第2讲 有理数及有关概念( 二)
- 格式:doc
- 大小:96.00 KB
- 文档页数:4
第一章有理数1.2.1 有理数的概念0.3…负分数:如-52,-23,-17, -0.5, -150.5,… 引导:0.1=110,-0.5=−12, 0.3 = 13 ,事实上,有限小数和无限循环小数都可以化为分数,因此它们也可以看成分数。
指出:正分数、负分数统称为分数。
想一想:整数能化成分数吗?预设:2=21, 3=31,…正整数可以写成正分数的形式-2=−21, -3=−31,…负整数可以写成负分数的形式0=01,0也可以写成分数的形式 整数可以写成分数的形式指出:可以写成分数形式的数称为有理数。
可以写成正分数形式的数为正有理数,可以写成负分数形式的数为负有理数。
思考:你能试着对有理数进行分类吗?预设:有理数的分类(整分性):有理数的分类(正负性):例1:指出下列各数中的正有理数、负有理数,并分别指出其中的正整数、负整数:13,4.3,−38,8.5%,-30,-12%, 19 ,-7.5,20,-60,1.2解:正有理数:13,4.3, 8.5%, 19 ,20,1.2;其中正整数有13,20。
负有理数: −38, -30,-12%, -7.5,-60 ; 其中负整数有-30,-60。
例2:下列说法中,正确的是( ). A .在有理数中,0的意义仅仅表示没有 B .一个有理数,它不是正数就是负数 C .正有理数和负有理数组成有理数 D .0是自然数 答案:D强调:在有理数概念中,“0”很特殊: (1)0既不是正数,也不是负数; (2)0是整数,不是分数; (3)0既是非正数,又是非负数. 活动意图说明:【解析】本题主要考查了有理数的分类,理解有理数的相关定义是解题的关键.先根据正数的定义判断A 的正误,再根据非负数是正数或0判断B 的正误;再根据有理数也可分成整数和分数判断C ,D 的正误即可解答.解:A .由50%,1,2.5是正数,故正确,符合题意; B .由−2,−4为负数,故错误,不符合题意; C .1为整数,故错误,不符合题意; D .因为112是分数,故错误,不符合题意. 故选:A .【综合拓展类作业】5.如图,把下列各数填入相应的各圈里. 100,−99%,0,−2000,5.2,6,−0.3,116,−53【答案】见解析【解析】本题考查了有理数的分类,根据有理数的分类,即可求解. 解:整数为:100,0,−2000,6; 负数为:−99%,−2000,−0.3,−53; 则负整数为:−2000;本节课的主要内容是让学生明确有理数的概念,并能对有理数进行正确。
第二章有理数1.了解具有相反意义的量,正负数的概念;2.理解有理数、相反数、绝对值、倒数的概念,能正确解题;3.理解数轴的概念,并能正确画出数轴,,在数轴上表示数;4.理解有理数加法、减法、乘法、除法法则、;5.理解有理数乘方定义及运算;6.能掌握加法、减法的运算定律和运算技巧,熟练计算;能掌握乘法的运算定律和运算技巧,熟练计算;7.通过将减法转化成加法和将除法转化成乘法,初步培养学生数学的归一思想8.进一步掌握有理数的五则混合运算;9.理解科学记数法,了解近似数;10.能运用科学记数法表示较大的数.知识点1 正数和负数1.概念正数:大于0的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。
(不是带“—”号的数都是负数,而是在正数前加“—”的数。
)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
知识点2:有理数1.概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数知识点3:数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)知识点3 :相反数1.概念代数:只有符号不同的两个数叫做相反数。
(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
2023-2024学年北师大版七年级数学上册《第二章有理数及其运算2.6有理数的加减混合运算(第2课时)》教学设计一. 教材分析本节课的主要内容是第二章有理数及其运算2.6有理数的加减混合运算(第2课时)。
在这一节中,学生需要掌握有理数的加减混合运算的法则,并能熟练地进行相关运算。
教材通过具体的例题和练习题,帮助学生理解和掌握这些运算规则。
二. 学情分析学生在学习本节课之前,已经学习了有理数的基本概念,包括正数、负数、整数、分数等,并对有理数的加减法有了初步的了解。
然而,对于加减混合运算,学生可能还存在一定的困惑,需要通过本节课的学习,进一步理解和掌握。
三. 教学目标1.让学生理解有理数的加减混合运算的法则。
2.培养学生能熟练地进行有理数的加减混合运算。
3.培养学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:有理数的加减混合运算的法则。
2.难点:如何运用这些运算规则解决实际问题。
五. 教学方法采用讲授法、案例分析法、小组合作法等多种教学方法,以激发学生的学习兴趣,提高学生的学习效果。
六. 教学准备1.准备相关的教学PPT。
2.准备一些实际的例子,用于讲解和练习。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入本节课的主题——有理数的加减混合运算。
例如,小华买了一本书,原价是25元,然后又买了一支笔,价格是10元,请问小华一共花费了多少钱?2.呈现(15分钟)通过PPT,展示有理数的加减混合运算的法则,并通过具体的例子,讲解这些法则的应用。
3.操练(15分钟)让学生进行一些实际的运算,以巩固所学的知识。
可以让学生独立完成,也可以分组进行。
4.巩固(10分钟)通过一些练习题,帮助学生巩固所学知识。
可以设置一些难易不同的问题,以满足不同学生的需求。
5.拓展(10分钟)通过一些综合性的问题,让学生运用所学知识解决实际问题。
例如,可以让学生设计一个购物预算,或者计算一个长方形的面积等。
第二篇有理数的基本概念(下)
【知识点一】数轴
1.数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。
注:(1)原点、正方向、单位长度是数轴的三要素
(2)数轴左边的数比右边的小
(3)数轴可以用来表示任何数
2.数轴的作用:用来表示数和比较数的大小。
【知识点二】相反数
1.相反数的定义:只有符号不同的两个数互为相反数。
注:(1)0的相反数仍为0
(2)相反数必须成对出现,不能单独存在
(3)互为相反数的两个数到原点的距离相同
2.a与b互为相反数a+b=0
【知识点三】绝对值
1.绝对值:数a的绝对值记作|a|。
绝对值的几何意义:数a的绝对值就是数轴上表示数a的点到原点的距离。
绝对值的代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
a(a>0)
|a|=0(a=0)
-a(a<0)
2.绝对值具有非负性:|a|≥0
【知识点四】多重符号的化简
(1)一个正数前面不管有多少个“+”号,都可以全部去掉。
(2)一个正数前面有偶数个“-”号,也可以“-”号全部去掉;
一个正数前面有奇数个“-”号,则化简后只保留一个“-”号,即“奇负偶正”。
1。
有理数基本概念1.有理数分类⎧⎧⎫⎪⎪⎪⎬⎪⎪⎨⎪⎭⎪⎪⎪⎨⎪⎩⎪⎧⎪⎪⎨⎪⎪⎪⎩⎩正整数自然数零整数负整数有理数(按定义分类)正分数分数负分数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数(按符号分类)零负整数负有理数负分数⎧⎫⎪⎬⎨⎭⎪⎩有限小数可化成分数形式,是有理数小数无限循环小数无限不循环小数——不可以化成分数形式,不是有理数1. “四非”的概念⑴ 零和正数 统称为非负数; ⑵ 负数和零统称为非正数;⑶ 正整数和零统称为非 负整数 ; ⑷ 负整数和零 统称为非正整数. 2. 数轴数轴的三要素 ① 原点 ② 正方向 ③ 单位长度.1)在数轴上表示的两个数,右边的数总比左边的数大;2)正数都大于0,负数都小于0;正数大于一切负数;3)所有有理数都可以用数轴上的点表示。
3. 相反数⑴ 若两个数a 与b 互为相反数,则 0a b += 若0a b +=则a 与b 互为相反数. ⑵ 正数的相反数是负数,0的相反数是0 ,负数的相反数是正数.一个数的相反数等于其本身,则这个数一定是 0 . 4. 绝对值⑴ 绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是 相反数 ;0的绝对值是 0 .⑵ 一个数a 的绝对值就是数轴上表示数a 的点 到原点的 距离.数a 的绝对值记作a .⑶①_____(0)___0__(0)_____(0)a aa aa a>⎧⎪==⎨⎪-<⎩②(0)(0)a aaa a⎧=⎨-<⎩≥③(0)(0)a aaa a>⎧=⎨-⎩≤⑷①绝对值具有非负性,取绝对值的结果总是正数或0.②如果若干个非负数的和为0,那么这若干个非负数都必为0 .5.倒数(负倒数)乘积为1的两个数互为倒数,特别地,0没有倒数;正数的倒数是正数,负数的倒数是负数.负倒数:乘积为1-的两个数互为负倒数,特别地,0没有负倒数.1)a的倒数是1a(a≠0);2)0没有倒数3)若a与b互为倒数,则ab=1.注意点:1分数与小数均有时,应先化为统一形式.2带分数可分为整数与分数两部分参与运算.3多个加数相加时,若有互为相反数的两个数,可先结合相加得零.4若有可以凑整的数,即相加得整数时,可先结合相加.5若有同分母的分数或易通分的分数,应先结合在一起.6符号相同的数可以先结合在一起.3.有理数的运算律1) 加法交换律a+b=b+a2) 加法结合律a+b)+c=a+(b+c)3) 乘法交换律ab=ba4) 乘法结合律(ab)c=a(bc)5) 分配律a(b+c)=ab+ac有理数运算技巧一. 灵活运用运算律例1. 计算:。
有理数及其运算知识总结一、本章知识概述本章所学习的是有理数及其运算,我们可以将本章的内容分为三大部分:第一部分:主要内容是有理数的有关概念.首先是理解有理数的意义及分类,判断一个数是正数还是负数,运用正、负数表示生活中具有相反意义的量.其次是认识数轴,用数轴上的点表示有理数,借助数轴认识相反数的概念及互为相反数的一对数在数轴上的位置关系,利用数轴比较有理数的大小.第三是理解绝对值的概念及求一个数的绝对值,利用绝对值比较两个负数的大小,通过应用题解决实际问题,体会绝对值的意义和作用.第二部分:学习有理数的加减法运算,通过探索有理数加法法则和运算律的过程,理解有理数的加法法则和运算律,利用有理数的加法法则进行有理数的加法运算,并利用运算律简化运算;通过探索有理数减法法则的过程,理解有理数的减法法则,利用有理数的减法法则进行有理数的减法运算;利用有理数的加、减法法则进行包括整数、分数或小数的有理数的加减混合运算,并适当利用运算律简化运算;综合运用有理数及其加法、减法的有关知识,解决简单的实际问题,体会数学与现实生活的联系.第三部分:主要内容是有理数的乘、除、乘方运算及有理数的加、减、乘、除、乘方混合运算.经历探索有理数乘法法则及运算律的过程,发展观察、归纳、猜测、验证等能力 .根据有理数乘法法则进行有理数的乘法运算,运用乘法运算律简化计算;根据有理数除法法则进行有理数的除法运算,求有理数的倒数;根据有理数乘方的意义进行有理数的乘方运算,通过实例感受当底数大于1时,乘方运算结果的快速增长.根据有理数混合运算顺序的规定,进行有理数加、减、乘、除、乘方的混合运算,在运算过程中,合理使用运算律简化运算;使用计算器进行有理数的加、减、乘、除、乘方运算,使用计算器进行实际问题的复杂运算.二、重点知识归纳及讲解1、正数和负数的概念比0大的数叫做正数;在正数前面加上“-”号的数叫做负数;0既不是正数,也不是负数.为了突出数的符号,可以在正数前面加“+”号,一般地“+”号往往省略不写,但负数前面的“-”号不能省略.对于正数和负数的概念,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数.2、有理数的概念及分类整数和分数统称为有理数:正数、负数和零也统称为有理数.整数包括正整数、零和负整数、分数包括正分数和负分数;正数包括正整数和负整数;负整数包括负整数和负分数.到目前为止,我们学过的数细分有五类:正整数、正分数、零、负整数、负分数,因为有限小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数都看作分数.有时为了研究的需要,整数也可以看作是分母为 1的分数,但本章中的分数是指不包括分母是1的分数.通常把正整数和零统为非负数;负数和零统称为非正数;正整数和零统称为非负整数,即为自然数;负整数和零统称为非正整数.3、数轴的概念及画法规定了原点、正方向和单位长度的直线叫做数轴.数轴的概念中包含有三层含义:一是说数轴是一条直线,可以向两端无限延伸;二是说数轴具有原点,正方向和单位长度三要素,三者缺一不可;三是说数轴原点的选定,正方向的取向、单位长度大小的确定,是根据实际需要规定的.画数轴的步骤:(1)画一条直线,一般画成水平的直线;(2)在直线上选取一点为原点,用实心点表示,在原点下边标上0;(3)用箭头表示正方向,一般规定向右为正;(4)选取适当的长度为单位长度,用细短线画出,并在下边标上对应的数.4、相反数的概念如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0.在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等,这就是相反数的几何意义.一般地,数a的相反数是-a,这里a表示任意一个数,可以是正数、负数或零,还可以代表任意一个代数式,表示或求一个数的相反数,只要在这个数的前面添上一个“-”号就可以了.相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数;不能理解为只要符号不同的两个数就互为相反数,只有符合不同的两个数是说除了符号不同以外完全相同.5、绝对值的概念在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,数a的绝对值记作“|a|”.正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0,这就是绝对值的代数意义,也可表示为:6、绝对值的有关性质(1)对任意有理数a,都有|a|≥0;(2)若|a|=0,则a=0;(3)若|a|=|b|,则a=b或a=-b;(4)若|a|=b(b>0),则a=±b;(5)若|a|+|b|=0,则a=0且b=0;(6)对任意有理数a,都有|a|=|-a|.7、有理数大小的比较法则在数轴上表示的两个数,右边的数总比左边的数大;正数都大于 0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小 .8、有理数加法法则同号两数相加,取相同的符号,并把绝对值相加 .异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并把较大的绝对值减去较小的绝对值.一个数同 0相加,仍得这个数.9、有理数加法运算律加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)10、有理数减法法则减去一个数,等于加上这个数的相反数,即: a-b=a+(-b).11、代数和的意义几个正数或负数的和叫做代数和,代数和一般用省略加号、括号的和的形式来表示,代数和不仅表示有理数相加的结果,而且还可表示加法运算.12、有理数加减混合运算步骤(1)把加减混合运算统一成加法;(2)写成省略加号、括号的代数和;(3)利用加法法则及运算律进行计算.13、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘都得0.14、多个非零因数相乘,积的符号规律n个不等于零的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数的个数为偶数个时,积为正.n个数相乘,有一个因数为0,积就为0.15、有理数乘法的运算律(1)交换律:两个因数相乘,交换因数的位置,积不变.即a·b=b·a;(2)结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即(a·b)·c=a·(b·c);(3)分配律:一个数同两个数的和相乘,等于把这个数分别同这两数相乘,再把所得的积相加.即a(b +c)=ab+ac.16、倒数的概念乘积为1的两个有理数互为倒数.即当a·b=1时,a与b互为倒数.由于任何一个有理数与0的积为0,不可能是1,所以0没有倒数.倒数还可以说成是:1除以一个数(除数不等于0)的商叫做这个数的倒数,如a≠0,a的倒数为1a.17、有理数的除法法则除以一个数等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都得0.18、利用除法化简分数除法可以写成几种不同的形式,例如:6÷3可以写成63,还可写成6∶3.说明除法可以表示成分数和比的形式;反过来,分数和比可化为除法,由于除法、分数和比可以互化,所以可以利用除法化简分数.19、乘方的概念求几个相同因数的积的运算,叫做乘方,即在n a中,a叫做底数,n叫做指数,n a叫做幂.na的读法有两种:(1)读作a的n次幂.(2)读作a的n次方.20、有理数的乘方法则正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.21、学记数法a 的形式,其中a的整数位数只有一位,这种记数的方法,叫做学记数把一个大于10的数记成10n法.22、有理数的混合运算有理数的运算中,加减为一级运算,乘除为二级运算,乘方(及开方——乘方的逆运算,以后将讲到)为三级运算.对于有理数的混合运算,要特别注意运算顺序及正确使用符号法则确定各步运算结果的符号.有理数的运算顺序是:先算乘方,再算乘除,最后算加减,对于同级运算,一般从左到右依次进行.如果有括号,就先算括号内的,且一般先算小括号内的,再算中括号内的,最后算大括号内的.如果能利用运算律简化计算,可变更上面的运算顺序,灵活处理.三、难点知识剖析1、负数的产生及其意义随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,为了满足实际需要,引入了负数、负数是由于实际需要产生的,负数也是客观存在的数 .正数和负数通常表示具有相反意义的量,若正数表示某种意义的量,则负数就表示其相反意义的量,反之亦然 .2、数集的概念把一些数放在一起,就组成一个数的集合,简称数集、所有的有理数组成的数集叫做有理数集,类似地,所有整数组成的数集叫做整数集,所有正数组成的数集叫做正数集,所有负数组成的数集叫做负数集,等等 .3、多重符号的化简规律单独一个有理数前面的“+”号和“-”号,一般都是性质符号,读作“正”号或“负”号 .括号前是“+”号时,去掉括号和“+”号后,括号内的数不变,括号前是“-”号时,去掉括号和“-”号后,括号内的数就变成它的相反数 .在一个数的前面添加一个“+”号,仍然与原数相同;在一个数的前面添加一个“-”号,就成为原数的相反数 .4、两个负有理数的大小比较两个负有理数的大小比较与其它数一样,可以利用数轴找准两个负有理数在数轴上的对应点,右边的数总比左边的数大 .两个负有理数的大小比较,还可以利用绝对值,求这两个数的绝对值,比较两个数绝对值的大小,绝对值大的反而小 .5、有关绝对值的计算及化简灵活正确运用绝对值的代数意义及有关性质 .6、积的符号的确定方法有理数乘法与算术中的乘法的区别在于积的符号.几个正数与负数相乘时积的符号法则:几个不等于0的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数有偶数个数,积为正;几个数相乘,有一个因数为0,积为0,根据积的符号法则,在有理数乘法中,不管有多少个不为0的数相乘,都应该首先根据负因数的个数一次性地先确定积的符号,这样做的好处是既简练又准确.7、几个非0的有理数相除,商的符号的确定几个非0的有理数相除,商的符号由负数的个数决定:当负数的个数为奇数时,商为负;当负数的个数为偶数时,商为正.如: (-12)÷(-2)÷(-3)——三个负数:负=-(12÷2÷3)=-2(-12)÷2÷(-3)——两个负数:正=+(12÷2÷3)=28、有理数混合运算中应注意的问题(1)要注意运算顺序;(2)要灵活运用运算定律进行简便运算,不要搞错符号,特别是乘方的符号;(3)要灵活进行小数、分数的互化;(4)互为相反数的和,互为倒数的积,有因数为零,特殊运算先行结合.典型例题例1:一个物体沿着南北两个相反方向运动,如果把向南的方向规定为正,那么走 6km,走-4.5km,走0km的意义各是什么?分析:正数与负数可表示具有相反意义的量,正数表示向南运动,则负数表示向北运动 .0表示原地不动,0表示正数与负数的分界,在实际问题中也有确定的意义.解:走 6km表示物体向南走6km;走- 4.5km表示物体向北走4.5km;走 0km表示物体原地不动.例2:某老师把某一小组五名同学的成绩简记为:+ 10、-5、0、+8、-3,又知记为0的实际成绩表示90分,正数表示超过90分,则这五位同学的平均成绩为多少分?分析:由题意先求出这五位同学的实际成绩,如简记为+ 10的学生实际成绩为100,然后再求平均成绩.解:依题意知,五位同学在实际成绩分别为:100、85、90、98、87,其平均成绩为:1(10085909887)92().5++++=分例3:如图所示的数轴上, A、B、C、D、E各点分别表示什么数?分析:根据各点在原点的左侧,右侧还是在原点上,来确定数是负数,正数还是 0,根据各点距离原点多少个长度单位,来确定数的值.解:点A表示数132;点B表示数12;点C表示数0;点D表示-3;点E 表示数142-. 例4:在数轴上画出表示下列各数的点,并用“<”连接起来;分析:首先画出数轴,三要素要齐全;再把各数在数轴上的对应点找出来;然后根据这些数在数轴上的位置顺序比较大小,再用“<”连接起来.解:这些数在数轴上的表示如图所示.它们从小到大的排列为:111132101242242<-<-<<<< 例5:利用绝对值比较下列有理数的大小 .(1)-0.6,-60234(2) ,,345--- 分析:比较负数的大小,先求出各数的绝对值,关键是比较绝对值的大小,绝对值大的反而小,比较分数大小,一般要化成同分母的分数来比较 .解:(1)|-0.6|=0.6, |-60|=60∵ 0.6<60,∴ -0.6>-60.224033454448(2) ||||||336044605560404548 ,606060234 .345---<<∴->->-==,==,==, 例6:已知 |a +2|+|b -3|=0,求a 和b 的值.分析:由绝对值的非负性可知, |a +2|≥0,|b -3|≥0,而且只有当|a +2|和|b -3|都等于0时,|a +2|+|b -3|=0才成立,因为只有0的绝对值等于0,所以a=-2,b=3.解:∵ |a +2|+|b -3|=0,又 ∵ |a+2|≥0,|b -3|≥0,∴ |a +2|=0,|b -3|=0.∴ a +2=0,b -3=0.∴ a=-2,b=3.例7:计算分析:进行有理数加减混合运算时,应先把加减运算统一成加法运算,再写成省略加号和括号的代数和,最后运用有理数的加法法则及运算律进行计算,能够简化运算的尽量简化运算 .解:(1)原式=(-5)+(-3)+(-9)+(+7)=-5-3-9+7=(-5-3-9)+7=-17+7=-1034210(2)()()()()10757++++-+-原式=例8:计算题:2322232183(1)(1)(1)(0.51);362141(2)(3)12(2).3(2)÷-+⨯------÷--- 268491(1)()()3721168471 76834922 (2)29(8)1⨯-+⨯---++-⨯-----解:原式==121=1684-6原式====-1 注:(1)要按运算顺序进行计算.(2)乘方时要看清楚底数与指数,先确定幂的符号.例9:计算题:242112518(1){[(2)]()(2)}();23639131(2)0.25()(1)(12 3.75)24.283--÷---÷--÷-⨯-++-⨯112518(1){[2)]()2)}()23639251 []631 3 3131 (2)16(1)124224 3.7521683+÷-+÷-⨯⨯⨯⨯-⨯⨯-+⨯+⨯-⨯解:原式=169=(-)+2(-)589=(-5+2)(-)889=(-)(-)38=原式=4 1+33+56-900== 注:第(1)小题先由里及外逐层去掉括号,同时把除法转化为乘法进行运算,第(2)小题应用乘法分配律使运算得以简化.例10:用学记数法表示下列各数.(1)270.3; (2)3870000;(3)光的速度约为300 000 000米/秒;(4)0.5×9×1000000; (5)10.解:(1)270.3=2.703×100=2.703×102.(2)3870000=3.87×1000000=3.87×106.(3)300000000=3×100000000=3×108.(4)0.5×9×1000000=4.5×106.(5)10=1×10.说明:学记数法a ×10n 中,a 是小于10且大于等于1的数,n 比原数位的整数位数少1,比如:3870000000是10位数,指数n 就是9.这就是说n 等于原数的整数位数减1,而不是比所有的数位和少1.如179.4=1.794×102,而不是179.4=1.794×103.例11:某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6 ℃,若该地地面温度为21 ℃,高空某处温度为-39 ℃,求此处的高度是多少千米?解: 1×{[21-(-39)]÷6}=1×(60÷6)=10(千米)因此:此处的高度是10千米.。
小升初讲义
第2讲: 有理数及有关概念.(二)
【知识精讲】
1、什么叫绝对值?
在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.例如+5的绝对值等于5,记作|+5|=5;-3的绝对值等于3,记作|-3|=3.
2、绝对值的特点有哪些?
(1)一个正数的绝对值是它本身;例如,|4|=4 , |+7.1| = 7.1
(2)一个负数的绝对值是它的相反数;例如,|-2|=2,|-5.2|=5.2
(3)0的绝对值是0.
容易看出,两个互为相反数的数的绝对值相等.如|-5|=|+5|=5.
若用a 表示一个数,当a 是正数时可以表示成a >0,当a 是负数时可以表示成a <0,这样,上面的绝对值的特点可用用符号语言可表示为:
(1) 如果a >0,那么|a|=a ;
(2) 如果a <0,那么|a|=-a ;
(3) 如果a =0,那么|a|=0。
3、绝对值在本节课中的应用――比较两个负数的大小
由于绝对值是表示数的点到原点的距离,则离原点越远的点表示的数的绝对值越大.负数的绝对值越大,表示这个数的点就越靠左边,因此,两个负数比较,绝对值大的反而小.
【典例解析】
知识点1.绝对值的概念及求法
(1)几何定义:在数轴上一个数所对应的点与原点的距离叫做该数的绝对值.
(2)代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
(3)求法:要求一个数的绝对值,应先判断这个数是正数、负数还是0,再由绝对值的意义确定去掉绝对值符号后的结果.
例1计算:21
31
1-
题练1化简:)2(2>-x x
题练2若2=a ,则a 的值为 .
例2、绝对值小于5的整数有哪些?
题练3:|x -3|=5,求x 的值.
知识点2.利用绝对值比较两个负数的大小
例3比较有理数的大小:76
-和87
-
题练4比较大小:π--与-3.14
题练5如果y x <,那么( )
y x A <. y x B >. .C x 、y 同号时,y x < x D .、y 同负时,
y x > 拓展:
题型1绝对值非负性的应用
例4已知0212=-+-b a ,求22-+a b 的值
题练6若43-+x 有最小值,则=x .
题型2绝对值在实际生活中的应用
例7某工厂生产一批螺帽,根据产品质量的要求,螺帽内径可以有0.02毫米的误差,抽查五只螺帽,超过规定内径的毫米数用正数表示,不足的用负数表示,检查结果如下:
(1)指出哪些产品符合要求;
(2)指出合乎要求的产品中哪个质量好一些?
题练8出租车司机小李某天下午的营运全是在某条东西走向的大街上进行的,如规定向东为正,向西为负,他这天下午的行程如下(单位:千米):+15,-3,+14,-11,+10,-12
若汽车耗油量为每千米0.1升,则这天下午汽车共耗油多少升?
【过关试题】
1、下列说法中正确的有( )
① 互为相反数的两个数的绝对值相等;②正数和零的绝对值都等于它本身;③只有负数的绝对值是它的相反数;④一个数的绝对值的相反数一定是负数。
A 、1个
B 、2个
C 、3个
D 、4个
2、下列判断正确的有( )
①|+2|=2 ②|-2|=2 ③-|-5|=5 ④|a |≥0
A 、1个
B 、2个
C 、3个
D 、4个
﹡3. 若x x -=,则x 一定是( )
A. 负数
B. 负数或零
C. 零
D. 正数
二、填空题:
1、2.7+的相反数的绝对值是 。
2、数轴上到原点的距离为7的点所表示的数是 。
3、绝对值等于5的数有 个,它们分别是 ,它们表示的是一对 数.
4、 的绝对值是7。
5、如果|x |=9,那么x = 。
三、解答题:
1.比较下列每对数的大小:
(1)|53
|与|5
2
|-; (2)-|-7|和-(-7) (3)|—4|与—4; (4)|—(—3)|与—|—3|; (5)—98与—97
; (6)—85与—117
.
2、正式排球比赛对所用排球的质量有严格的规定,下面是6个排球的质量检测结果(用正数记超过规定质量的克数,用负数记不不足规定质量的克数):
-25,+10,-11,+30,+14,-39
请指出哪个排球的质量好一些,并用绝对值的知识进行说明
3、求出绝对值大于3小于213
的所有正整数的和
能力测试
1. 已知5-=a ,3-=b ,求b a --的值。
2. 已知0
23=++-b a ,求下列代数式的值。
(1)13-+b a (2)b a a ++22
答案:
一、1、B;2、C;3、B;
二、1、7.2;2、±7;3、两,±5,相反数;4、±7;5、±9
三、1、>;<;>;>;<;<
2、第二个排球,因为它的绝对值最小,也就是离标准质量的克数最近。
3、15
能力测试:
1、2;
2、24,13;。