第2讲 乘除法的速算与巧算(教师版)
- 格式:docx
- 大小:37.46 KB
- 文档页数:9
一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。
例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。
例3计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4计算①123×101②123×99解:①式=123×(100+1)=123×100+123=12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。
第2讲:乘除法巧算速算本讲,我们来学习一些比较复杂的用凑整法和分解法等方法进行的乘除的巧算。
这些计算从表面上看似乎不能巧算,而如果把已知数适当分解或转化就可以使计算简便。
对于一些较复杂的计算题我们要善于从整体上把握特征,通过对已知数适当的分解和变形,找出数据及算式间的联系,灵活地运用相关的运算定律和性质,从而使复杂的计算过程简化。
实际进行乘法、除法以及乘除法混合运算时,可利用以下性质进行巧算:①乘法交换律:A×B=B×A②乘法结合律:A×B×C=A×(B×C)③乘法分配律:(A+B)×C=A×C+B×C由此可以推出:A×B+A×C=A×(B+C)(A-B) ×C =A×C-B×C④除法的性质:A÷B÷C=A÷C÷B=A÷(B×C)利用乘法、除法的这些性质,先凑整得10、100、1000……会使计算更简便。
例1:计算236×37×27分析:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。
例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。
解:原式=236×(37×3×9)=236×(111×9) =236×999=236×(1000-1) =236000-236 =235764随堂小练:计算下面各题:(1)132×37×27 (2)315×77×13例2:计算333×334+999×222分析:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。
脱口秀数学第二讲计算专题2——整数巧算第一部分:速算与巧算基本运算律及公式加法:加法交换律、加法结合律减法:在连减或者加减混合运算中,去括号、添括号的规则乘除法:乘法交换率、乘法结合率、乘法分配率(反过程是提取公因数)、积不变性质商不变性质在乘除混合运算中,去括号、添括号的规则加减法中的速算与巧算1、分组凑整法2、加补凑整法3、位值原理法4、“基准数”法乘除法中的速算与巧算1、乘法凑整:⨯=,81251000⨯⨯=⨯=,711131001⨯=,42510025102、乘法其他速算方法:(详细例子见第一讲)20以内的两位数相乘、首同尾非十的两位数相乘、首同尾十的两位数相乘、首十尾同的两位数相乘、任意多位数数x11。
3、在连除时,可以交换除数的位置,商不变.即:a b c a c b÷÷=÷÷两个数之积除以两个数之积,可以分别相除后再相乘,即()()()()()()a b c d a c b d a d b c⨯÷⨯=÷⨯÷=÷⨯÷计算的应用1、定义新运算:定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
2、平均数计算:平均数问题的数量关系式,总数量÷总份数=平均数,平均速度=总路程÷总时间.解平均数问题,关键是要找准总数量及对应的总份数。
【例1】计算:11+192+1993+19994所得和数的数字之和是多少?【考点】加补凑整【解析】观察后三位数,可分别补上8,7,6使得凑成整百整千整万的数11+192+1993+19994=200+2000+20000-10=22200-10=22190最终所得数的数字和是14【答案】14【例2】计算:(1+3+5+…+1989)-(2+4+6+8+1988)=()。
本节课主要学习乘、除法的速算与巧算.要求学生理解乘、除法的意义及其关系,能根据乘、除法之间的关系验算乘除法;并且掌握积的变化规律以及商不变的性质,并能合理利用,解决相关问题.一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:425100⨯=,81251000⨯=,520100⨯=123456799111111111⨯= (去8数,重点记忆) 711131001⨯⨯=(三个常用质数的乘积,重点记忆) 理论依据:乘法交换率:a×b=b×a 乘法结合率:(a×b) ×c=a×(b×c) 乘法分配率:(a+b) ×c=a×c+b×c 积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即: ()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠⑵在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家). 例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ⑸两个数之积除以两个数之积,可以分别相除后再相乘.即 ()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷ 上面的三个性质都可以推广到多个数的情形.二、乘除法巧算与速算(1)凑整:2×5;4×25;8×125……;知识点拨教案目标整数乘除法速算与巧算(2)构造整数:99999......9101k =-k 个;(3)乘法分配律:()a b c a b a c ⨯+=⨯+⨯; (4)提取公因数:()a b a c a b c ⨯+⨯=⨯+; 注意:除法算式中公因数只能用为除数。
速算与巧算(二)知识要点上一章我们学习了加减法的运算技巧,本章我们将学习乘除法的巧算方法。
下面,我们介绍乘法的一些运算定律,它们是乘法巧算的理论依据,并给出一些巧算方法。
一、乘法运算定律1.乘法交换律:两个数相乘,交换因数的位置,积不变。
即:a×b=b×a。
2.乘法结合律:三个数相乘,可以先把前两个数相乘,再与后一个数相乘,或者先把后两个数相乘,再与第一个数相乘,积不变。
即:(a×b)×c=a×(b×c)。
3.乘法分配律:两个数的和与一个数相乘,可以用这两个数分别与这个数相乘,再把所得的积相加。
即a×(b+c) =a×b+a×c变式:a×(b-c) =a×b-a×ca×b+a×c = a×(b+c)a×b-a×c = a×(b-c)二、乘除混合运算中的巧算技巧1. 带着符号搬家:在乘除混合运算中,运算的次序可以交换,运算的结果不会改变。
但必须在交换位置时,连同前面的运算符号一起“搬家”。
2. 去括号:乘除混合运算中,如果括号前面是“×”号,去掉括号的时候不改变括号里面的符号;如果括号前面是“÷”号,去掉括号的时候要改变括号里面的符号:即“×”变“÷”,“÷”变“×”。
3. 添括号:乘除混合运算中,可通过添加括号来改变运算顺序,添加括号时,如果括号前面是“×”号,不改变括号里面的符号;如果括号前面是“÷”号,要改变括号里面的符号:即“×”变“÷”,“÷”变“×”。
三、除法中的特殊的性质1. 商不变性质:除法算式中,被除数和除数同时扩大或缩小相同的倍数,商不变。
即:a÷b=(a×n)÷(a×n) ,a÷b=(a÷n)÷(a÷n) (n≠0)2. 运用除法的性质进行巧算:(a±b)÷c=a÷c±b÷c四、乘法中的好朋友同学们应该记住一些特殊的乘积,他们的结果为整十、整百……,我们称这些数为乘法中的好朋友:2×5=10 4×25=1008×125=1000 16×625=10000精选例题☝【例1】:请用简便方法计算下列各题。
20与4的差,再将两数的差16写成4×4的形式,最后利用乘法结合律简算。
(20-4)×25 (20-4)×25=20×25-4×25 =16×25=500-100 或 =4×(4×25)=400 =4×100=400例2、用简便方法计算下面各题。
(1)6666×2222+4444×6667(2)81×35+21×35-2×35【思路导航】观察上面的两道算式,算式(1)可以根据积不变的规律先变形,再反用乘法分配律,使计算简便。
6666×2222+4444×6667=3333×4444+4444×6667=4444×(3333+6667)=4444×10000=44440000算式(2)可以反用乘法分配律,使计算简便。
81×35+21×35-2×35=35×(81+21-2)=35×100=3500例3、用简便方法计算下面各题。
(1)3100÷25÷4 (2)325÷25(3)(360-108)÷36 (4)920×8÷40【思路导航】在用一个数连续除以几个数时,可以用这个数去除以另外几个数的乘积,结果不变。
算式(1)是用3100连续除以25和4这两个数,而25与4的乘积正好是100,因此,用3100除以25和4的乘积100,可以使计算简便。
随堂笔记:__________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ 3100÷25÷4成2400+36,而2400与36都是12的倍数,可以用简便方法计算。
乘除法中的速算与巧算知识储备整数乘除法的速算与巧算,一条最基本的原则就是“凑整”。
要达到“凑整”的目的,就要将一些数分解、变形,再运用乘法的交换律、结合律、分配律以及四则运算中的一些规则,把某些数组合到一起,使复杂的计算过程简便化。
1、乘法的运算定律乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc2、除法的运算性质(1)a÷b=(a×c)÷(b×c) (c≠0)(2)a÷b=(a÷c)÷(b÷c) (c≠0)(3)a÷b÷c=a÷(b×c)(4)a÷(b÷c)=a÷b×c3、乘除分配性质(1)(a+b)×c=a×c+b×c(2)(a-b)×c=a×c-b×c(3)(a+b)÷c=a÷c+b÷c(4)(a-b)÷c=a÷c-b÷c注意:除数不能为零。
4、两数之和乘以这两数之差的积等于这两个数的平方差。
(a+b)×(a-b)=a2-b25、乘法凑整法:这是利用特殊数的乘积特性进行速算,如5×2=10,25×4=100,125×8=1000,625×8=5000,625×16=10000等等。
大家要记住这些结果。
思维引导例1、计算:(1)999+999×999 (2)1111×9999(3)125×25×32 (4)576×422+576+577×576跟踪练习:计算:(1)9999+9999×9999 (2)140×299(3)808×125 (4)461+5×4610+461×49例2、计算:34×172-17×71×2-34跟踪练习:计算:42×68+61×2×34-3×68例3、用简便方法计算:8700÷25÷4跟踪练习:9600÷25÷4例4、用简便方法计算:625÷25跟踪练习:42800÷25例5、简算:29×31跟踪练习:简算:68×72例6、计算:11111×11111跟踪练习:计算:22222×22222例7、计算:63×275÷7÷11跟踪练习:计算:123×456÷789÷456×789÷123例8、计算:1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)跟踪练习:计算:15÷(9÷11)÷(11÷34)÷(34÷63)例9、计算:99999×22222+33333×33334跟踪练习:计算:9999×7778+3333×6666例10、计算:98989898×÷÷跟踪练习:计算:199999998×2200220022÷18÷100010001例11、计算:19981999×19991998-19981998×跟踪练习:计算:1997×1999-1996×2000例12、末尾有几个零?跟踪练习:计算:能力对接1、 将相应的序号填入括号中。
速算与巧算教学设计引言速算和巧算是数学中非常重要的技巧,它们可以帮助学生在解决数学问题时更快更准确地计算。
本文将探讨如何设计一堂有效的速算与巧算教学课程,以帮助学生提高他们的计算能力。
一、教学目标1.1 提高学生的计算速度:通过训练和练习,培养学生快速计算的能力,从而提高他们的计算速度。
1.2 培养学生的巧算思维:教授简便而高效的计算方法,帮助学生培养灵活的巧算思维,从而解决复杂的数学问题。
二、教学内容2.1 加法与减法速算技巧:介绍加法和减法的一些简化计算方法,如近似法、递近法等,以提高学生在加减法计算中的速度。
2.2 乘法与除法速算技巧:探讨乘法和除法的一些特殊计算方法,如倍增法、提前分配法等,以帮助学生更迅速地解决乘除法问题。
2.3 巧算思维培养:通过实例分析和练习,培养学生巧算思维的能力,帮助他们在解决复杂的数学问题时找到简便而高效的解题方法。
三、教学策略3.1 激发学生的兴趣:通过引入有趣的数学问题和实例,激发学生学习速算和巧算的兴趣。
例如,可以给学生提出一个有趣的挑战,用最快的速度计算出一系列复杂的数学题目。
3.2 结合实际应用:将速算和巧算技巧与实际应用情境结合起来,让学生认识到速算和巧算在日常生活中的重要性。
例如,教授学生如何在购物时快速计算折扣和找零。
3.3 分层次教学:根据学生的不同水平和能力,进行分层次的教学。
对于初学者,可以先教授一些基本的速算技巧和方法,然后逐步引入更复杂的巧算技巧。
3.4 组织合作学习活动:设计一些合作学习活动,让学生在小组中互相交流和合作,共同解决数学问题。
这样可以促进学生之间的互动和思维碰撞,提高他们的学习效果。
四、教学步骤4.1 导入:通过一个有趣的数学问题或实例引入课题,激发学生学习速算和巧算的兴趣。
4.2 介绍基本技巧:介绍加法、减法、乘法和除法的基本速算技巧,包括近似法、递近法、倍增法、提前分配法等。
4.3 演示和示范操作:通过演示和示范操作,向学生展示如何应用速算和巧算技巧解决数学问题。
4.方茴说:"可能人总有点什么事,是想忘也忘不了的。
"5.方茴说:"那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
"6.方茴说:"我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
"7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
1."噢,居然有土龙肉,给我一块!"2.老人们都笑了,自巨石上起身。
而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向 2. 乘除法巧算教学目标:掌握巧算中经常要用到的一些运算定律,如乘法交换律、结合律、分配律以及除法分配律等变式定律与性质。
1. 乘法中常用的几个重要式子2×5=10;4×25=100;8×125=1000;4×75=300;4×125=500; 2. 乘法的几个重要法则⑴去括号和添括号原则在只有乘除运算的算式里,如果括号的前面是“÷”,那么不论是去掉括号或添上括号,括号里面运算符号都要改变,即“×”号变“÷”,“÷”变“×”;如果括号的前面是“×”,那么不论是去掉括号或添上括号,括号里面运算符号都不改变。
例题. ① a ×(b ÷c) =a ×b ÷c ②a ÷(b ÷c) =a ÷b ×c ⑵带符号“搬家”在只有乘除运算的算式里,每个数前面的运算符号是这个数的符号。
20与4的差,再将两数的差16写成4×4的形式,最后利用乘法结合律简算。
(20-4)×25 (20-4)×25=20×25-4×25 =16×25=500-100 或 =4×(4×25)=400 =4×100=400例2、用简便方法计算下面各题。
(1)6666×2222+4444×6667(2)81×35+21×35-2×35【思路导航】观察上面的两道算式,算式(1)可以根据积不变的规律先变形,再反用乘法分配律,使计算简便。
6666×2222+4444×6667=3333×4444+4444×6667=4444×(3333+6667)=4444×10000=44440000算式(2)可以反用乘法分配律,使计算简便。
81×35+21×35-2×35=35×(81+21-2)=35×100=3500例3、用简便方法计算下面各题。
(1)3100÷25÷4 (2)325÷25(3)(360-108)÷36 (4)920×8÷40【思路导航】在用一个数连续除以几个数时,可以用这个数去除以另外几个数的乘积,结果不变。
算式(1)是用3100连续除以25和4这两个数,而25与4的乘积正好是100,因此,用3100除以25和4的乘积100,可以使计算简便。
随堂笔记:__________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ 3100÷25÷4成2400+36,而2400与36都是12的倍数,可以用简便方法计算。
本节课主要学习乘、除法的速算与巧算.要求学生理解乘、除法的意义及其关系,能根据乘、除法之间的关系验算乘除法;并且掌握积的变化规律以及商不变的性质,并能合理利用,解决相关问题.一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:425100⨯=,81251000⨯=,520100⨯=123456799111111111⨯= (去8数,重点记忆) 711131001⨯⨯=(三个常用质数的乘积,重点记忆) 理论依据:乘法交换率:a×b=b×a 乘法结合率:(a×b) ×c=a×(b×c) 乘法分配率:(a+b) ×c=a×c+b×c 积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即: ()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠⑵在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家). 例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ⑸两个数之积除以两个数之积,可以分别相除后再相乘.即 ()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷ 上面的三个性质都可以推广到多个数的情形.二、乘除法巧算与速算(1)凑整:2×5;4×25;8×125……;知识点拨教案目标整数乘除法速算与巧算(2)构造整数:99999......9101k =-k 个;(3)乘法分配律:()a b c a b a c ⨯+=⨯+⨯; (4)提取公因数:()a b a c a b c ⨯+⨯=⨯+; 注意:除法算式中公因数只能用为除数。
小学数学五年级速算与巧算(乘法交换律分配率结合律)速算与巧算(二)知识要点】乘法运算律:乘法交换律:a×b=b×a乘法结合律:a×b×c=(a×b)×c=a×(b×c)乘法分配律:(a±b)×c=a×c±b×c巧算中常用到的技巧是逆用乘法分配律:a×c±b×c=(a±b)×c以上的运算律是基础知识,但在实际计算中我们多用由它们引申出的运算性质来解题。
下面介绍一些,以便同学们在解题时应用。
1.乘除法运算的性质a÷b÷c=a÷c÷b=a÷(b×c)a×b÷c=a÷c×b=b÷c×a=(a×b)÷c=a×(b÷c)a÷(b÷c)=a÷b×c=a×c÷ba÷b=(a×n)÷(b×n)=(a÷n)÷(b÷n)(其中n≠0)2.除法分配性质a+b)÷c=a÷c+b÷ca-b)÷c=a÷c-b÷c典型例题】例1结合律:125×32×25×9=(125×25)×(32×9)=×288=xxxxxxxx121×99÷(11×33)=(121×3)×(9÷11)=363×0.8182=297.2727例2分配律:156×28-156×15+87×156=156×(28-15+87)=156×100=34×36+77×36-36=(34+77)×36-36=111×36-36=3960125×888=开心暑假玩转数学:1.46×72×23÷46÷23÷72=12.287÷13-101÷13-82÷13=123.999×222+333×334=4.174×26+348×86+87×49=5.999×9999+1999=xxxxxxx6.125÷36-7/9+53/36=49/127.2008×2006+2007×2005-2007×2006-2008×2005=2005例3:1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)=1.875例4:1.26×99=2574例5:1.2007×2008=xxxxxxx2.2008-2007=13.1234×4321=xxxxxxx小知识,大智慧】几十一乘以几十一的速算方法:21×61=1281=41×3181×91=7371=71×11×961×91=5551=51×11×941×51=2091=21×11×981×81=6561=61×11×941×81=3321=31×11×931×71=2201=21×11×971×81=5741=51×11×951×41=2091=21×11×9随堂小测:姓名成绩XXX 234.375XXX。
知识要点二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠ ⑵在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯⑷在乘、除混合运算中,去掉或添加括号的规则一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:425100⨯=,81251000⨯=,520100⨯=123456799111111111⨯= (去8数,重点记忆) 711131001⨯⨯=(三个常用质数的乘积,重点记忆) 理论依据:乘法交换率:a×b=b×a 乘法结合率:(a×b) ×c=a×(b×c) 乘法分配率:(a+b) ×c=a×c+b×c 积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)乘除法速算与巧算两人和倍乘5、15、25、125【例 1】 下面这些题你会算吗?(1)125(408)⨯+ (2)(1004)25-⨯ (3)(1008)25-⨯【分析】 (1)125(408)125401258500010006000⨯+=⨯+⨯=+=(2)(1004)251002542525001002400-⨯=⨯-⨯=-= (3)(1008)251002582525002002300-⨯=⨯-⨯=-=【例 2】 下面这道题怎样算比较简便呢?看谁算的快!2625⨯【分析】 26不能被4整除,但26可以拆成642⨯+,这样2625⨯,可转化为6425⨯⨯再加上225⨯,这样就可速算了. 原式64225=⨯+⨯()642522560050650=⨯⨯+⨯=+=【例 3】 你知道下题怎样快速的计算吗?⑴786 5 ⨯ ⑵12425⨯ ⑶96125 ⨯ ⑷75258⨯⨯ 【分析】 我们刚刚学过了乘 5,25,125的速算法,大显身手练一下吧!⑴7865786(52)2786023930⨯=⨯⨯÷=÷=或 786539325393103930⨯=⨯⨯=⨯= ⑵12425124(254)41240043100⨯=⨯⨯÷=÷=或1242531425311003100⨯=⨯⨯=⨯=⑶9612596(1258)896000812000 ⨯=⨯⨯÷=÷=或 9612512812512100012000⨯=⨯⨯=⨯= ⑷7525825475210015015000⨯⨯=⨯⨯⨯=⨯=【例 4】 计算:813125⨯⨯= 【分析】 根据乘法凑整原则81312581251310001313000⨯⨯=⨯⨯=⨯=去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ⑸两个数之积除以两个数之积,可以分别相除后再相乘.即 ()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷ 上面的三个性质都可以推广到多个数的情形.【例 5】 为了考察大头儿子的速算能力,小头爸爸给他出了一道题,并且限时一分钟,小朋友,你能做到吗?192564125⨯⨯⨯ 【分析】 把64分成482⨯⨯,用乘法结合律便可速算.原式2541258192=⨯⨯⨯⨯⨯()()()1001000383800000=⨯⨯=【例 6】 计算:1733212525⨯⨯⨯. 【分析】 原式1734812525=⨯⨯⨯⨯()173425812517300000=⨯⨯⨯⨯=()()【例 7】 请快速计算下面各题. ⑴200425⨯ ⑵125792⨯ 【分析】 ⑴200425(20004)2520002542550100⨯=+⨯=⨯+⨯=⑵125792125(8008)1258001258100010010001000(1001)99000⨯=⨯-=⨯-⨯=⨯-=⨯-=【例 8】 456212525548⨯⨯⨯⨯⨯⨯ 【分析】 原式456252541258=⨯⨯⨯⨯⨯⨯()()()456101001000=⨯⨯⨯ 456000000=【例 9】 聪明的你也来试试吧!⑴2415 ⨯ ⑵8475⨯ ⑶3975 ⨯ ⑷56625 ⨯【分析】 ⑴2415(24242)10(2412)10360⨯=+÷⨯=+⨯=⑵8475(214)(253)(213)(425)631006300⨯=⨯⨯⨯=⨯⨯⨯=⨯= ⑶3975 (401)7540751753000752925⨯=-⨯=⨯-⨯=-=⑷56625(78)(1255)(75)(8125)35100035000⨯=⨯⨯⨯=⨯⨯⨯=⨯=【例 10】 请你简便计算.⑴5365⨯ ⑵63815⨯ ⑶3225⨯ ⑷6875⨯【分析】 ⑴5365536(52)2536022680⨯=⨯⨯÷=÷=⑵63815(6386382)109570⨯=+÷⨯= ⑶322532(254)432004800⨯=⨯⨯÷=÷=⑷6875174253173(425)5100⨯=⨯⨯⨯=⨯⨯⨯=【例 11】 计算:125161119⨯-⨯=____________. 【分析】 根据乘法凑整原则整理为125161119⨯-⨯ ()=125829992000100012000100011001⨯⨯-=--=-+=【例 12】 计算:()450002590÷⨯=【分析】()450002590÷⨯()=450005045=450005045=100050=20÷⨯÷÷÷乘9、99、999【例 13】 下面各题怎样算简便呢?⑴129⨯ ⑵1299⨯ ⑶12999⨯【分析】 ⑴利用公式,可以得出结果:12912012108⨯=-=;⑵12991200121188⨯=-=,此题也可用小技巧:“去1添补”法,“补”就是“补数”,和为整十或整百或整千的两个数都可称为互补数.注意:只适用于“两位数乘99”.的补数是88去11112=118812× 99⑶12999120001211988⨯=-=,此题可用小技巧:“去1添补,中间隔9”法. 注意:只适用于“两位数乘999”.中间隔的补数是88去1是12=1198812×【例 14】 计算:123456789876543219⨯=【分析】 原式()21111111119=⨯ 999999999111111111=⨯111111111000000000111111111=- 111111110888888889=【例 15】 算式1234567898765432163⨯值的各位数字之和为 。
本讲,我们来学习一些比较复杂的用凑整法和分解法等方法进行的乘除的巧算。
这些计算从表面上看似乎不能巧算,而如果把已知数适当分解或转化就可以使计算简便。
对于一些较复杂的计算题我们要善于从整体上把握特征,通过对已知数适当的分解和变形,找出数据及算式间的联系,灵活地运用相关的运算定律和性质,从而使复杂的计算过程简化。
实际进行乘法、除法以及乘除法混合运算时,可利用以下性质进行巧算:①乘法交换律:A×B=B×A②乘法结合律:A×B×C=A×(B×C)③乘法分配律:(A+B)×C=A×C+B×C由此可以推出:A×B+A×C=A×(B+C)(A-B)×C=A×C-B×C④除法的性质:A÷B÷C=A÷C÷B=A÷(B×C)利用乘法、除法的这些性质,先凑整得10、100、1000……会使计算更简便。
例1:计算236×37×27分析:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。
例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。
解:原式=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=236000-236=235764随堂小练:计算下面各题:(1)132×37×27(2)315×77×13例2:计算333×334+999×222分析:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。
第2讲速算与巧算上一讲我们介绍了一类两位数乘法的速算方法,这一讲讨论乘法的“同补”与“补同”速算法。
两个数之和等于10,则称这两个数互补。
在整数乘法运算中,常会遇到像72×78,26×86等被乘数与乘数的十位数字相同或互补,或被乘数与乘数的个位数字相同或互补的情况。
72×78的被乘数与乘数的十位数字相同、个位数字互补,这类式子我们称为“头相同、尾互补”型;26×86的被乘数与乘数的十位数字互补、个位数字相同,这类式子我们称为“头互补、尾相同”型。
计算这两类题目,有非常简捷的速算方法,分别称为“同补”速算法和“补同”速算法。
例1 (1)76×74=?(2)31×39=?分析与解:本例两题都是“头相同、尾互补”类型。
(2)与(1)类似可得到下面的速算式:由例1看出,在“头相同、尾互补”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两位时前面补0,如1×9=09),积中从百位起前面的数是被乘数(或乘数)的十位数与十位数加1的乘积。
“同补”速算法简单地说就是:积的末两位是“尾×尾”,前面是“头×(头+1)”。
我们在三年级时学到的15×15,25×25,…,95×95的速算,实际上就是“同补”速算法。
例2 (1)78×38=?(2)43×63=?分析与解:本例两题都是“头互补、尾相同”类型。
(2)与(1)类似可得到下面的速算式:由例2看出,在“头互补、尾相同”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两位时前面补0,如3×3=09),积中从百位起前面的数是两个因数的十位数之积加上被乘数(或乘数)的个位数。
“补同”速算法简单地说就是:积的末两位数是“尾×尾”,前面是“头×头+尾”。
观察:66×46,73×88,19×44。
第二讲速算与巧算(二)一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的式:5×2=1025×4=100125×8=1000【例 1】计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。
【例2】计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。
【例 3】计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67 可看成67×1)【例 4】计算①123×101②123×99解:①式=123×(100+1)=123×100+123=12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。
【例 5】一个数×10,数后添 0;一个数×100,数后添 00;一个数×1000,数后添 000;以此类推。
如:15×10=15015×100=150015×1000=15000【例 6】一个数×9,数后添 0,再减此数;一个数×99,数后添 00,再减此数;一个数×999,数后添000,再减此数;…以此类推。
如:12×9=120-12=10812×99=1200-12=118812×999=12000-12=11988【例 7】一个偶数乘以5,可以除以 2 添上 0。
如:6×5=3016×5=80116×5=580。
【例 8】一个数乘以 11,“两头一拉,中间相加”。
如2222×11=244422456×11=27016【例 9】一个偶数乘以15,“加半添0”.24×15=(24+12)×10=360 因为24×15=24×(10+5)=24×(10+10÷2)=24×10+24×10÷2(乘法分配律)=24×10+24÷2×10(带符号搬家)=(24+24÷2)×10(乘法分配律)【例 10】个位为5 的两位数的自乘:十位数字×(十位数字加1)×100+25 如15×15=1×(1+1)×100+25=22525×25=2×(2+1)×100+25=62535×35=3×(3+1)×100+25=122545×45=4×(4+1)×100+25=202555×55=5×(5+1)×100+25=302565×65=6×(6+1)×100+25=422575×75=7×(7+1)×100+25=562585×85=8×(8+1)×100+25=722595×95=9×(9+1)×100+25=9025 还有一些其他特殊因数相乘的简便算法,有兴趣的同学可参看《算得快》一书。
二、除法及乘除混合运算中的巧算1.在除法中,利用商不变的性质巧算商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为整十、整百、整千的数,再除。
【例 11】计算①110÷5②3300÷25③44000÷125解:①110÷5=(110×2)÷(5×2)=220÷10=22②3300÷25=(3300×4)÷(25×4)=13200÷100=132③44000÷125=(44000×8)÷(125×8)=352000÷1000=3522.在乘除混合运算中,乘数和除数都可以带符号“搬家”。
【例 12】864×27÷54=864÷54×27=16×27=4323.当n 个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数。
【例 13】①13÷9+5÷9②21÷5-6÷5③2090÷24-482÷24④187÷12-63÷12-52÷12解:①13÷9+5÷9=(13+5)÷9=18÷9=2②21÷5-6÷5=(21-6)÷5=15÷5=3③2090÷24-482÷24=(2090-482)÷24=1608÷24=67④187÷12-63÷12-52÷12=(187-63-52)÷12=72÷12=64.在乘除混合运算中“去括号”或添“括号”的方法:如果“括号”前面是乘号,去掉“括号”后,原“括号”内的符号不变;如果“括号”前面是除号,去掉“括号”后,原“括号”内的乘号变成除号,原除号就要变成乘号,添括号的方法与去括号类似。
即a×(b÷c)=a×b÷c从左往右看是去括号,a÷(b×c)=a÷b÷c从右往左看是添括号。
a÷(b÷c)=a÷b×c【例 14】①1320×500÷250②4000÷125÷8③5600÷(28÷6)④372÷162×54⑤2997×729÷(81×81)解:①1320×500÷250=1320×(500÷250)=1320×2=2640②4000÷125÷8=4000÷(125×8)=4000÷1000=4③5600÷(28÷6)=5600÷28×6=200×6=1200④372÷162×54=372÷(162÷54)=372÷3=124⑤2997×729÷(81×81)=2997×729÷81÷81=(2997÷81)×(729÷81)=37×9=333习题二一、用简便方法求积:①17×100②1112×5③23×9④23×99⑤12345×11⑥56789×11⑦36×15二、速算下列各题:①123×25×4②456×2×125×25×5×4×8③25×32×125三、巧算下列各题:①15000÷125÷15②1200÷25÷4③27000÷(125×3)④360×40÷60四、巧算下列各题:①11÷3+4÷3②19÷5-9÷5③234×11+234×88习题二解答一、用简便方法求积:①17×100=1700②1112×5=5560③23×9=230-23=207④23×99=2300-23=2277⑤12345×11=135795⑥56789×11=624679⑦36×15=(36+18)×10=540二、速算下列各题:①123×25×4=123×(25×4)=12300②456×2×125×25×5×4×8=456×(2×5)×(25×4)×(125×8)=456000000③25×32×125=(25×4)×(125×8)=100000三、巧算下列各题:①15000÷125÷15=15000÷15÷125=8②1200÷25÷4=1200÷(25×4)=12③27000÷(125×3)=27000÷3÷125=9×(1000÷125)=9×8=72④360×40÷60=360÷60×40=240四、巧算下列各题:①11÷3+4÷3=(11+4)÷3=5②19÷5-9÷5=(19-9)÷5=2③234×11+234×88=234×(11+88)=234×99=234×100-234=23166。