠,使点A 与点C 重合,所以∠AFE =∠EFC ,AE =CE ,因为AD ∥BC ,所以∠AFE =∠CEF ,所以∠CEF =∠CFE ,所以CE =CF ,因为BC =8,BE =3,所以CE =AE =5,在Rt △ABE 中,由勾股定理得,AB =4,所以等腰△CEF 中,CE 边上的高为4, 由(1)知,GM +GN =4;(3)延长BA 、CD 交于G ,作BH ⊥CD 于H ,因为ABCD =AEDE ,∠BAE =∠EDC =90°,所以△BAE ∽△CDE ,所以∠ABE =∠C ,所以BG =CG ,所以ED +EA =BH ,设DH =x ,由勾股定理得,62﹣x 2=(√51)2﹣(x +3)2,解得x =1,所以DH =1, 所以BH =√BD 2−DH 2=√62−12=√35,所以ED +EA =√35.。
第23章 等腰三角形一、选择题1. (2011浙江省舟山,7,3分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33(C )34(D )36【答案】B2. (2011四川南充市,10,3分)如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( )(A )1个 (B )2个 (C )3个 (D )4个MECA【答案】D3. (2011浙江义乌,10,3分)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有 (第7题)A BCD EA .1个B .2个C .3个D .4个【答案】D4. (2011台湾全区,30)如图(十三),ΔABC 中,以B 为圆心,BC 长为半径画弧,分别交AC 、AB于D 、E 两点,并连接BD 、DE .若∠A =30∘,AB =AC ,则∠BDE 的度数为何?A . 45B . 52.5C . 67.5D . 75 【答案】C5. (2011台湾全区,34)如图(十六),有两全等的正三角形ABC 、DEF ,且D 、A 分别为△ABC 、△DEF 的重心.固定D 点,将△DEF 逆时针旋转,使得A 落在DE 上,如图(十七)所示.求图(十六)与图(十七)中,两个三角形重迭区域的面积比为何?A .2:1B . 3:2C . 4:3D . 5:4 【答案】C6. (2011山东济宁,3,3分)如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是A .15cmB .16cm ABCDEF GC .17cmD .16cm 或17cm 【答案】D7. (2011四川凉山州,8,4分)如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于( )A .1013 B .1513 C .6013 D .7513【答案】C二、填空题1. (2011山东滨州,15,4分)边长为6cm 的等边三角形中,其一边上高的长度为________.【答案】2. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 . 【答案】4或63. (2011浙江杭州,16,4)在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 .4. (2011浙江台州,14,5分)已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为【答案】80º5. (2011浙江省嘉兴,14,5分)如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = °.【答案】1106. (2011湖南邵阳,11,3分)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。
专题05 高分必刷题-等腰三角形、等边三角形压轴题真题(解析版)题型一:等腰三角形、等边三角形中的动点问题1.如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s 的速度由点B向C点运动,同时,点Q在线段AC上由点A向C点以4cm/s的速度运动.(1)若点P、Q两点分别从B、A两点同时出发,经过2秒后,△BPD与△CQP是否全等?请说明理由;(2)若点P、Q两点分别从B、A两点同时出发,△CPQ的周长为16cm,设运动时间为t,问:是否存在某一时刻t,使得△CPQ是等腰三角形?如存在,请求出t的值,若不存在,请说明理由.【解答】解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP =60°,又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM =∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=;∴当第秒或第秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠B=∠CAP=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△QCA(SAS)∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°2.如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B 同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.【解答】解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°,又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4﹣t,①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=;∴当第秒或第秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠B=∠CAP=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△QCA(SAS)∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°3.已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.(1)如图1,设点P的运动时间为t(s),那么t为何值时,△PBC是直角三角形;(2)若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.①如图2,设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?②如图3,连接PC,请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.【解答】解:(1)当△PBC是直角三角形时,∠B=60°,∠BPC=90°,所以BP=1.5cm,所以t=,(2)①∵∠DCQ=120°,当△DCQ是等腰三角形时,CD=CQ,∴∠PDA=∠CDQ=∠CQD=30°,∵∠A=60°,∴AD=2AP,∴2t+t=3,解得t=1(s);②相等,如图所示:作PE垂直AD,QG垂直AD延长线,则PE∥QG,∴∠G=∠AEP,在△EAP 和△GCQ,,∴△EAP≌△GCQ(AAS),∴PE=QG,∴△PCD和△QCD同底等高,所以面积相等.4.如图1,在平面直角坐标系中,直线AB分别交x轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a ﹣b)2+|a﹣4t|=0,且t>0,t是常数.直线BD平分∠OBA,交x轴于D点.(1)若AB的中点为M,连接OM交BD于N,求证:ON=OD;(2)如图2,过点A作AE⊥BD,垂足为E,猜想AE与BD间的数量关系,并证明你的猜想;(3)如图3,在x轴上有一个动点P(在A点的右侧),连接PB,并作等腰Rt△BPF,其中∠BPF=90°,连接F A并延长交y轴于G点,当P点在运动时,OG的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.【解答】(1)证明:∵直线AB分别交x 轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a﹣b)2+|a﹣4t|=0,且t>0,∴a=b=4t,当x=0时,y=4t,当y=0时,﹣x+4t=0,解得x=4t,∴点A、B的坐标是A(4t,0),B(0,4t),∴△AOB是等腰直角三角形,∵点M是AB的中点,∴OM⊥AB,∴∠MOA=45°,∵直线BD平分∠OBA,∴∠ABD=∠ABO=22.5°,∴∠OND=∠BNM=90°﹣∠ABD=90°﹣22.5°=67.5°,∠ODB=∠ABD+∠BAD=22.5°+45°=67.5°,∴∠OND=∠ODB,∴ON =OD(等角对等边);(2)答:BD=2AE.理由如下:延长AE交BO于C,∵BD平分∠OBA,∴∠ABD=∠CBD,∵AE⊥BD 于点E,∴∠AEB=∠CEB=90°,在△ABE≌△CBE中,,∴△ABE≌△CBE(ASA),∴AE=CE,∴AC=2AE,∵AE⊥BD,∴∠OAC+∠ADE=90°,又∠OBD+∠BDO=90°,∠ADE=∠BDO (对顶角相等),∴∠OAC=∠OBD,在△OAC与△OBD中,,∴△OAC≌△OBD(ASA),∴BD=AC,∴BD=2AE;(3)OG的长不变,且OG=4t.过F作FH⊥OP,垂足为H,∴∠FPH+∠PFH=90°,∵∠BPF=90°,∴∠BPO+∠FPH=90°,∴∠FPH=∠BPO,∵△BPF是等腰直角三角形,∴BP=FP,在△OBP与△HPF 中,,∴△OBP≌△HPF(AAS),∴FH=OP,PH=OB=4t,∵AH=PH+AP=OB+AP,OA=OB,∴AH=OA+AP=OP,∴FH=AH,∴∠GAO=∠F AH=45°,∴△AOG是等腰直角三角形,∴OG=OA=4t.5.如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q分别为AO、AB边上的动点,点P、点Q同时从点A出发,且当其中一点停止运动时,另一点也立即停止运动;若P以2个单位长度每秒的速度从点A向终点O运动,点Q以3个单位长度每秒的速度从点A向终点B运动,设运动时间为t,已知点A坐标为(a,b),且满足(a﹣6)2+|a﹣b|=0.(1)求A点坐标;(2)如图1,连接BP、OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形,若能,求运动时间t并直接写出四边形APDQ的面积:若不能,请说明理由.【解答】解:(1)∵(a﹣6)2+|a ﹣b|=0,又∵(a﹣6)2,≥0,|a﹣b|≥0,∴a=6,b=6∴点A(6,6).(2)如图1中,∵△AOB是等边三角形,点A(6,6),∴AO=BO=AB=12,∠AOB=∠ABO =60°=∠A,∵∠OCP=60°=∠AOB,∴∠AOB=∠QOB+∠AOQ=∠QOB+∠PBO=∠PCO,∴∠AOQ =∠PBO,且AO=BO,∠A=∠AOB,∴△AOQ≌△OBP(ASA),∴OP=AQ,∴12﹣2t=3t∴t=2.4∴当t=2.4时,∠OCP=60°.(3)如图2中,过点D作DF⊥AO,DE⊥AB,连接AD,∵△ABO是等边三角形,D是OB中点,点A(6,6),∴OD=BD=6,∠AOB =∠ABO=60°,AD=6,又∵∠DFO=∠DEB=90°,∴△ODF≌△BDE(AAS),∴OF=BE,DF=DE,∵AO=AB,∴AO﹣OF=AB﹣BE,∴AF=AE,∵DF=DE,PD=DQ,∴Rt△DFP≌Rt△DEQ(HL),∴PF=EQ,∵OD=6,∠AOD=60°,∠DFO=90°,∴∠ODF=30°∴OF=3,DF=OF=3,∴AF=AO﹣OF=9=AE,BE=OF=3,∵AP+AQ=AP+AE+EQ=AP+PF+AE=AF+AE=2AF,∴2t+3t=18∴t=3.6,∴当t=,3.6时,D,P,Q三点是能构成使∠PDQ=120°的等腰三角形,∵Rt△DFP≌Rt△DEQ,∴S△DFP=S△DEQ,∴S四边形APDQ=S四边形AFDQ=S△AOB﹣2S△OFD=×12×6﹣2××3×3=27.6.如图,在平面直角坐标系中,A(﹣3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长6.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接QD并延长,交y轴于点P,当点C运动到什么位置时,满足PD=DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【解答】解:(1)作∠DCH=10°,CH交BD的延长线于H,∵∠BAO=60°,∴∠ABO=30°,∴AB=2OA=6,∵∠BAO=60°,∠BCO=40°,∴∠ABC=180°﹣60°﹣40°=80°,∵BD是△ABC的角平分线,∴∠ABD=∠CBD=40°,∴∠CBD=∠DCB,∠OBD=40°﹣30°=10°,∴DB=DC,在△OBD和△HCD中,,∴△OBD≌△HCD(ASA),∴OB=HC,在△AOB和△FHC中,,∴△AOB≌△FHC(ASA),∴CF=AB=6,故答案为:6;(2)∵△ABD和△BCQ是等边三角形,∴∠ABD=∠CBQ=60°,∴∠ABC=∠DBQ,在△CBA和△QBD中,,∴△CBA≌△QBD(SAS),∴∠BDQ=∠BAC=60°,∴∠PDO =60°,∴PD=2DO=6,∵PD=DC,∴DC=9,即OC=OD+CD=12,∴点C的坐标为(12,0);(3)如图3,以OA为对称轴作等边△ADE,连接EP,并延长EP交x轴于点F.由(2)得,△AEP≌△ADB,∴∠AEP=∠ADB=120°,∴∠OEF=60°,∴OF=OA=3,∴点P在直线EF上运动,当OP⊥EF时,OP则OP的最小值为.最小,∴OP=OF=,7.等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B 分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.(1)如图(1),已知C点的横坐标为﹣1,直接写出点A的坐标;(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE;(3)如图(3),若点A在x轴上,且A(﹣4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连接CD交y轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度.【解答】解:(1)如图(1),过点C作CF⊥y轴于点F,∵CF⊥y轴于点F,∴∠CF A=90°,∠ACF+∠CAF=90°,∵∠CAB=90°,∴∠CAF+∠BAO=90°,∴∠ACF=∠BAO,在△ACF和△ABO中,,∴△ACF≌△ABO(AAS),∴CF=OA=1,∴A(0,1);(2)如图2,过点C作CG⊥AC交y轴于点G,∵CG⊥AC,∴∠ACG=90°,∠CAG+∠AGC=90°,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠AGC=∠ADO,在△ACG和△ABD中,,∴△ACG≌△ABD(AAS),∴CG=AD=CD,∠ADB=∠G,∵∠ACB=45°,∠ACG=90°,∴∠DCE=∠GCE=45°,在△DCE和△GCE中,,∴△DCE≌△GCE(SAS),∴∠CDE=∠G,∴∠ADB=∠CDE;(3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E.∵∠ABC=90°,∴∠CBE+∠ABO =90°.∵∠BAO+∠ABO=90°,∴∠CBE=∠BAO.∵∠CEB=∠AOB=90°,AB=AC,∴△CBE≌△BAO (AAS),∴CE=BO,BE=AO=4.∵BD=BO,∴CE=BD.∵∠CEP=∠DBP=90°,∠CPE=∠DPB,∴△CPE≌△DPB(AAS),∴BP=EP=2.8.如图,在△ABC中.AB=AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC于点F,D.(1)求证:△ABE≌△GFE;(2)若GD=3,CD=1,求AB的长度;(3)过点D作DH⊥BC于H,P是直线DH上的一个动点,连接AF,AP,FP,若∠C=45°,在(2)的条件下,求△AFP周长的最小值.【解答】(1)证明:如图1中,∵GD∥AB,∴∠B=∠EFG,在△ABE和△GFE中,,∴△ABE≌△GFE(AAS).(2)解:如图1中,∵AB=AC,∴∠B=∠ACB,∵DF∥AB,∴∠DFC=∠B,∴∠DFC=∠DCF,∴DC=DF=1,∵DG=3,∴FG=DG﹣DF=2,∵△ABE≌△GFE,∴AB=GF=2.(3)解:如图2中,∵AB=AC=2,∴∠B=∠C=45°,∴∠BAC=90°,∵AB∥FD,∴∠FDC=∠BAC =90°,即FD⊥AC∵AC=AB=2,CD=1,∴DA=DC,∴F A=FC,∴∠C=∠F AC=45°,∴∠AFC=90°,∴DF=DA=DC=1,∴AF=,∵DH⊥CF,∴FH=CH,∴点F与点C关于直线PD对称,∴当点P与D重合时,△P AF的周长最小,最小值=△ADF的周长=2+.9.如图,在平面直角坐标系中,点O为坐标原点,点A(0,3)与点B关于x轴对称,点C(n,0)为x轴的正半轴上一动点.以AC为边作等腰直角三角形ACD,∠ACD=90°,点D在第一象限内.连接BD,交x轴于点F.(1)如果∠OAC=38°,求∠DCF的度数;(2)用含n的式子表示点D的坐标;(3)在点C运动的过程中,判断OF的长是否发生变化?若不变求出其值,若变化请说明理由.【解答】解:(1)∵∠AOC=90°,∴∠OAC+∠ACO=90°,∵∠ACD=90°,∴∠DCF+∠ACO=90°,∴∠DCF=∠OAC,∵∠OAC=38°,∴∠DCF=38°;(2)如图,过点D作DH⊥x轴于H,∴∠CHD=90°∴∠AOC=∠CHD=90°,∵等腰直角三角形ACD,∠ACD=90°∴AC=CD,由(1)知,∠DCF=∠OAC,∴△AOC≌△CHD(AAS),∴OC=DH=n,AO =CH=3,∴点D的坐标(n+3,n);(3)不会变化,理由:∵点A(0,3)与点B关于x轴对称,∴AO=BO,又∵OC⊥AB,∴x轴是AB垂直平分线,∴AC=BC,∴∠BAC=∠ABC,又∵AC=CD,∴BC=CD,∴∠CBD=∠CDB,∵∠ACD=90°,∴∠ACB+∠DCB=270°,∴∠BAC+∠ABC+∠CBD+∠CDB=90°,∴∠ABC+∠CBD=45°,∵∠BOF=90°,∴∠OFB=45°,∴∠OBF=∠OFB=45°,∴OB=OF=3,∴OF的长不会变化.题型二:等腰三角形、等边三角形综合类压轴题10.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①∠AEB的度数为②猜想线段AD,BE之间的数量关系为:,并证明你的猜想.(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请求出∠AEB的度数及线段CM,AE,BE之间的数量关系.【解答】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴∠CEB=∠CDA=120°,∴∠AEB=60°,故答案为:60°;②AD=BE,证明:∵△ACD≌△BCE,∴AD=BE,故答案为:AD=BE;(2)∠AEB=90°,AE﹣BE=2CM,证明:∵△DCE是等腰直角三角形,CM是中线,∴CM=DM=EM=DE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴∠CDA=∠CEB,∵∠CDA=135°,∴∠AEB=135°﹣45°=90°,∴BE=AD,∴AE﹣AD=DE=2CM,∴AE﹣BE=2CM.11.如图1,已知△ABC和△EFC都是等边三角形,且点E在线段AB上.(1)求证:BF∥AC;(2)过点E作EG∥BC交AC于点G,试判断△AEG的形状并说明理由;(3)如图2,若点D在射线CA上,且ED=EC,求证:AB=AD+BF.【解答】(1)证明:∵△ABC和△EFC都是等边三角形,∴∠A=∠ABC=∠ACB=∠ECF=60°,AC=BC,CE=FC,∴∠ACE=∠BCF,在△ACE与△FCB中,,∴△ACE≌△FCB(SAS),∴∠A=∠CBF=60°,∵∠ABC=60°,∴∠A+∠ABC+∠CBF=180°,∴∠A+∠ABF=180°,∴AC∥BF;(2)解:△AEG是等边三角形,理由如下:如图1所示:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB =60°,∵EG∥BC,∴∠AEG=∠ABC=60°,∠AGE=∠ACB=60°,∴∠A=∠AEG=∠AGE=60°,∴△AEG是等边三角形;(3)证明:如图2,过E作EM∥BC交AC于M,则∠AEM=∠ABC=60°,∠AME=∠ACB=60°,∵∠A=∠ABC=∠ACB=60°,∴∠A=∠AEM=∠AME=60°,∴△AEM是等边三角形,∴AE=EM=AM,∴∠DAE=∠EMC=120°,∵DE=CE,∴∠D=∠MCE,在△ADE和△MCE中,,∴△ADE≌△MCE(AAS),∴AD=CM,∴AC=AM+CM,由(1)得△ACE≌△FCB,∴BF=AE,∴BF=AM,∴AC=BF+AD,∴AB=AD+BF.12.已知:△ABC为等边三角形,点E为射线AC上一点,点D为射线CB上一点,AD=DE.(1)如图1,当E在AC的延长线上且CE=CD时,求证:BD=CD;(2)如图2,当E在AC的延长线上时,AB+BD等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系,并证明.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC;(2)结论:AB+BD=AE,理由如下:如图2,在AB上取BH=BD,连接DH,∵BH=BD,∠B=60°,∴△BDH为等边三角形,AB﹣BH=BC﹣BD,即AH=DC,∴∠BHD=60°,BD=DH,∵AD=DE,∴∠E=∠CAD,∴∠BAC﹣∠CAD=∠ACB﹣∠E,即∠BAD=∠CDE,∵∠BHD=60°,∠ACB=60°,∴180°﹣∠BHD=180°﹣∠ACB,即∠AHD=∠DCE,在△AHD和△DCE,,∴△AHD≌△DCE(AAS),∴DH=CE,∴BD=CE,∴AE=AC+CE=AB+BD;(3)AB=BD+AE;如图3,在AB上取AF=AE,连接DF,∵△ABC为等边三角形,∴∠BAC=∠ABC=60°,∴△AFE是等边三角形,∴∠F AE=∠FEA=∠AFE=60°,∴EF∥BC,∴∠EDB=∠DEF,∵AD=DE,∴∠DEA=∠DAE,∴∠DEF =∠DAF,在△AFD和△EFD中,,∴△AFD≌△EFD(SSS),∴∠ADF=∠EDF,∠DAF=∠DEF,∴∠FDB=∠EDF+∠EDB,∠DFB=∠DAF+∠ADF,∵∠EDB=∠DEF,∴∠FDB=∠DFB,∴DB=BF,∵AB=AF+FB,∴AB=BD+AE.13.已知△ABC为等边三角形,取△ABC的边AB,BC中点D,E,连接DE,如图1,易证△DBE为等边三角形,将△DBE绕点B顺时针旋转,设旋转的角度∠ABD=α,其中0<α<180°.(1)如图2,当α=30°,连接AD,CE,求证:AD=CE;(2)在△DBE旋转过程中,当α超过一定角度时,如图3,连接AD,CE会交于一点,记交点为点F,AD 交BC于点P,CE交BD于点Q,连接BF,请问BF是否会平分∠CBD?如果是,求出α,如果不是,请说明理由;(3)在第(2)问的条件下,试猜想线段AF,BF和CF之间的数量关系,并说明理由.【解答】证明:(1)∵△ABC,△DBE都是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE;(2)不存在,理由如下:如图3,过点B作BN⊥AD于N,过点B作BH⊥CE于H,∵△ABC,△DBE都是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE =60°,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE,S△ABD=S△CBE,∠BAD =∠BCE,∴×AD×BN=×CE×BH,∴BN=BH,又∵BF=BF,∴Rt△BFN≌Rt△BFH(HL),∴∠AFB=∠EFB,∵∠BAD=∠BCE,∠CPF=∠APB,∴∠AFC=∠ABC=60°,∴∠AFB=∠EFB=60°,∴∠CFB=∠DFB=120°,当BF平分∠CBD时,则∠CBF=∠DBF,∴∠BCF=180°﹣∠CBF﹣∠CFB=180°﹣∠DBF﹣∠DFB=∠ADB,∴∠DAB=∠ADB,∴AB=DB,与题干DB=BC=AB相矛盾,∴BF不会平分∠CBD;(3)AF=CF+BF,理由如下:如图4,在AF上截取MF=BF,连接BM,∵∠AFB=60°,MF=FB,∴△MFB是等边三角形,∴MB=BF,∠MBF =∠ABC=60°,∴∠ABM=∠CBF,在△ABM和△CBF中,,∴△ABM≌△CBF(SAS),∴AM=CF,∵AF=AM+MF,∴AF=CF+BF.14.如图1,△ABC为等腰三角形,∠ABC=90°,点P在线段BC上(不与B、C重合),以点A为直角顶点作等腰直角△P AQ,且点Q在AP的左下方,过点Q作QE⊥AB于点E.(1)求证:△P AB≌△AQE;(2)连接CQ交AB于M,若PC=2PB,求的值.(3)如图2,过点Q作QF⊥AQ于AB的延长线于点F,过P点作DP⊥AP交AC于点D,连接DF,当点P在线段BC上运动时(不与B,C重合),式子的值会变化吗?若不变,求出该值;若变化,请说明理由.【解答】(1)证明:∵△ACB 为等腰三角形,∠ABC=90°,△P AQ是等腰直角三角形,QE⊥AB于E.∴AP=AQ,∠ABP=∠QEA=90°,∠QAE+∠BAP=∠BAP+∠APB=90°,∴∠QAE=∠APB,在△P AB和△AQE中,,∴△P AB≌△AQE(AAS);(2)解:∵△P AB≌△AQE,∴AE=PB,∵AB=CB,∴QE=CB.在△QEM和△CBM中,,∴△QEM≌△CBM(AAS),∴ME=MB,∵AB=CB,AE=PB,PC=2PB,∴BE=PC,∵PC=2PB,∴PC=2MB,∴=2;(3)解:式子的值不会变化,理由如下:过A作HA⊥AC交QF于点H,如图2所示:∵QA⊥AP,HA⊥AC,AP⊥PD,∴∠QAH+∠HAP=∠HAP+∠P AD=90°,∠AQH=∠APD=90°,∴∠QAH=∠P AD,∵△P AQ为等腰直角三角形,∴AQ=AP,在△AQH和△APD中,,∴△AQH≌△APD(ASA),∴AH=AD,QH=PD,∵HA⊥AC,∠BAC=45°,∴∠HAF=∠DAF,在△AHF和△ADF中,,∴△AHF≌△ADF(SAS),∴HF=DF,∴===1.15.如图1,在平面直角坐标系中,点A在y轴上,点B在x轴上,AB=AC,∠BAC=90°,CM⊥y轴,交y轴于点M.(1)求证∠ABO=∠CAM;(2)如图2,D,E为y轴上的两个点,BD=BE,BD⊥BE,求∠CEM的度数;(3)如图3,△P AQ是等腰直角三角形,∠P AQ为顶角,点Q在x轴负半轴上,连接CB,交y轴于点H,AC与x轴交于点G,连接PC,交AQ于点K,交x轴于点N,若CN=CM,NG=3,HM=2,求GH.【解答】(1)证明:∵∠BOA=90°,∴∠BAO+∠ABO=90°,又∵∠BAC=∠BAO+∠CAM=90°,∴∠ABO=∠CAM;(2)解:∵CM⊥y轴,∴∠AMC=∠BOA=90°,∵AB=AC,∠ABO=∠CAM,∴△AMC≌△BOA(AAS),∴CM=AO,AM=BO,∵BD=BE,BD⊥BE,∴△BDE是等腰直角三角形,∴∠BDE=∠BED=45°,∠EBO =∠DBE=45°,∴∠EBO=∠BEO,∴BO=EO=AM,∴EO﹣OM=AM﹣OM,∴EM=AO=CM,∴△CME是等腰直角三角形,∴∠CEM=45°;(3)解:∵AB=AC,∠BAC=90°,∴∠ACB=45°,∵△P AQ是等腰直角三角形,∴P A=QA,∠P AQ=∠CAB=90°,∴∠P AQ+∠QAC=∠CAB+∠QAC,即∠P AC=∠QAB,∵AC=AB,∴△P AC≌△QAB(SAS),∴∠APC=∠AQB,∵∠AKP=∠QKN,∴∠QNK=∠P AK=90°,∵CM⊥y轴,∴CM∥NO,∴∠NCM=∠KNO=90°,在ON的延长线上截取NI=MH,连接CI,如图3所示:∵CN=CM,∠CNI=∠CMH=90°,∴△CNI≌△CMH(SAS),∴∠NCI=∠MCH,CI=CH,∴∠NCG+∠NCI =∠NCG+∠MCH=∠NCM﹣∠GCH=90°﹣45°=45°=∠GCH=∠GCI,∴△GCI≌△GCH(SAS),∴GI =GH,∵GI=IN+NG=HM+NG=2+3=5,∴GH=5.16.如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,P A为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(3)如图3,已知点F坐标为(﹣2,﹣2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90°,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y 轴的负半轴上沿负方向运动时,以下两个结论:①m﹣n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.【解答】解:(1)过C 作CM⊥x轴于M点,如图1,∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°则∠MAC=∠OBA在△MAC和△OBA中,则△MAC≌△OBA(AAS),则CM=OA=2,MA=OB =4,则点C的坐标为(﹣6,﹣2);(2)过D作DQ⊥OP于Q点,如图2,则OP﹣DE=PQ,∠APO+∠QPD=90°∠APO+∠OAP=90°,则∠QPD=∠OAP,在△AOP和△PDQ中,则△AOP≌△PDQ(AAS),∴OP﹣DE=PQ=OA=2;(3)结论②是正确的,m+n=﹣4,如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则FS=FT=2,∠FHS=∠HFT=∠FGT,在△FSH和△FTG中,则△FSH≌△FTG(AAS),则GT=HS,又∵G(0,m),H(n,0),点F坐标为(﹣2,﹣2),∴OT═OS=2,OG=|m|=﹣m,OH=n,∴GT=OG﹣OT=﹣m﹣2,HS=OH+OS=n+2,则﹣2﹣m=n+2,则m+n=﹣4.17.如图,四边形OABC的位置在平面直角坐标系中如图所示,且A(0,a),B(b,a),C(b,0),又a,b满足﹣+b2+4b+8=0,点P在x轴上且横坐标大于b,射线OD是第一象限的一条射线,点Q在射线OD上,BP=PQ.并连接BQ交y轴于点M.(1)求点A,B,C的坐标为A、B、C.(2)当BP⊥PQ时,求∠AOQ的度数.(3)在(2)的条件下,若点P在x轴的正半轴上,且OP=3AM,试求点M的坐标.【解答】解:(1)∵﹣+b2+4b+8=0,∴﹣+(b﹣4)2=0,∴a=4,b=4,∴A(0,4),B(﹣4,4),C(﹣4,0),故答案为(0,4),(﹣4,4),(﹣4,0);(2)由(1)知,A(0,4),B(﹣4,4),C(﹣4,0),∴AB =BC=OC=OA=4,∴四边形OABC是菱形,∵∠AOC=90°,∴菱形OABC是正方形,过点Q作QN⊥x轴于N,∴∠PNQ=90°,∴∠QPN+∠PQN=90°,∵BP⊥BQ,∴∠BPQ=90°,∴∠BPC+∠QPN=90°,∴∠PQN=∠BPC,由(1)知,B(﹣4,4),C(﹣4,0),∴BC=4,BC⊥x,∴∠BCP=∠PNQ=90°,在△BCP和△PNQ中,,∴△BCP≌△PNQ(AAS),∴CP=QN,BC=PN,∴OC=PN=4,①当点P在x轴负半轴时,如图1、OC=CP+OP,PN=OP+ON,∴CP=ON,∵CP=QN,∴ON=QN,∵∠PNQ=90°,∴∠QON=45°,∴∠AOQ=45°,②当点P在x轴正半轴时,如图2、OC=CP﹣OP,PN=ON﹣OP,∴CP=ON,∵CP=QN,∴ON=QN,∵∠PNQ=90°,∴∠QON=45°,∴∠AOQ=45°,即:∠AOQ=45°;(3)如图2,过点Q作QN⊥x轴于N,设P(m,0)(m>0),∵OP=3AM,∴AM=OP=m,∴M(0,m+4),∵点B(﹣4,4),∴直线BM的解析式为y=mx+m+4,由(2)知,PN=OC=4,∴N(m+4,0),∴Q(m+4,m+4),∵点Q在直线BM上,∴m(m+4)+m+4=m+4,∴m=0(舍)或m=4,∴M(0,).。
“分类讨论”在等腰三角形中的应用在最近几年的全国各地中考试卷中,出现了以等腰三角形为背景,考查学生分类讨论能力的试题,为帮助同学们提高对此类问题的解题能力,现列举几例:一、要讨论谁是底边或腰长例1、已知一个等腰三角形的一边长为5,另一边长为7,则这个等腰三角形的周长()A. 12 B 17 C 19 D 17或19分析:题中并未说明5或7是底边,还是腰,应分情况讨论.解:当等腰三角形的一腰长为5时,此时7为底边,满足任意两边之和大于第三边,所以满足题意的三角形的周长为5+5+7=17;当等腰三角形的一腰长为7时,此时5为底边,也满足任意两边之和大于第三边,故满足题意的三角形的周长为7+7+5=19.综上知选D.例2、有一个等腰三角形,三边分别是3x-2,4x-3,6-2x,求等腰三角形的周长.分析:已知等腰三角形三边长,说明有两边相等,但不知谁是腰,必须分三种情况分析.解:(1)当3x-2=4x-3时,即x=1,则三边为1,1,4,由于1+1<4,所以不成立;(2)当3x-2=6-2x时,即85x=,则三边长为141714555、、,由于141417555+>,所以成立;(3)当4x-3=6-2x时,即x=1.5,则三边为2.5,3,3,由于2.5+3>3,所以成立.由上可知等腰三角形周长为9或8.5.说明:如果等腰三角形的腰长为A,底边长为B,则有222b b aa+<<.二、要讨论腰与底谁较大例3、一等腰三角形的周长为20cm,从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm,求腰长.分析:题目中的条件是一部分比另一部分长2cm,这里可能是腰比底长,也可能是底比腰长,应分两种情况讨论,因为是中线,周长分成的两部分之差就是腰长与底边长之差.解:不妨设腰长为x cm,底边长为y cm ,根据题意有(1)当腰长大于底边时,有2220x yx y-=⎧⎨+=⎩,解得221633x y==、;(2)当腰长小于底边时,有2220y xx y-=⎧⎨+=⎩,解得68x y==、;因为两种情形都符合三角形的三边关系定理,故腰长为223cm或6cm.说明:分类讨论后,要用三角形三边关系定理来判断所给三边能否构成三角形,从而避免造成错解.三、要讨论谁是底角或顶角例4、(1)等腰三角形的一个角是30°,求底角.(2)等腰三角形的一个角是100°,求底角.分析:等腰三角形的一个角可能指底角,也可能指顶角,须分情况讨论,但顶角可以是锐有、直角、钝角,而底角只能是锐角.解:(1)当30°是底角时,底角即为30°;当30°是顶角时,底角为180302︒-︒,即为75°;(2)因100°只能是顶角,所以底角是1801002︒-︒,即为40°.说明:等腰三角形的底角只能为锐角,不能为直角、钝角,但顶角可以为锐角、直角、钝角.四、要讨论高在三角形内部或外部例5、已知等腰三角形ABC中,BC边上的高12AD BC=,求∠BAC的度数.分析:题中未交代哪条边是底边,哪条边是腰,所以必须分三种情况讨论.解:(1)当BC为底边时,则D是BC中点,△ABC为等腰直角三角形∠BAC=90°;(2)当BC为腰,且高AD在△ABC内部时,1122AD BC AB==,∠B=30°,所以∠BAC=75°;(3)当BC为腰,且高AD在△ABC的外部时,1122AD BC AB==,∠DBA=30°;所以∠BAC=15°.综上所述∠BAC的度数可以为15°、75°、90°.说明:由于题目的图形未画出,因此考虑情况时要周全,不要出现漏解.试一试:1、在活动课上,小红已有两根长为4cm、8cm的小木棒,现打算拼一个等腰三角形,则小红应取的第三根小木棒长是_____Cm.2、在平面直角坐标系中,已知点为A(-2,0),B(2,0)画出等腰三角形ABC(画出一个即可),并写出你画出的ABC的顶点C的坐标.3、下面是数学课堂的一个学习片段,,阅读后, 请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手说:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°” ,还有一些同学也提出了不同的看法……(1)假如你也在课堂中,你的意见如何? 为什么?(2)通过上面数学问题的讨论, 你有什么感受? (用一句话表示)“分类讨论”在等腰三角形中的应用当面临的问题不宜用一种方法处理或同一种形式叙述时,我们就要想到“分类讨论”——“分而治之,各个击破”.下面就让“分类讨论”思想在等腰三角形中“大放光彩”吧!例1 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A、60°B、120°C、60°或150°D、60°或120°分析:分两种情况,①当顶角是锐角时,如图1,∵∠ABD=30°,∠ADB=90°,∴∠A=60°;②当顶角是钝角时,如图2,∵∠ABD=30°,∠ADB=90°,∴∠BAD=60°,∴∠BAC =120°.所以顶角度数为60°或120°,所以选D .例2 等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为( ) A 、7 B 、3 C 、5或3 D 、5分析:长为3的边可能是底边,也可能是腰,因此有两种情况,①若长为3的边为底边,则该等腰三角形的底边长为3; ②若长为3的边为腰,则该等腰三角形的底边长为(13-3)÷2=5.故选C .说明:边长为3的边、可能是底边,不要只认为它是腰.例3 已知点A 和点B ,以点A 和点B 为其中两个点作位置不同的等腰直角三角形,一共可以作出( )A 、2个B 、4个C 、6个D 、8个分析:如图3,以线段AB 为底边可作出两个等腰直角三角形,以AB 为腰可作出4个等腰直角三角形,因此,共可作出6个等腰直角三角形,故选C . 说明:解题时容易忽视为腰长的情况,因此,分析问题一定要用心,充分考虑各种情形. 例4 如图4,在等边△ABC 所在的平面内求一点P ,使△P AB 、△PBC 、△P AC 都是的等腰三角形,你能找到几个这样的点?画图描述它们的位置.分析:如图4,△ABC 三条边的垂直平分线的交点1p 满足条件,分别以点A 、点B 为圆心,AB 为半径画圆弧,交AC 的垂直平分线于2p 、3p 两点,则△、、、AC P BC P AB P 222∆∆、、、AC P BC P AB P 333∆∆也是等腰三角形,同样可以在AB 、BC 的垂直平分线上再找到4个点P ,使△P AB 、△PBC 、△P AC 是等腰三角形.所以共有7个点.画出的图形如图4.说明:此题乍一看只能确定在△ABC 内一点,关键要注意三个等腰三角形的腰是哪两条边.分类讨论探究题既是中考热点又是考生易错点,克服方法是解题时常提醒自己:“还有其它情况吗?”切记!…图1B 图2 图3B。
中考数学分类(含答案)等腰三角形一、选择题 1.(2010浙江宁波) 如图,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是△ABC 、△BCD 的角平分线, 则图中的等腰三角形有(A)5个 (B)4个 (C)3个 (D)2个【答案】A 2.(2010 浙江义乌)如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段PA =5,则线段PB 的长度为( ▲ )A .6B .5C .4D .3 【答案】B3.(2010江苏无锡)下列性质中,等腰三角形具有而直角三角形不一定具有的是 ( )A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C .有两个锐角的和等于90°D .内角和等于180° 【答案】B4.(2010 黄冈)如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13 B .12 C .23D .不能确定ABC DPE D CBA(第10题)第15题图 【答案】B . 5.(2010山东烟台)如图,等腰△ ABC 中,AB=AC ,∠A=20°。
线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于 A 、80° B 、 70° C 、60° D 、50°【答案】C6.(2010江西)已知等腰三角形的两条边长分别是7和3,则下列四个数中,第三条边的长是( )A .8B .7C . 4D .3【答案】B 7.(2010湖北武汉)如图,△ABC 内有一点D ,且DA=DB=DC ,若∠DAB=20°,∠DAC=30°,则∠BDC 的大小是( )DA.100°B.80°C.70°D.50° 【答案】A 8.(2010山东威海)如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点, 连接BD .若BD 平分∠ABC ,则下列结论错误的是A .BC =2BEADBEB .∠A =∠EDAC .BC =2AD D .BD ⊥AC 【答案】C9.(2010 湖南株洲)如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是 A .6B .7C .8D .9【答案】C 10.(2010云南楚雄)已知等腰三角形的一个内角为70°,则另外两个内角的度数是( )A .55°,55° B.70°,40° C .55°,55°或70°,40° D .以上都不对 【答案】C 11.(2010湖北随州)如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13 B .12 C .23D .不能确定第15题图【答案】B12.(2010湖北襄樊)已知:一等腰三角形的两边长x 、y 满足方程组2-3,328,x y x y =⎧⎨+=⎩则此等腰三角形的周长为( )A .5B .4C .3D .5或4 【答案】A 13.(2010 山东东营)如图,点C 是线段AB 上的一个动点,△ACD 和△BCE 是在ABB A第8题图 C同侧的两个等边三角形,DM ,EN 分别是△ACD 和△BCE 的高,点C 在线段AB 上沿着从点A 向点B 的方向移动(不与点A ,B 重合),连接DE ,得到四边形DMNE .这个四边形的面积变化情况为( )(A )逐渐增大 (B) 逐渐减小 (C) 始终不变 (D) 先增大后变小【答案】C 14.(2010 广东汕头)如图,把等腰直角△ABC 沿BD 折叠,使点A 落在边BC 上的点E 处.下面结论错误的是( )A .AB =BE B .AD =DC C .AD =DE D .AD =EC【答案】B15.(2010 重庆江津)已知:△ABC 中,AB=AC=x ,BC=6,则腰长x 的 取值范围是( )A .03x <<B .3x >C .36x <<D .6x >【答案】B16.(2010 重庆江津)如图,在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF .下列结论中正确的个数有( )①45EAF ∠=︒ ②△ABE ∽△ACD ③EA 平分CEF ∠ ④222BE DC DE +=A .1个B .2个C .3个D .4个【答案】C 17.(2010广东茂名)如图,吴伯伯家有一块等边三角形的空地ABC ,已知点E 、F 分别是边AB 、AC 的中点,量得EF =5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是A 、15米B 、20米C 、25米D 、30米 【答案】C 18.(2010广东深圳)如图1,△ABC 中,AC=AD=BD ,∠DAC=80°。
中考数学复习《等腰三角形》测试题(含答案)一、选择题(每题6分,共30分)1.[2016·中考预测]等腰三角形的一个内角是80°,则它的顶角的度数是(B) A.80°B.80°或20°C.80°或50°D.20°2.[2015·内江]如图23-1,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为(A) A.40°B.45°C.60°D.70°【解析】∵AE∥BD,∴∠CBD=∠E=35°,图23-1∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°-70°×2=40°.3.[2015·黄石]如图23-2,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=(B)A.36°B.54°图23-2 C.18°D.64°【解析】∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°,∵BD⊥AC,∴∠ABD=90°-36°=54°.4.如图23-3,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为(D)A.6 B.7C.8 D.9【解析】∵∠ABC,∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB.∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠ECN,∴BM=ME,EN=CN.∵MN=ME+EN,∴MN=BM+CN.∵BM+CN=9,∴MN=9,故选D.5.[2015·遂宁]如图23-4,在△ABC中,AC=4 cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7 cm,则BC的长为(C)A.1 cm B.2 cmC.3 cm D.4 cm【解析】∵MN是线段AB的垂直平分线,∴AN=BN,∵△BCN的周长是7 cm,∴BN+NC+BC=7(cm),图23-3图23-4∴AN +NC +BC =7(cm),∵AN +NC =AC ,∴AC +BC =7(cm), 又∵AC =4 cm ,∴BC =7-4=3(cm). 二、填空题(每题6分,共30分)6.[2014·丽水]如图23-5,在△ABC 中,AB =AC ,AD ⊥BC 于点D .若AB =6,CD =4,则△ABC 的周长是__20__.7.[2015·绍兴]由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图23-6①,衣架杆OA =OB =18 cm ,若衣架收拢时,∠AOB =60°,如图23-6②,则此时A ,B 两点之间的距离是__18__cm.图23-6【解析】 ∵OA =OB ,∠AOB =60°, ∴△AOB 是等边三角形, ∴AB =OA =OB =18 cm.8.[2015·乐山]如图23-7,在等腰三角形ABC 中,AB =AC ,DE 垂直平分AB ,已知∠ADE =40°,则∠DBC =__15__°. 【解析】 ∵DE 垂直平分AB , ∴AD =BD ,∠AED =90°,∴∠A =∠ABD , ∵∠ADE =40°,图23-5图23-7∴∠A=90°-40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C =12(180°-∠A)=65°,∴∠DBC=∠ABC-∠ABD=65°-50°=15°.9.[2014·益阳]如图23-8,将等边△ABC绕顶点A沿顺时针方向旋转,使边AB 与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是__60°__.图23-8 图23-910.如图23-9,在等边△ABC中,AB=6,点D是BC的中点.将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为__33__.三、解答题(共8分)11.(8分)[2014·衡阳]如图23-10在△ABC中,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:△BED≌△CFD.图23-10证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC.又∵BD=CD,∴△BED≌△CFD(AAS).12.(8分)如图23-11,点D,E在△ABC的边BC上,连结AD,AE.①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作图23-11为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答)__①②⇒③;①③⇒②;②③⇒①__;(2)请选择一个真命题进行证明.(先写出所选命题,然后证明)解:(2)选择①③⇒②,∵AB=AC,∴∠B=∠C,又∵BD=CE,∴△ABD≌△ACE,∴AD=AE.13.(12分)[2015·南充]如图23-12,△ABC中,AB=AC,AD⊥BC,CE⊥AB,垂足分别为D,E,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.图23-12证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B,在△AEF 与△CEB 中, ⎩⎪⎨⎪⎧∠AFE =∠B ,∠AEF =∠CEB ,AE =CE ,∴△AEF ≌△CEB (AAS ); (2)∵AB =AC ,AD ⊥BC , ∴BC =2CD , ∵△AEF ≌△CEB , ∴AF =BC , ∴AF =2CD .14.(12分)[2015·铜仁]已知,如图23-13,点D 在等边三角形ABC 的边AB 上,点F 在边AC 上,连结DF 并延长交BC 的延长线于点E ,EF =FD . 求证:AD =CE .图23-13证明:如答图所示,作DG ∥BC 交AC 于G ,则∠DGF =∠ECF ,在△DFG 和△EFC 中,第14题答图⎩⎪⎨⎪⎧∠DGF =∠ECF ,∠DFG =∠EFC ,FD =EF ,∴△DFG ≌△EFC (AAS ), ∴GD =CE ,∵△ABC 是等边三角形, ∴∠A =∠B =∠ACB =60°, ∵DG ∥BC ,∴∠ADG =∠B ,∠AGD =∠ACB , ∴∠A =∠ADG =∠AGD , ∴△ADG 是等边三角形, ∴AD =GD , ∴AD =CE .。
中考数学复习考点知识与题型专题讲解专题22等腰三角形【知识要点】等腰三角形概念:有两边相等的三角形角等腰三角形。
等腰三角形性质:1:等腰三角形的两个底角相等(简写成“等边对等角”)2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
(三线合一)等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”). 等边三角形概念:三条边都相等的三角形,叫等边三角形。
它是特殊的等腰三角形。
等边三角形性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60º。
(2)三个角都相等的三角形是等边三角形。
(3)有一个角是60º的等腰三角形是等边三角形。
(4)在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。
(补充:(1)三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
(2)三角形三个边的中垂线交于一点,并且这一点到三个顶点的距离相等。
(3)常用辅助线:①三线合一;②过中点做平行线【考查题型】考查题型一等腰三角形的定义【解题思路】考查等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.典例1.(2021·贵州黔南布依族苗族自治州·中考真题)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A.9B.17或22C.17D.22变式1-1.(2021·广西玉林市·中考真题)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35度方向,B岛在A岛的北偏东80度方向,C岛在B岛的北偏西55度方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形变式1-2.(2021·青海中考真题)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°变式1-3.(2021·湖南张家界市·中考真题)已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为()A .2B .4C .8D .2或4考查题型二 根据等边对等角求角度典例2.(2021·广西中考真题)如图,AB 是⊙O 的弦,AC 与⊙O 相切于点A ,连接OA ,OB ,若∠O =130°,则∠BAC 的度数是( )A .60°B .65°C .70°D .75°变式2-1.(2021·甘肃兰州市·中考真题)如图,//AB CD ,AD CD =,165∠=︒,则2∠的度数是()A .50︒B .60︒C .65︒D .70︒变式2-2.(2021·山东临沂市·中考真题)如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒变式2-3.(2021·浙江温州市·中考真题)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作□BCDE,则∠E的度数为()A.40°B.50°C.60°D.70°考查题型三根据三线合一求解典例3.(2021·广东深圳市·中考真题)如图,已知AB=AC,BC=6,尺规作图痕迹可求出BD=()A.2B.3C.4D.5变式3-1.(2021·铜仁市·中考真题)已知等边三角形一边上的高为)A.2B.3C.4D.变式3-2.(2021·四川中考真题)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P 为该平面内一动点,且满足PC=2,则PM的最小值为()A.2B.﹣2C.+2D.考查题型四格点中画等腰三角形典例4在如图所示的网格纸中,有A、B两个格点,试取格点C,使得△ABC是等腰三角形,则这样的格点C的个数是()A.4B.6C.8D.10变式4-1.(2021·山东枣庄市一模)如图,A、B是4×5网格中的格点,网格中的每个小正方形的边长都是1,图中使以A、B、C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个变式4-2.如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若△ABC为等腰三角形,且S△ABC=1.5,则满足条件的格点C有()A.1个B.2个C.3个D.4个考查题型五根据等角对等边证明等腰三角形典例5.要使得△ABC是等腰三角形,则需要满足下列条件中的()A.∠A=50°,∠B=60°B.∠A=50°,∠B=100°C.∠A+∠B=90°D.∠A+12∠B=90°变式5-1.(2021·无锡市模拟)下列能断定△ABC为等腰三角形的是()A.∠A=40°,∠B=50°B.∠A=2∠B=70°C.∠A=40°,∠B=70°D.AB=3,BC=6,周长为14变式5-2.如图,在△ABC 中,AB=AC,BO、CO 分别平分∠ABC、∠ACB,DE 经过点O,且DE∥BC,DE 分别交AB、AC 于D、E,则图中等腰三角形的个数为( )A .2B .3C .4D .5考查题型六 根据等角对等边求边长典例6.(2021·山东青岛市·中考真题)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点.O 若5AE =,3BF =,则AO 的长为()A C ..变式6-1.(2021·山东济宁市·中考真题)一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛在海岛A 的北偏西42°方向上,在海岛B 的北偏西84°方向上.则海岛B 到灯塔C 的距离是()A .15海里B .20海里C .30海里D .60海里变式6-2.(2021·河北九年级其他模拟)如图,在▱ABCD 中,AB =8,BC =5,以点A 为圆心,以任意长为半径作弧,分别交AD 、AB 于点P 、Q ,再分别以P 、Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠DAB 内交于点M ,连接AM 并延长交CD 于点E ,则CE 的长为( )A .3B .5C .2D .6.5考查题型七 等腰三角形性质与判定的综合典例7.(2021·浙江绍兴市·中考真题)问题:如图,在△ABD 中,BA =BD .在BD 的延长线上取点E ,C ,作△AEC ,使EA =EC ,若∠BAE =90°,∠B =45°,求∠DAC 的度数.答案:∠DAC =45°思考:(1)如果把以上“问题”中的条件“∠B =45°”去掉,其余条件不变,那么∠DAC 的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B =45°”去掉,再将“∠BAE =90°”改为“∠BAE =n °”,其余条件不变,求∠DAC 的度数.变式7-1.(2021·江苏淮安市·中考真题)如图,三条笔直公路两两相交,交点分别为A 、B 、C ,测得30CAB ∠=︒,45ABC ∠=︒,8AC =千米,求A 、B 两点间的距离.(参考数据: 1.4≈,1.7≈,结果精确到1千米).变式7-2.(2021·辽宁鞍山市·中考真题)图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN 为立柱的一部分,灯臂AC ,支架BC 与立柱MN 分别交于A ,B 两点,灯臂AC 与支架BC 交于点C ,已知60MAC ∠=︒,15ACB ∠=︒,40cm AC =,求支架BC 的长.(结果精确到1cm ,参考1.414≈ 1.732≈2.449≈)考查题型八 等边三角形的性质典例8.(2021·福建中考真题)如图,面积为1的等边三角形ABC 中,,,D E F 分别是AB ,BC ,CA 的中点,则DEF ∆的面积是()A .1B .12C .13D .14变式8-1.(2021·山西中考真题)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为4cm ,圆心角为60︒,则图中摆盘的面积是()A .280cm πB .240cm πC .224cm πD .22cm π变式8-2.(2021·甘肃天水市·中考真题)如图,等边OAB 的边长为2,则点B 的坐标为()1,1B.C.D.A.()考查题型九等边三角形的性质与判定的综合典例9.(2021·内蒙古中考真题)如图,一个人骑自行车由A地到C地途经B地当他由A地出发时,发现他的北偏东45︒方向有一电视塔P,他由A地向正北方向骑行了到达B地,发现电视塔P在他北偏东75︒方向,然后他由B地向北偏东15︒方向骑行了6km到达C地.(1)求A地与电视塔P的距离;(2)求C地与电视塔P的距离.变式9-1.(2021·内蒙古鄂尔多斯市·中考真题)(1)(操作发现)如图1,在边长为1个单位长度的小正方形组成的网格中,ABC的三个顶点均在格点上.①请按要求画图:将ABC绕点A顺时针方向旋转90°,点B的对应点为点B',点C的对应点为点C'.连接BB';∠AB B=°.②在①中所画图形中,'(2)(问题解决)如图2,在Rt ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE ,连接DE ,求∠ADE 的度数.(3)(拓展延伸)如图3,在四边形ABCD 中,AE ⊥BC ,垂足为E ,∠BAE =∠ADC ,BE =CE =1,CD =3,AD =kAB (k 为常数),求BD 的长(用含k 的式子表示).考查题型十 含30°角的直角三角形典例10.(2021·海南中考真题)如图,在Rt ABC 中, 90,30,1,C ABC AC cm ∠=︒∠=︒=将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连接BB ',则BB '的长度是( )A .1cmB .2cmCD .变式10-1.(2021·湖北中考真题)如图,点,,,A B C D 在O 上,OA BC ⊥,垂足为E .若30ADC ∠=︒,1AE =,则BC =( )A .2B .4C .11 / 11 变式10-2.(2021·山东枣庄市·中考真题)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB ∆绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是()A.(1,2-+ B.() C.(2+D.(-。
等腰三角形与直角三角形(共26道)一、单选题1(2023·江苏徐州·统考中考真题)如图,在△ABC中,∠B=90°,∠A=30°,BC=2,D为AB的中点.若点E在边AC上,且ADAB=DEBC,则AE的长为()A.1B.2C.1或32D.1或22(2023·甘肃兰州·统考中考真题)如图,在矩形ABCD中,点E为BA延长线上一点,F为CE的中点,以B为圆心,BF长为半径的圆弧过AD与CE的交点G,连接BG.若AB=4,CE=10,则AG= ()A.2B.2.5C.3D.3.53(2023·北京·统考中考真题)如图,点A、B、C在同一条线上,点B在点A,C之间,点D,E在直线AC同侧,AB<BC,∠A=∠C=90°,△EAB≌△BCD,连接DE,设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>a2+b2;③2a+b>c;上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③4(2023·江苏无锡·统考中考真题)如图△ABC中,∠ACB=90°,AB=4,AC=x,∠BAC=α,O为AB中点,若点D为直线BC下方一点,且△BCD与△ABC相似,则下列结论:①若α=45°,BC与OD相交于E,则点E不一定是△ABD的重心;②若α=60°,则AD的最大值为27;③若α=60°,△ABC∽△CBD,则OD的长为23;④若△ABC∽△BCD,则当x=2时,AC+CD取得最大值.其中正确的为()A.①④B.②③C.①②④D.①③④5(2023·浙江·统考中考真题)如图,在四边形ABCD中,AD∥BC,∠C=45°,以AB为腰作等腰直角三角形BAE,顶点E恰好落在CD边上,若AD=1,则CE的长是()A.2B.2C.2D.126(2023·四川眉山·统考中考真题)如图,在正方形ABCD中,点E是CD上一点,延长CB至点F,使BF=DE,连结AE,AF,EF,EF交AB于点K,过点A作AG⊥EF,垂足为点H,交CF于点G,连结HD,HC.下列四个结论:①AH=HC;②HD=CD;③∠FAB=∠DHE;④AK⋅HD=2HE2.其中正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题7(2023·湖南·统考中考真题)七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4dm的正方形纸板制作了一副七巧板(如图),由5个等腰直角三角形,1个正方形和1个平行四边形组成.则图中阴影部分的面积为dm3.8(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.9(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.10(2023·湖北·统考中考真题)如图,△BAC ,△DEB 和△AEF 都是等腰直角三角形,∠BAC =∠DEB =∠AEF =90°,点E 在△ABC 内,BE >AE ,连接DF 交AE 于点G ,DE 交AB 于点H ,连接CF .给出下面四个结论:①∠DBA =∠EBC ;②∠BHE =∠EGF ;③AB =DF ;④AD =CF .其中所有正确结论的序号是.11(2023·山东·统考中考真题)如图,△ABC 是边长为6的等边三角形,点D ,E 在边BC 上,若∠DAE =30°,tan ∠EAC =13,则BD =.12(2023·山东日照·统考中考真题)如图,矩形ABCD 中,AB =6,AD =8,点P 在对角线BD 上,过点P 作MN ⊥BD ,交边AD ,BC 于点M ,N ,过点M 作ME ⊥AD 交BD 于点E ,连接EN ,BM ,DN .下列结论:①EM =EN ;②四边形MBND 的面积不变;③当AM :MD =1:2时,S △MPE =9625;④BM +MN+ND 的最小值是20.其中所有正确结论的序号是.13(2023·四川遂宁·统考中考真题)如图,以△ABC的边AB、AC为腰分别向外作等腰直角△ABE、△ACD,连结ED、BD、EC,过点A的直线l分别交线段DF、BC于点M、N,以下说法:①当AB=AC= BC时,∠AED=30°;②EC=BD;③若AB=3,AC=4,BC=6,则DE=23;④当直线l⊥BC时,点M为线段DE的中点.正确的有.(填序号)14(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B 分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为15(2023·江苏苏州·统考中考真题)如图,∠BAC=90°,AB=AC=32.过点C作CD⊥BC,延长CD,连接AE,ED.若ED=2AE,则BE=.(结果保留根号)CB到E,使BE=1316(2023·山西·统考中考真题)如图,在四边形ABCD中,∠BCD=90°,对角线AC,BD相交于点O.若AB=AC=5,BC=6,∠ADB=2∠CBD,则AD的长为.17(2023·湖北十堰·统考中考真题)在某次数学探究活动中,小明将一张斜边为4的等腰直角三角形ABC∠A=90°硬纸片剪切成如图所示的四块(其中D,E,F分别为AB,AC,BC的中点,G,H分别为DE,BF的中点),小明将这四块纸片重新组合拼成四边形(相互不重叠,不留空隙),则所能拼成的四边形中周长的最小值为,最大值为.三、解答题18(2023·北京·统考中考真题)在△ABC中、∠B=∠C=α0°<α<45°,AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图1,当点E在线段AC上时,求证:D是MC的中点;(2)如图2,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.19(2023·黑龙江·统考中考真题)如图①,△ABC和△ADE是等边三角形,连接DC,点F,G,H分别是DE,DC和BC的中点,连接FG,FH.易证:FH=3FG.若△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,如图②:若△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,如图③:其他条件不变,判断FH和FG之间的数量关系,写出你的猜想,并利用图②或图③进行证明.20(2023·黑龙江齐齐哈尔·统考中考真题)综合与实践数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:,∠BDC=°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:;(4)实践应用:正方形ABCD中,AB=2,若平面内存在点P满足∠BPD=90°,PD=1,则S△ABP=.21(2023·四川成都·统考中考真题)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且ADBD=1n(n为正整数),E是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=22AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明)【拓展运用】(3)如图3,连接EF,设EF的中点为M.若AB=22,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).22(2023·吉林长春·统考中考真题)如图①.在矩形ABCD.AB=3,AD=5,点E在边BC上,且BE=2.动点P从点E出发,沿折线EB-BA-AD以每秒1个单位长度的速度运动,作∠PEQ=90°,EQ交边AD或边DC于点Q,连续PQ.当点Q与点C重合时,点P停止运动.设点P的运动时间为t 秒.(t>0)(1)当点P和点B重合时,线段PQ的长为;(2)当点Q和点D重合时,求tan∠PQE;(3)当点P在边AD上运动时,△PQE的形状始终是等腰直角三角形.如图②.请说明理由;(4)作点E关于直线PQ的对称点F,连接PF、QF,当四边形EPFQ和矩形ABCD重叠部分图形为轴对称四边形时,直接写出t的取值范围.23(2023·甘肃武威·统考中考真题)【模型建立】(1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.①求证:AE=CD;②用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型应用】(2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型迁移】(3)在(2)的条件下,若AD=42,BD=3CD,求cos∠AFB的值.24(2023·重庆·统考中考真题)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB =4,直接写出PQ+QF的最小值.25(2023·湖南岳阳·统考中考真题)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是,MN与AC的位置关系是.特例研讨:(2)如图2,若∠BAC=90°,BC=42,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.(1)求∠BCF的度数;(2)求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.。
第23章 等腰三角形一、选择题1. (2011浙江省舟山,7,3分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33(C )34(D )36【答案】B2. (2011四川南充市,10,3分)如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( ) (A )1个 (B )2个 (C )3个 (D )4个【答案】D3. (2011浙江义乌,10,3分)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有MECA(第7题)ABCD EA.1个B.2个C.3个D.4个【答案】D4. (2011台湾全区,30)如图(十三),ΔABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D 、E两点,并连接BD、DE.若∠A=30∘,AB=AC,则∠BDE的度数为何?A.45 B.52.5 C.67.5 D.75【答案】C5. (2011台湾全区,34)如图(十六),有两全等的正三角形ABC、DEF,且D、A分别为△ABC、△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在DE上,如图(十七)所示.求图(十六)与图(十七)中,两个三角形重迭区域的面积比为何?A.2:1 B.3:2 C.4:3 D.5:4【答案】C6. (2011山东济宁,3,3分)如果一个等腰三角形的两边长分别是5cm和6cm,那么此三角形的周长是A.15cm B.16cmABCDEFGC .17cmD .16cm 或17cm 【答案】D7. (2011四川凉山州,8,4分)如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于( ) A .1013 B .1513 C .6013 D .7513【答案】C二、填空题1. (2011山东滨州,15,4分)边长为6cm 的等边三角形中,其一边上高的长度为________.【答案】2. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 . 【答案】4或63. (2011浙江杭州,16,4)在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 .4. (2011浙江台州,14,5分)已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为【答案】80º5. (2011浙江省嘉兴,14,5分)如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角△BCD= °.【答案】1106. (2011湖南邵阳,11,3分)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。
【答案】80°。
提示:∠A=180°-2×50°=80°。
7. (2011山东济宁,15,3分)如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两个动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FGAF= .【答案】128. (2011湖南怀化,13,3分)如图6,在△ABC 中,AB=AC ,∠BAC 的角平分线交BC 边于点D ,AB=5,BC=6,则AD=__________________.GFE CBA第15题D(第14题)ABCD【答案】49. (2011四川乐山16,3分)如图,已知△AOB=α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1 B 2= B 1 A 2,连结A 2 B 2…按此规律上去,记△A 2 B 1 B 2=1θ,△3232A B B θ=,…,△n+11A n n n B B θ+= 则⑴1θ= ; ⑵n θ= 。
【答案】△2180α+︒ ⑵()nn 218012α+︒⋅- 10.(2011湖南邵阳,11,3分)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。
【答案】80°。
11. (2011贵州贵阳,15,4分)如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推直到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成的图形的面积为______.(第15题图)【答案】31212. (2011广东茂名,14,3分)如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG =CD ,DF =DE ,则∠E = 度.【答案】15三、解答题1. (2011广东东莞,21,9分)如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =EF =9,∠BAC =∠DEF =90°,固定△ABC ,将△EFD 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE 、DF (或它们的延长线)分别交BC (或它的延长线)于G 、H 点,如图(2). (1)问:始终与△AGC 相似的三角形有 及 ;(2)设CG =x ,BH =y ,求y 关于x 的函数关系式(只要求根据2的情况说明理由); (3)问:当x 为何值时,△AGH 是等腰三角形?【解】(1)△HGA 及△HAB ; (2)由(1)可知△AGC ∽△HAB∴CG ACAB BH=,即99x y =, 所以,81y x =(3)当CG <12BC 时,∠GAC=∠H <∠HAC ,∴AC <CH∵AG <AC ,∴AG <GH 又AH >AG ,AH >GH此时,△AGH 不可能是等腰三角形;当CG=12BC 时,G 为BC 的中点,H 与C 重合,△AGH 是等腰三角形; 此时,GC=922,即x=922当CG >12BC 时,由(1)可知△AGC ∽△HGA所以,若△AGH 必是等腰三角形,只可能存在AG=AH 若AG=AH ,则AC=CG ,此时x=9 综上,当x=9或922时,△AGH 是等腰三角形. 2. (2011山东德州19,8分)如图 AB =AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O .(1)求证AD =AE ;(2) 连接OA ,BC ,试判断直线OA ,BC 的关系并说明理由.【答案】(1)证明:在△ACD 与△ABE 中, ∵∠A =∠A ,∠ADC =∠AEB =90°,AB =AC ,ABCEDO△ △ACD △△ABE .…………………… 3分 ∴ AD=AE . ……………………4分 (2) 互相垂直 ……………………5分 在Rt △ADO 与△AEO 中, ∵OA=OA ,AD=AE ,△ △ADO ≌△AEO . ……………………………………6分 △ △DAO =△EAO .即OA 是△BAC 的平分线. ………………………………………7分 又∵AB =AC ,△ OA △BC . ………………………………………8分3. (2011山东日照,23,10分)如图,已知点D 为等腰直角△ABC 内一点,△CAD =△CBD =15°,E 为AD 延长线上的一点,且CE =CA . (1)求证:DE 平分△BDC ; (2)若点M 在DE 上,且DC=DM , 求证: ME=BD .【答案】(1)在等腰直角△ABC 中, △∠CAD =∠CBD =15o , ∴∠BAD =∠ABD =45o -15o =30o , ∴BD=AD ,∴△BDC ≌△ADC , ∴∠DCA =∠DCB =45o .由∠BDM =∠ABD+∠BAD =30o +30o =60o , ∠EDC=∠DAC +∠DCA =15o +45o =60o , ∴∠BDM =∠EDC , ∴DE 平分∠BDC ; (2)如图,连接MC , ∵DC=DM ,且∠MDC =60°,∴△MDC 是等边三角形,即CM=CD .ABECDO又∵∠EMC =180°-∠DMC =180°-60°=120°, ∠ADC =180°-∠MDC =180°-60°=120°, ∴∠EMC =∠ADC . 又∵CE=CA ,∴∠DAC =∠CEM =15°,∴△ADC ≌△EMC ,∴ME=AD=DB .4. (2011湖北鄂州,18,7分)如图,在等腰三角形ABC 中,∠ABC=90°,D 为AC 边上中点,过D 点作DE ⊥DF ,交AB 于E ,交BC 于F ,若AE=4,FC=3,求EF 长.【答案】连结BD ,证△BED ≌△CFD 和△AED ≌△BFD ,求得EF=55. (2011浙江衢州,23,10分)ABC ∆是一张等腰直角三角形纸板,Rt 2C AC BC ∠=∠==,.要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积更大?请说明理由.第18题图BAEDF C(第23题)(第23题图1)PNDFEB CCBQM图1中甲种剪法称为第1次剪取,记所得的正方形面积为1S ;按照甲种剪法,在余下的ADE BDF ∆∆和中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为2S (如图2),则2=S ;再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形的面积和为3S (如图3);继续操作下去…则第10次剪取时,10S = . 求第10次剪取后,余下的所有小三角形的面积和.【答案】(1)解法1:如图甲,由题意得,1,1CFDE AE DE EC EC S ====正方形即.如图乙,设MN x =,则由题意,得,AM MQ PN NB MN x =====2338(39PNMQ x x S ∴==∴==正方形解得又819>∴甲种剪法所得的正方形的面积更大说明:图甲可另解为:由题意得点D 、E 、F 分别为AB AC BC 、、的中点,112ABCCFDE S S ==正方形解法2:如图甲,由题意得AE DE EC ==,即EC=1如图乙,设,MN x AM MQ QP PN NB MN x =======则由题意得32213x x EC MN ∴==>>解得又即∴甲种剪法所得的正方形的面积更大(2)212S =(3)10912S =(3)解法1:探索规律可知:112n n S -=‘剩余三角形的面积和为:()12109911112212422S S S ⎛⎫-+++=-++++= ⎪⎝⎭ 解法2:由题意可知,第一次剪取后剩余三角形面积和为112=1=S S -第二次剪取后剩余三角形面积和为12211122S S S -=-== 第三次剪取后剩余三角形面积和为233111244S S S -=-==…第十次剪取后剩余三角形面积和为9101091=2S S S -=6. (2011浙江绍兴,23,12分)数学课上,李老师出示了如下框中的题目.小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论: AE DB (填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE DB (填“>”,“<”或“=”).理由如下:如图2,过点E 作//EF BC ,交AC 于点F . (请你完成以下解答过程)ADD(3)拓展结论,设计新题在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =.若ABC ∆的边长为1,2AE =,求CD 的长(请你直接写出结果).【答案】(1)= . (2)=.方法一:如图,等边三角形ABC 中,60,ABC ACB BAC AB BC AC ∠=∠=∠=︒==, //,EF BC60,AEF AFE BAC ∴∠=∠=︒=∠AEF ∴∆是等边三角形,,AE AF EF ∴==,,AB AE AC AF BE CF ∴-=-=即又60ABC EDB BED ∠=∠+∠=︒,60ACB ECB FCE ∠=∠+∠=︒ .,,,,,.ED EC EDB ECB BED FCE DBE EFC DB EF AE BD =∴∠=∠∴∠=∠∴∆≅∆∴=∴= 方法二:在等边三角形ABC 中,D60120,,,,,,//,60,180120,,ABC ACB ABD ABC EDB BED ACB ECB ACE ED EC EDB ECB BED ACE FE BC AEF AFE BAC AEF EFC ACB ABD EFC DBE DB EF ∠=∠=︒∠=︒∠=∠+∠∠=∠+∠=∴∠=∠∴∠=∠∴∠=∠=︒=∠∴∆∠=︒-∠=︒=∠∴∆≅∆∴=,是正三角形,而由AEF ∆是正三角形可得.EF AE = .AE DB ∴= (3)1或3.7. (2011浙江台州,23,12分)如图1,过△ABC 的顶点A 分别做对边BC 上的高AD 和中线AE ,点D 是垂足,点E 是BC 中点,规定BEDEA =λ。