第23章等腰三角形
- 格式:doc
- 大小:620.00 KB
- 文档页数:8
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习《三角形的证明》全章复习与巩固(提高)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,不如边长为a 的等边三角形他的高是2a ,面积是24;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;正确的逆命题就是逆定理.3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL )要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,一共有5种判定方法. 要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧交于点M 、N ;作直线MN ,则直线MN 就是线段AB 的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形.【典型例题】类型一、能证明它们么1. 如图,△ACD 和△BCE 都是等腰直角三角形,∠ACD=∠BCE=90°,AE 交CD 于点F ,BD 分别交CE 、AE 于点G 、H .试猜测线段AE 和BD 的数量和位置关系,并说明理由.【思路点拨】由条件可知CD=AC ,BC=CE ,且可求得∠ACE=∠DCB ,所以△ACE ≌△DCB ,即AE=BD ,∠CAE=∠CDB ;又因为对顶角∠AFC=∠DFH ,所以∠DHF=∠ACD=90°,即AE ⊥BD .【答案与解析】猜测AE=BD ,AE ⊥BD ;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE ,即∠ACE=∠DCB ,又∵△ACD 和△BCE 都是等腰直角三角形,∴AC=CD ,CE=CB ,∵在△ACE 与△DCB 中,,AC DC ACE DCB EC BC =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△DCB (SAS ),∴AE=BD , ∠CAE=∠CDB ;∵∠AFC=∠DFH ,∠FAC+∠AFC=90°,∴∠DHF=∠ACD=90°,∴AE ⊥BD .故线段AE 和BD 的数量相等,位置是垂直关系.【总结升华】主要考查全等三角形的判定,涉及到等腰直角三角形的性质及对顶角的性质等知识点.举一反三:【变式】将两个全等的直角三角形ABC 和DBE 按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图1中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图2中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图1中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图3.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【答案】(1)证明:连接BF(如下图1),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.∵BF=BF,∴Rt△BFC≌Rt△BFE.∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图2.(1)中的结论AF+EF=DE仍然成立;(3)证明:连接BF ,∵△ABC ≌△DBE ,∴BC=BE ,∵∠ACB=∠DEB =90°,∴△BCF 和△BEF 是直角三角形,在Rt △BCF 和Rt △BEF 中,,BC BE BF BF=⎧⎨=⎩ ∴△BCF ≌△BEF ,∴CF=EF ;∵△ABC ≌△DBE ,∴AC=DE ,∴AF=AC+FC=DE+EF .类型二、直角三角形2. 下列说法正确的说法个数是( )①两个锐角对应相等的两个直角三角形全等,②斜边及一锐角对应相等的两个直角三角形全等,③两条直角边对应相等的两个直角三角形全等,④一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.A.1B.2C.3D.4【思路点拨】根据全等三角形的判定方法及“HL”定理,判断即可;【答案】C.【解析】A 、三个角相等,只能判定相似;故本选项错误;B 、斜边及一锐角对应相等的两个直角三角形,符合两三角形的判定定理“AAS”;故本选项正确;C 、两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项正确;D、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等;故本选项正确;所以,正确的说法个数是3个.故选C.【总结升华】直角三角形全等的判定,一般三角形全等的判定方法都适合它,同时,直角三角形有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法,使用时应该抓住“直角”这个隐含的已知条件.3.(2016•南开区一模)问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m ≠n),运用构图法可求出这三角形的面积为.【思路点拨】(1)是直角边长为1,2的直角三角形的斜边;是直角边长为1,3的直角三角形的斜边;是直角边长为2,3的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;(2)结合(1)易得此三角形的三边分别是直角边长为m,4n的直角三角形的斜边;直角边长为3m,2n的直角三角形的斜边;直角边长为2m,2n的直角三角形的斜边.同样把它整理为一个矩形的面积减去三个直角三角形的面积可得.【答案与解析】解:(1)S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=;(2)构造△ABC如图所示,S△ABC=3m×4n﹣×m×4n﹣×3m×2n﹣×2m×2n=5mn.故答案为:(1)3;(2)5mn.【总结升华】此题主要考查了勾股定理应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键,关键是结合网格用矩形及容易求得面积的直角三角形表示出所求三角形的面积进行解答.类型三、线段垂直平分线4. 如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.【思路点拨】(1)只需证明点P、Q都在线段DE的垂直平分线上即可.即证P、Q分别到D、E的距离相等.故连接PD、PE、QD、QE,根据直角三角形斜边上的中线等于斜边的一半可证;(2)根据题意,画出图形;结合图形,改写原题.【答案与解析】(1)证明:连接PD、PE、QD、QE.∵CE⊥AB,P是BF的中点,∴△BEF是直角三角形,且PE是Rt△BEF斜边的中线,∴PE=12 BF.又∵AD⊥BC,∴△BDF是直角三角形,且PD是Rt△BDF斜边的中线,∴PD=12BF=PE,∴点P在线段DE的垂直平分线上.同理可证,QD、QE分别是Rt△ADC和Rt△AEC斜边上的中线,∴QD=12AC=QE,∴点Q也在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.(2)当△ABC为钝角三角形时,(1)中的结论仍成立.如图,△ABC是钝角三角形,∠BAC>90°.原题改写为:如图,在钝角△ABC中,AD、CE分别是BC、AB边上的高,DA与CE的延长线交于点F,BF的中点为P,AC的中点为Q,连接PQ、DE.求证:直线PQ垂直且平分线段DE.证明:连接PD,PE,QD,QE,则PD、PE分别是Rt△BDF和Rt△BEF的中线,∴PD=12BF,PE=12BF,∴PD=PE,点P在线段DE的垂直平分线上.同理可证QD=QE,∴点Q在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.【总结升华】考查了线段垂直平分线的判定和性质、直角三角形斜边上的中线等于斜边的一半等知识点,图形较复杂,有一定综合性,但难度不是很大.举一反三:【变式】在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40度.(1)求∠M的度数;(2)若将∠A的度数改为80°,其余条件不变,再求∠M的大小;(3)你发现了怎样的规律?试证明;(4)将(1)中的∠A改为钝角,(3)中的规律仍成立吗?若不成立,应怎样修改.【答案】(1)∵∠B=12(180°-∠A)=70°∴∠M=20°(2)同理得∠M=40°(3)规律是:∠M的大小为∠A大小的一半,证明:设∠A=α,则有∠B=12(180°-α)∠M=90°-12(180°-α)=12α.(4)不成立.此时上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.类型四、角平分线5. 如图,△ABC中,∠A=60°,∠ACB的平分线CD和∠ABC的平分线BE交于点G.求证:GE=GD.【思路点拨】连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.由角平分线的性质及逆定理可得GN=GM=GF,AG是∠CAB的平分线;在四边形AMGN中,易得∠NGM=180°-60°=120°;在△BCG中,根据三角形内角和定理,可得∠CGB=120°,即∠EGD=120°,∴∠EGN=∠DGM,证明Rt△EGN≌Rt△DGM(AAS)即可得证GE=GM.【答案与解析】解:连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.∵∠A=60°,∴∠ACB+∠ABC=120°,∵CD,BE是角平分线,∴∠BCG+∠CBG=120°÷2=60°,∴∠CGB=∠EGD=120°,∵G是∠ACB平分线上一点,∴GN=GF,同理,GF=GM,∴GN=GM,∴AG是∠CAB的平分线,∴∠GAM=∠GAN=30°,∴∠NGM=∠NGA+∠AGM=60°+60°=120°,∴∠EGD=∠NGM=120°,∴∠EGN=∠DGM,又∵GN=GM,∴Rt△EGN≌Rt△DGM(AAS),∴GE=GD.【总结升华】此题综合考查角平分线的定义、三角形的内角和及全等三角形的判定和性质等知识点,难度较大,作辅助线很关键.举一反三:【变式】(2015春•澧县期末)如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB 于E,F在AC上,BD=DF;证明:(1)CF=EB.(2)AB=AF+2EB.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵精品文档用心整理∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.资料来源于网络仅供免费交流使用。
第23章 等腰三角形一、选择题1. (2011浙江省舟山,7,3分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33(C )34(D )36【答案】B2. (2011四川南充市,10,3分)如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( )(A )1个 (B )2个 (C )3个 (D )4个MECA【答案】D3. (2011浙江义乌,10,3分)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有 (第7题)A BCD EA .1个B .2个C .3个D .4个【答案】D4. (2011台湾全区,30)如图(十三),ΔABC 中,以B 为圆心,BC 长为半径画弧,分别交AC 、AB于D 、E 两点,并连接BD 、DE .若∠A =30∘,AB =AC ,则∠BDE 的度数为何?A . 45B . 52.5C . 67.5D . 75 【答案】C5. (2011台湾全区,34)如图(十六),有两全等的正三角形ABC 、DEF ,且D 、A 分别为△ABC 、△DEF 的重心.固定D 点,将△DEF 逆时针旋转,使得A 落在DE 上,如图(十七)所示.求图(十六)与图(十七)中,两个三角形重迭区域的面积比为何?A .2:1B . 3:2C . 4:3D . 5:4 【答案】C6. (2011山东济宁,3,3分)如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是A .15cmB .16cm ABCDEF GC .17cmD .16cm 或17cm 【答案】D7. (2011四川凉山州,8,4分)如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于( )A .1013 B .1513 C .6013 D .7513【答案】C二、填空题1. (2011山东滨州,15,4分)边长为6cm 的等边三角形中,其一边上高的长度为________.【答案】2. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 . 【答案】4或63. (2011浙江杭州,16,4)在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 .4. (2011浙江台州,14,5分)已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为【答案】80º5. (2011浙江省嘉兴,14,5分)如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = °.【答案】1106. (2011湖南邵阳,11,3分)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。
第23章旋转习题课方法策略旋转变换的应用旋转变换在平面几何中有广泛的应用,它通过旋转变换将分散的几何元素(线段、角、三角形)集中起来,把隐含的、松散的关系明朗化、密切化,从而使图形的本质特征更为突出.在解决有关涉及等腰三角形、正三角形、正方形的问题时,常常用到旋转变换,将不明显的条件明显化,是经常用到的思维途径.测试点1 旋转特征的应用1.如图,四边形ABCD是正方形,△ABE绕点A按逆时针方向旋转90•°得到△ADF,若DE=3cm,BF=11cm,则正方形ABCD的面积是()A.49cm2B.36cm2C.25cm2D.16cm22.(易错题)如图,△ABC和△A′B′C′中,AC=A′C′=3,BC=B′C′=•4,AB=A′B′=5,将顶点C′与C重合,△A′B′C′绕着点C旋转,旋转过程中,A′C′交AB于点E,A′B′交AB于点F,交BC于点D.(1)当A′C′⊥AB时,判断△C′DB′和△A′C′D的形状;(2)当△ACE为等腰三角形时,求出此时AE的值.3.已知,点P是正方形ABCD内的一点,连PA,PB,PC.(1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图(1)).①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA•所扫过区域(图(1)中阴影部分)的面积;②若PA=2,PB=4,∠APB=135°,求PC的长.(2)如图(2),若P A2+PC2=2PB2,请说明点P必在对角线AC上.测试点2 中心对称的应用4.已知:如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.(1)试猜想AE与BF有何关系?说明理由.(2)若△ABC的面积为3c m2,求四边形ABFE的面积;(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由.5.如图,梯形ABCD中,DC∥AB,EF是中位线,EG⊥AB于G,FH⊥AB于H,•梯形的高h=1 2(AB+DC).沿着GE、HF分别把△AGE、△BHF剪开,然后按图中箭头所指的方向,分别绕着点E、F旋转180°,将会得到一个什么样的四边形?简述理由.6.如图,在平面直角坐标系中,△ABC为等边三角形,其中点A、B、C的坐标分别为(-3,-1),、(-3,-3)、(-3+3,-2),现以y轴为对称轴作△A1B1C1的对称图形,•得△A1B1C1,再以x轴为对称轴作△ABC的对称图形,得△A2B2C2.(1)直接写出点C1、C2的坐标;(2)能否通过一次旋转将△ABC旋转到△A2B2C2的位置?你若认为能,•请作出肯定的回答,并直接写出所旋转的度数;你若认为不能,请作出否定的回答(不必说明理由).(3)设当△ABC的位置发生变化时,△A2B2C2、△A1B1C1与△ABC之间的对称关系始终保持不变.①当△ABC向上平移多少个单位时,△A1B1C1与△A2B2C2完全重合?•并直接写出此时点C的坐标;②将△ABC绕点A顺时针旋转α(0≤α≤180°),使△A1B1C1与△A2B2C2完全重合,•此时α的值为多少?点C的坐标又是什么?测试点3 新思维新题型7.如图是3×3正方形方格,•将其中两个方格涂黑有若干种涂法,•约定沿正方形ABCD的对称轴翻折能重合的图案或绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如就视为同一种图案,则不同的涂法有()A.4种 B.6种 C.8种 D.12种8.如图,点O是正六边形ABCDEF的中心.(1)找出这个轴对称图形的对称轴;(2)这个正六边形绕点O旋转多少度后能和原来的图形重合?(3)如果换成其他的正多边形呢?能得到一般的结论吗?9.如图,△ABC中,∠ACB=90°,AC=BC=1,将△ABC绕点C•逆时针旋转角α(0°<α<90°),得到△A1B1C1,连结BB1,设CB1交AB于D,A1B1分别交AB,AC于E,F.(1)在图中不再添加其他任何线段的情况下,请你找出一对全等三角形,•并加以证明(△ABC与△A1B1C全等除外);(2)当△BB1D是等腰三角形时,求α;(3)当α=60°时,求BD的长.答案:1.A2.(1)△C ′DB ′和A ′C ′D 都是等腰三角形. (2)3 3.(1)①S 阴影=4(a 2-b 2); ②连接PP ′,证△PBP ′为等腰直角三角形,△PP ′C 为直角三角形,P ′C=PA=•2,PP ′2,从而PC=6.(2)将△PAB 绕点B 顺时针旋转90°,到△P ′CB 的位置,由勾股定理证出∠P ′CP=90°,再证∠BPC+∠APB=180°,即点P 在对角线AC 上.4.(1)AE //BF .△ABC 旋转180°得到△FEC .∴AC=FC ,BC=EC .∴四边形ABFE•为平行四边形.∴AE //BF . (2)3×4=12cm 2(3)∠ACB=60°时,四边形ABFE•为矩形.•∵∠ACB=60°,AB=AC ,则△ABC 为等边三角形,则△FEC 为等边三角形.易得到BE=AF ,且AC=CF ,BC=CE .∴四边形ABFE 为矩形.5.将会得到一个正方形,理由如下:∵EG ⊥AB ,FH ⊥AB ,∴EG•∥FH .•∵EF•是梯形ABCD 的中位线,∴EF ∥GH ,EF=12(DC+AB ), ∴EF=GH .∵梯形的高h=12(DC+AB ),• ∴梯形的高h=GH .设△AGE 绕点E 旋转180°后点G 落在点G ′处,△BHF 绕点F 旋转180°后,点H 落在H ′处,则∠G ′=90°,G ′、H ′在DC 所在的直线上.∴GG ′是梯形ABCD 的高.∴∠G ′=∠G ′GH=∠H ′HG=90°,GG ′=GH .∴四边形G ′GHH ′是正方形.6.(1)点C 1、C 2的坐标分别为(3,-2),(32).(2)能通过一次旋转半△ABC绕点O旋转,所旋转的度数为180°.(3)①当△ABC向上平移2个单位时,△A1B1C1与△A2B2C2完全重合,此时点C坐标为(30),如图(1).②当α=180°时,△A1B1C1与△A2B2C2完全重合,此时C点坐标为(30),•如图(2).7.C8.(1)直线AD、BE、CF以及线段AB、BC、CD•的垂直平分线都是这个正六边形的对称轴.(2)60°或其整数倍.(3)一般地,正n边形每条边的垂直平分线都是对称轴;当n是偶数时,相对顶点的连线也是对称轴;绕正n•边形的中心旋转360n或其整数倍都能与原来的图形重合.9.(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF等.以证△CBD≌△CA1F为例.证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°,∴∠A1CF=∠BCD.∵A1C=BC,•∴∠A1=•∠CBD=45°,∴△CBD≌△CA1F.(2)在△CBB1中,∵CB=CB1,∴∠CBB1=∠CB1B=12(180°-α),又△ABC是等腰直角三角形,∴∠ABC=45°…①若B1B=B1D,α=0°(舍去)…②∵∠BB1C=∠B1BC>∠B1BD,∴BD>B1D,即BD≠B1D…③若BB1=BD=,α=30°.由①②③可知,当△BB1D为等腰三角形时,α=30°.(3)作DG⊥BC于G,设CG=x.在Rt△CDG中,∠DCG=α=60°,∴3.在Rt△DGB中,∠DBG=45°.∴3∵AC=BC=1,∴3,∴x=123),∴2BG= 3262。
第二十三章 《旋转》教材分析一、本章知识的地位与作用“图形与变换”是义务教育阶段数学课程中“空间与图形”领域的一个重要内容,在教材中占有重要的地位.和平移、轴对称一样,旋转也是现实生活中广泛存在的现象,是现实世界运动变化的最简洁形式之一.旋转是工具性的知识. 学习旋转的基本性质, 欣赏并体验旋转在现实生活中的广泛应用, 不仅是初中学习的重要目标之一, 也是密切数学与现实之间联系的重要桥梁之一.旋转变换在平面几何中有着广泛的应用, 特别是在解(证)有关等腰三角形(主要是等腰直角三角形、等边三角形)以及正方形等问题时, 更是经常用到的思维方法. 此前, 学生已学习了平移、轴对称两种图形变换, 对图形变换已具有一定的认识, 通过本章的学习, 学生对图形变换的认识会更完整, 同时, 也能对平移、轴对称有更深的认识. 进一步建立的几何变换的意识可帮助我们用运动的观点认识图形,从而使解决问题的思路更加简明、清晰.二、主要内容三、课程学习目标(一)课标要求1. 通过具体实例认识平面图形关于旋转中心的旋转, 探索旋转的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点与旋转中心连线所成的角相等.2. 能够按要求画出简单平面图形旋转后的图形, 欣赏旋转在现实生活中的应用.3. 通过具体实例认识中心对称、中心对称图形的概念,探索它们的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分. 了解线段、平行四边形是中心对称图形.,认识并欣赏自然界和现实生活中的中心对称图形.4. 探索图形之间的变化关系(轴对称、平移、旋转及其组合),会运用轴对称、平移、旋转的组合进行图案设计.旋转及其性质 中心对称 关于原点对称的点的坐标图案设计中心对称图形旋转的基本知识特殊的旋转 --中心对称 平移、旋转、轴对称的综合运用平移及其性质 轴对称及其性(二)实际教学要求1.基本要求:①了解图形的旋转,理解对应点到旋转中心的距离相等、对应点与旋转中心的连线所成角彼此相等(等于旋转角)的性质;——什么是旋转?旋转的三要素是什么?旋转前、后图形之间对应元素具有哪些性质?②通过具体实例认识旋转, 能依据旋转前后的图形,指出旋转中心和旋转角及旋转前后的对应点;——怎样确定旋转中心与旋转角?③能够按要求作出简单平面图形旋转后的图形,利用旋转进行简单的图案设计;④通过具体实例认识中心对称,掌握作与已知图形中心对称的图形的方法,并能指出图形的对称中心;⑤了解中心对称图形的概念,能识别中心对称图形.了解线段、平行四边形是中心对称图形,了解中心对称与中心对称图形的区别.——旋转与中心对称之间具有怎样的联系?中心对称与中心对称图形之间具有怎样的关系?⑥了解关于原点对称的点的坐标之间的关系.2.略高要求:①探索它们的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质,旋转前、后的图形全等;②探索中心对称的基本性质,理解对应点所连线段被对称中心平分的性质;③能运用旋转的知识解决简单的计算问题.3.较高要求:①能运用旋转的知识进行图案设计;②能综合运用平移、对称、旋转等变换解决相对复杂的问题.(三)2015中考说明中对旋转的要求基本要求:认识平面图形关于旋转中心的旋转;理解旋转的基本性质;了解中心对称、中心对称图形的概念;理解中心对称的基本性质.略高要求:能画出平面图形关于给定旋转中心的旋转图形;探索线段、平行四边形、正多边形、圆的中心对称性质;能利用旋转的性质解决有关简单问题.较高要求:运用旋转的有关内容解决有关问题.四、课时安排本章教学时间约需9课时, 具体分配如下(仅供参考):23.1图形的旋转2课时23.2中心对称2课时23.3课题学习图案设计1课时(补充)旋转的应用(计算与证明) 2- 3课时数学活动、小结1课时五、教学重点难点重点:1. 图形旋转的基本性质.2. 中心对称的基本性质.3. 两个点关于原点对称时, 它们坐标之间的关系.难点:1. 图形旋转的基本性质的归纳与运用.2. 中心对称的基本性质的归纳与运用.六、教学建议:1、注重与学生已学的图形变换的经验联系,类比学习.在本章学习前,学生已经学习了平移、轴对称,对图形变换已经有所认识,一般地,学习一种图形变换大致包括以下内容⑴通过具体实例认识图形变换; ⑵探索图形变换的性质;⑶作出一个图形变换后的图形⑷利用图形的变换进行图案设计;⑸用坐标表示图形变换.本章“旋转”的学习也是从以上几个方面展开的. 关于⑸,本章正文中只涉及一些特殊旋转用坐标表示的问题,如以原点为对称中心的中心对称的坐标表示,在数学活动和习题中则涉及用坐标表示以原点为旋转中心,旋转角为直角的旋转.2、注意揭示旋转概念的实际背景与广泛应用旋转与现实生活联系紧密, 为此, 在教学中应列举大量实例来使学生认识和感受它们, 增强学生对旋转的理解. 利用图形变换进行图案设计、解决实际问题既可以进一步促进学生对知识的理解,又加强了图形变换与现实生活的联系.3、注意培养动手操作的意识教材在探索旋转的性质、中心对称的性质以及如何设计图案最美观等问题时, 安排了转动硬纸板、转动三角板、转动模板等应用动手操作来探索结论的内容. 动手操作是解决问题的一种方法, 应给学生操作的时间和体验,加强学生主动进行动手操作的意识.4、注意安排对重要结论的探究教材在发现旋转的性质、中心对称的性质、关于原点对称的点的坐标特征、图形之间的变换关系、如何设计图案最美观、从坐标的角度揭示中心对称与轴对称的关系等问题中,教科书注意安排画图、分析、归纳等探究活动.教学中,应充分利用这些资源,进行开放式探究,重视培养学生观察、发现、比较、归纳、说理等综合能力,从而逐步提高学生的探究能力.5、注意概念之间的区别与联系⑴平移、旋转、轴对称学习旋转变换与学习平移、轴对称的过程基本一致, 主要都是研究变换过程中的不变量, 是研究几何问题、发现几何结论的有效工具. 平移、轴对称、旋转都是全等变换, 只改变图形的位置, 不改变图形的形状和大小. 由于变换方式的不同, 故变换前后具有各自的性质.⑵旋转与中心对称中心对称是一种特殊的旋转(旋转180°), 满足旋转的性质, 由旋转的性质可以得到中心对称性质⑶中心对称与轴对称教材中P74的数学活动1还从坐标的角度揭示了中心对称与轴对称的关系. 作点A关于x轴的对称点B,作点B关于y轴的对称点C,则点A与点C关于原点对称. 由此可知,将一点作上述两次轴对称变换相当于作出这个点关于原点的对称点.⑷两个图形成中心对称与中心对称图形6、注意用计算机辅助教学利用几何画板的旋转功能, 可以方便地作出一个图形绕某一点旋转某个角度后的图形.利用几何画板的度量功能, 可以发现旋转变换中的不变量; 关于原点对称的点的坐标特征. 进行图案设计时, 利用计算机, 可以让学生直观地看到改变旋转中心、旋转角会出现不同的效果. 同时利用计算机, 可以直观地看到图形运动变换的过程,对图形性质的探究和发现会很有帮助.7、培养学生良好的作图习惯,加强学生对图形的认识和理解.几何作图是本章教学过程中不可缺少的重要组成部分. 通过作图可以加深学生对旋转的认识和理解. 旋转的过程中, 实际上其运动轨迹均为圆, 利用圆规构造旋转变换的图形是学生应该掌握并熟练应用的. 在教学中,教师应当指导学生利用尺规和其它工具规范作图, 培养学生良好的作图习惯.本章主要作图有:OA'①按要求作旋转后的图形;②已知旋转前后的图形,确定旋转中心、旋转角;③作一个图形关于一点成中心对称的图形;④已知成中心对称的两个图形(或已知某一图形是中心对称图形), 确定对称中心;⑤在平面直角坐标系中, 作一个图形关于原点对称的图形.上述五种作图是本章的基本技能. 在教学中一定要让学生动手完成.8、从三个层面理解借助旋转移动图形:①从旋转的角度认识静态图形,发现图形关系,实际不需要移图;②图形按指令语言(题干)要求移动,解决在图形移动过程中形成的问题;③根据题目需要和图形特征有目的的旋转图形的某一部分,形成新的图形关系,从而将分散的条件集中,使知识与知识之间形成紧密的联系,产生新的信息,有利于解决问题。
第一章图形与证明(二)1.1 等腰三角形的性质和判定Ⅰ.核心知识点扫描1.等腰三角形和等边三角形的性质和判定性质判定等腰三角形⑴等腰三角形两个底角相等(简称“等边对等角”) .⑵等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).⑴如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).⑵定义:如果一个三角形中有两条边相等,那么这个三角形是等腰三角形.图示(1)在△ABC中,∵AB=AC ∴∠B=∠C;(2)在△ABC中,AB=AC.若∠BAD=∠CAD,那么AD⊥BC,BD=CD;若BD=CD,那么∠BAD=∠CAD,AD⊥BC;若AD⊥BC,那么∠BAD=∠CAD,BD=CD.在△ABC中,∵∠B=∠C ∴AB=AC.等边三角形⑴等边三角形是特殊的等腰三角形,因此等边三角形具有等腰三角形的所有性质,并且,在每条边上都有“三线合一”;⑵等边三角形的每个内角都等于60°.⑴定义:三条边都相等的三角形是等边三角形.⑵有一个角是60°等腰三角形是等边三角形.⑶三个角都相等的三角形是等边三角形.图示∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°.(1)∵AB=BC=AC,∴△ABC是等边三角形;(2) ∵AB=BC,∠A=60°,∴△ABC是等边三角形;(3)∵∠A=∠B=∠C,∴∴△ABC是等边三角形.Ⅱ.知识点全面突破知识点1:等腰三角形性质(重点)⒈等腰三角形的性质定理1:等腰三角形的两个底角相等(简称“等边对等角”);可用符号语言表述如下:如图1-1-1,在△ABC中,∵AB=AC ∴∠B=∠C.已知:如图1-1-1,在△ABC中, AB=AC.求证:∠B=∠C.图1-1-3定理的证明分析:利用分析法思考证明的过程:如下所示:作顶角的平分线AD.()AB AC B C ABD ACD SAS BAD CAD AD AD =⎧⎪∠=∠⇐≅⇐∠=⎨⎪=⎩,具体证明过程略.此外,我们还可以用AAS 、ASA 、SSS 证明这一性质.如取BC 的中点D ,连接AD,在△ABD 和△ACD中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD (SSS ),∴B C ∠=∠.2.等腰三角形的性质定理2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).可用符号语言表述如下:如图1-1-2,在△ABC 中,AB=AC.若∠BAD=∠CAD ,那么AD ⊥BC ,BD=CD ; 若BD=CD ,那么∠BAD=∠CAD ,AD ⊥BC ;若AD ⊥BC ,那么∠BAD=∠CAD ,BD=CD.详解:①等腰三角形是特殊的三角形,它拥有一般三角形所具有的所有的性质.同时它还具有一般三角形所没有的特点和性质;②定理1常用来证明同一个三角形中的两个角相等;定理2实际上是等腰三角形中的两个结论,已知其中任意一个可以得到另两个结论,常用来证明角相等、线段相等或垂直;③将这两条性质用在特殊的等腰三角形即等边三角形中,可得等边三角的性质:等边三角形的各角都相等,并且都等于60°;等边三角形每一条边上的中线高都与所对的角平分线互相重合.例1.如图1-1-3,房屋的顶角∠BAC=100O ,过屋顶A 的立柱,屋椽AB=AC 求∠B ,∠C ,∠BAD ,∠CAD 的度数.解:在△ABC 中, AB=AC(已知).∴∠B=∠C(等边对等角) .∴∠B=∠C=21(180O -∠BAC) 图1-1-1图1-1-2=21(180O -100O )=40O (三角形内角和定理) .又∵AD ⊥BC ,∴∠BAD=∠CAD(等腰三角形顶角的平分线与底边上的高互相重合),∴∠BAD=∠CAD=50O .点拨:已知等腰三角形的顶角,根据等边对等角及三角形的内角和定理可求出∠B 与∠C 的度数,再根据等腰三角形的三线合一,可得AD 是顶角的平分线,则∠BAD 与∠CAD 的度数即可求.例2:(2010,山东济南)(一题多解)如图1-1-4,已知AB AC AD AE ==,.求证BD CE =.证明:方法1 如图1-1-5过点A 作AH ⊥BC ,交BC 于点H . ∵AB=AC ,AD=AE ,AH ⊥BC , ∴BH=CH , DH=EH∴BH 一DH=CH 一EH 即BD=CE 方法2 ∵AB=AC ∴∠B=∠C ∵AD=AE ∴∠ADE=∠AED∴180O-∠ADE=180O-∠AED 即∠ADB=∠AEC ∵AB=AC ,∠B=∠C ,∠ADB=∠AEC ∴△ABD ≌△ACE ∴BD=CE .点拨:在等腰三角形中,虽然顶角平分线、底边上的中线、底边上的高互相重合,但如何添加,要根据具体情况来定.本题中适合高AH AH ,利用等腰三角形的“三线合一”来解决这个问题。
人教版八年级数学上册说课稿13.3 等腰三角形一. 教材分析等腰三角形是八年级数学上册第十三章《三角形》的一个小节,本节内容主要让学生掌握等腰三角形的性质,并能运用等腰三角形的性质解决一些实际问题。
在教材中,通过引入等腰三角形的定义,让学生通过观察、操作、猜想、验证等方法,探究等腰三角形的性质,从而培养学生的动手操作能力和探究能力。
二. 学情分析学生在学习本节内容前,已经学习了三角形的概念、性质和分类,对三角形有了一定的了解。
但等腰三角形作为一种特殊的三角形,学生可能还比较陌生。
因此,在教学过程中,我将会引导学生运用已学的知识,通过观察、操作、猜想、验证等方法,探究等腰三角形的性质,从而加深学生对三角形知识的理解。
三. 说教学目标1.知识与技能目标:让学生掌握等腰三角形的性质,并能运用等腰三角形的性质解决一些实际问题。
2.过程与方法目标:通过观察、操作、猜想、验证等方法,培养学生的动手操作能力和探究能力。
3.情感态度与价值观目标:让学生在探究等腰三角形性质的过程中,体验到数学的乐趣,增强对数学的兴趣。
四. 说教学重难点1.教学重点:等腰三角形的性质。
2.教学难点:如何引导学生运用已学的知识,通过观察、操作、猜想、验证等方法,探究等腰三角形的性质。
五. 说教学方法与手段1.教学方法:采用问题驱动法、探究法、小组合作法等。
2.教学手段:多媒体课件、几何画板、实物模型等。
六. 说教学过程1.导入新课:通过复习三角形的相关知识,引出等腰三角形的概念。
2.探究等腰三角形的性质:(1)让学生观察等腰三角形的模型,引导学生发现等腰三角形的两腰相等。
(2)让学生用几何画板画出一个等腰三角形,并测量其角度,引导学生发现等腰三角形的底角相等。
(3)让学生分组讨论,总结等腰三角形的性质,并展示成果。
3.验证等腰三角形的性质:(1)让学生运用已学的知识,通过观察、操作、猜想、验证等方法,探究等腰三角形的性质。
(2)教师引导学生进行总结,得出等腰三角形的性质。
等腰三角形的特性等腰三角形是几何学中一种特殊的三角形,它具有特定的特性和性质。
在本文中,我们将探讨等腰三角形的定义、特点以及与其他类型三角形的关系。
1. 等腰三角形的定义等腰三角形是指具有两条边长度相等的三角形。
常见的等腰三角形特性是两个底角相等。
等腰三角形通常以底边的长度表示,例如“等腰三角形ABC,AB=AC”。
2. 等腰三角形的特点(1)两边相等:等腰三角形的两条边(即两腰)长度相等,用字母a表示。
因此,在等腰三角形ABC中,AB=AC=a。
(2)顶角平分底角:等腰三角形的顶角(即顶点角)等于底角的平分角。
在等腰三角形ABC中,∠BAC是顶角,∠ABC和∠ACB是底角,且∠BAC=∠ABC=∠ACB。
3. 等腰三角形的性质(1)底角相等:等腰三角形的两个底角相等。
在等腰三角形ABC 中,∠ABC=∠ACB。
(2)高线重合:等腰三角形的高线(垂直于底边的线段)会重合于底边的中点。
例如,在等腰三角形ABC中,高线AD和BE会在点D处重合。
(3)中线相等:等腰三角形的两条中线(连接底边中点与顶点)相等。
在等腰三角形ABC中,线段DE和线段DF相等。
(4)等腰三角形的外角等于底角的一半:等腰三角形的外角等于底角的一半。
在等腰三角形ABC中,∠CDE=∠CDF=∠ABC/2。
4. 等腰三角形与其他三角形的关系(1)等腰三角形与等边三角形:等边三角形是一种特殊的等腰三角形,它的三边长度都相等。
因此,等边三角形也满足等腰三角形的所有特性和性质。
(2)等腰三角形与直角三角形:等腰直角三角形是指一个角为直角的等腰三角形。
在等腰直角三角形中,两个底角为锐角,且它们相等。
结论等腰三角形具有两边相等和底角相等的特性,其中顶角平分底角。
等腰三角形的高线重合于底边的中点,两条中线相等,外角等于底角的一半。
等腰三角形与等边三角形和等腰直角三角形有特殊的关系。
通过研究和理解等腰三角形的特性,我们可以更好地应用几何学知识和解决相关问题。
沪科版数学八年级上册《等腰三角形的定义性质》教学设计1一. 教材分析《等腰三角形的定义性质》是沪科版数学八年级上册的一章内容。
本章主要介绍等腰三角形的定义、性质以及应用。
通过本章的学习,学生能够理解等腰三角形的概念,掌握等腰三角形的性质,并能够运用等腰三角形的性质解决实际问题。
二. 学情分析学生在学习本章之前,已经学习了三角形的性质、三角形的分类等基础知识。
他们对三角形有一定的了解,但可能对等腰三角形的性质和应用还不够熟悉。
因此,在教学过程中,需要引导学生回顾三角形的相关知识,并通过实际操作和例题来帮助学生理解和掌握等腰三角形的性质。
三. 教学目标1.知识与技能目标:学生能够准确地定义等腰三角形,掌握等腰三角形的性质,并能够运用等腰三角形的性质解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等过程,学生能够培养观察能力、动手能力、逻辑思维能力和合作能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,对数学产生兴趣和自信,培养良好的学习习惯和态度。
四. 教学重难点1.重点:等腰三角形的定义和性质。
2.难点:理解和运用等腰三角形的性质解决实际问题。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,引导学生自主探索等腰三角形的性质。
2.操作法:学生通过实际操作,观察和体验等腰三角形的性质。
3.例题法:教师通过举例讲解,引导学生理解和运用等腰三角形的性质。
4.小组合作法:学生分组合作,共同解决问题,培养合作能力和沟通能力。
六. 教学准备1.教具准备:教师准备等腰三角形的模型、图片等教具,用于展示和引导学生观察。
2.教学材料准备:教师准备相关的PPT、教案、练习题等教学材料。
3.学习环境准备:教室环境安静、整洁,学生座位有序排列。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的相关知识,如三角形的性质、分类等。
然后,教师提出本节课的主题——等腰三角形的定义性质,激发学生的兴趣和思考。
第23章 等腰三角形一、选择题1. (2011浙江省舟山,7,3分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33(C )34(D )362. (2011四川南充市,10,3分)如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( )(A )1个 (B )2个 (C )3个 (D )4个MECA3. (2011浙江义乌,10,3分)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有A .1个B .2个C .3个D .4个4. (2011台湾全区,30)如图(十三),ΔABC 中,以B 为圆心,BC 长为半径画弧,分别交AC 、ABABCDEFG (第7题)ABCD E于D 、E 两点,并连接BD 、DE .若∠A =30∘,AB =AC ,则∠BDE 的度数为何?A . 45B . 52.5C . 67.5D . 755. (2011台湾全区,34)如图(十六),有两全等的正三角形ABC 、DEF ,且D 、A 分别为△ABC 、△DEF的重心.固定D 点,将△DEF 逆时针旋转,使得A 落在DE 上,如图(十七)所示.求图(十六)与图(十七)中,两个三角形重迭区域的面积比为何?A .2:1B . 3:2C . 4:3D . 5:46. (2011山东济宁,3,3分)如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是A .15cmB .16cmC .17cmD .16cm 或17cm 7. (2011四川凉山州,8,4分)如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于( ) A .1013 B .1513 C .6013 D .7513【答案】C 8.二、填空题1.(2011山东滨州,15,4分)边长为6cm的等边三角形中,其一边上高的长度为________.4. (2011浙江台州,14,5分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80º,则∠EGC的度数为5. (2011浙江省嘉兴,14,5分)如图,在△ABC中,AB=AC,︒=∠40A,则△ABC的外角∠BCD=°.9. (2011四川乐山16,3分)如图,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连结A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2= B1A2,连结A2B2…按此规律上去,记∠A2B1B2=1θ,∠3232A B Bθ=,…,∠n+11An n nB Bθ+=则⑴1θ= ;⑵nθ= 。
【答案】⑴2180α+︒⑵()nn218012α+︒⋅-三、解答题2. (2011山东德州19,8分)如图AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交(第14题)ABC D于点O .(1)求证AD =AE ;(2) 连接OA ,BC ,试判断直线OA ,BC 的关系并说明理由.3. (2011山东日照,23,10分)如图,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA . (1)求证:DE 平分∠BDC ;(2)若点M 在DE 上,且DC=DM , 求证: ME=BD .4. (2011湖北鄂州,18,7分)如图,在等腰三角形ABC 中,∠ABC=90°,D 为AC 边上中点,过D 点作DE ⊥DF ,交AB 于E ,交BC 于F ,若AE=4,FC=3,求EF 长.5. (2011浙江衢州,23,10分)ABC ∆是一张等腰直角三角形纸板,Rt 2C AC BC ∠=∠==,.要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积更大?请说明理由.第18题图BAEF C图1中甲种剪法称为第1次剪取,记所得的正方形面积为1S ;按照甲种剪法,在余下的ADE BDF ∆∆和中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为2S (如图2),则2=S ;再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形的面积和为3S (如图3);继续操作下去…则第10次剪取时,10S = . 求第10次剪取后,余下的所有小三角形的面积和.6. (2011浙江绍兴,23,12分)数学课上,李老师出示了如下框中的题目.在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED=EC ,如图.试确定线段AE 与DB 的大小关系,并说明理由.EABCD小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论: AE DB (填“>”,“<”或“=”).EA BCDEA BCD(2)特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE DB (填“>”,“<”或“=”).理由如下:如图2,过点E 作//EF BC ,交AC 于点F . (请你完成以下解答过程) (3)拓展结论,设计新题 在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =.若ABC ∆的(第23题)(第23题图1)PNDEB CBQM第25题图1 第25题图2边长为1,2AE =,求CD 的长(请你直接写出结果).7. (2011浙江台州,23,12分)如图1,过△ABC 的顶点A 分别做对边BC 上的高AD 和中线AE ,点D 是垂足,点E 是BC 中点,规定BEDEA =λ。
特别的,当点D 重合时,规定0=A λ。
另外。
对B λ、c λ作类似的规定。
(1)如图2,已知在Rt △ABC 中,∠A=30º,求A λ、c λ;(2)在每个小正方形边长为1的4×4方格纸上,画一个△ABC ,使其顶点在格点(格点即每个小正方形的顶点)上,且2=A λ,面积也为2; (3)判断下列三个命题的真假。
(真命题打√,假命题打×) ① 若△ABC 中,1<A λ,则△ABC 为锐角三角形;( ) ② 若△ABC 中,1=A λ,则△ABC 为直角三角形;( ) ③ 若△ABC 中,1>A λ,则△ABC 为钝角三角形;( )8. (2011浙江义乌,23,10分)如图1,在等边△ABC 中,点D 是边AC 的中点,点P 是线段DC 上的动点(点P 与点C 不重合),连结BP . 将△ABP 绕点P 按顺时针方向旋转α角(0°<α<180°),得到△A 1B 1P ,连结AA 1,射线AA 1分别交射线PB 、射线B 1B 于点E 、F . (1) 如图1,当0°<α<60°时,在α角变化过程中,△BE F 与△AEP 始终存在 ▲ 关系(填“相似”或“全等”),并说明理由;(2)如图2,设∠ABP =β . 当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP 全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由; (3)如图3,当α=60°时,点E 、F 与点B 重合. 已知AB =4,设DP =x ,△A 1BB 1的面积为S ,求S 关于x 的函数关系(2010辽宁丹东市)如图, 已知等边三角形ABC 中,点D ,E ,F 分别为边AB ,AC ,BC 的中点,M 为直线BC 上一动点,△DMN 为等边三角形(点M 的位置改变时, △DMN 也随之整体移动) .(1)如图①,当点M 在点B 左侧时,请你判断EN 与MF 有怎样的数量关系?点F 是否在直线NE 上?都请直接....写出结论,不必证明或说明理由; (2)如图②,当点M 在BC 上时,其它条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;(3)若点M 在点C 右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.图① 图②图③第25题图A·BCD E F··N MFEDCB ANMF EDCBA·图1图2图3111FEC BB'C'7.(2010山东青岛)已知:把Rt △ABC 和Rt △DEF 按如图(1)摆放(点C 与点E 重合),点B 、C (E )、F 在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm ,BC = 6 cm ,EF = 9 cm .如图(2),△DEF 从图(1)的位置出发,以1 cm/s 的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△ABC 的顶点B 出发,以2 cm/s 的速度沿BA 向点A 匀速移动.当△DEF 的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动.DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s )(0<t <4.5).解答下列问题:(1)当t 为何值时,点A 在线段PQ 的垂直平分线上?(3)是否存在某一时刻t ,使P 、Q 、F 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.(图(3)供同学们做题使用)10.(2010四川眉山)如图,Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC ' 交斜边于点E ,CC ' 的延长线交BB ' 于点F . (1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC ' =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.ABC图(3)A DBC F ( E) 图(1)CE 图(2)。