圆曲线测设的任意弦长支距法
- 格式:pdf
- 大小:31.89 KB
- 文档页数:1
文献综述一、圆曲线的详细测设在各类线路工程弯道处施工,常常会遇到圆曲线的测设工作。
目前,圆曲线测设的方法已有多种,如偏角法、切线支距法、弦线支距法等。
然而,在实际工作中测设方法的选用要视现场条件、测设数据求算的繁简、测设工作量的大小,以及测设时仪器和工具情况等因素而定。
另外,上述的几种测设方法,都是先根据辅点的桩号(里程)来计算测设数据,然后再到实地放样。
因此,在实际工作中利用上述传统测设方法,有时会因地形条件的限制而无法放样出辅点(如不通视或量距不便等),或放样出的辅点处无法设置标桩。
在本次毕业设计的论文课题中介绍的几种圆曲线测设的新方法,不仅计算简单、测设便捷,而且可在不需要知道曲线上某点里程的情况下进行,从而避免了按预先给定的曲线点反算的测设数据放样不通视而转站的麻烦。
同时,利用本文介绍的新方法,还可以根据线路工程施工进度的要求,灵活地选择性地放样出部分曲线;也可以用于快速地确定曲线上某一加桩的位置;若用于线路验收测量,则更加方便,验测结果更具有代表性、更可靠。
二、全站仪在任意站测设圆曲线及方法交点偏角法测设方法用全站仪任意站测设圆曲线,安置一次仪器就能完成全部工作。
虽然外业计算麻烦,但对于不能设站的转点,可谓方便灵活。
但它的不足之处仍然是计算烦锁,对于不熟悉内业的外业工作者,很难实际操作。
如果利用一些程序计算器,编制输入:AB 的四组坐标和半径、九个数据的程序,可迅速得出放样数据,简化了外业工作。
为了放样工作的便利,可在平面控制网中纳入一些放样点,构成GPS同级全面网。
由于放样点间距离较近,在进行同步环和闭合环检验时可仅考虑各分量的较差,而不考虑相对闭合差。
因为,用相对闭合差来衡量是不合理的。
由于GPS接收机的固定误差,相位中心偏差以及观测时的对中误差均在1mm~5mm之间,对于几十米的短边,其相对闭合差值势必较大。
3)平面控制网的设计主要考虑独立基线的选择以及异步闭合环的设计,要考虑构成尽可能多的闭合图形,并将网中处于边缘的观测点用独立基线连接起来,形成封闭图形。
第三节圆曲线的详细测设§11 —3圆曲线的详细测设一、偏角法测设圆曲线圆曲线的主点ZY、QZ、YZ定出后,为在地面上标定出圆曲线的形状,还必须进行曲线的加密工作。
曲线点:对圆曲线进行加密,详细测设定出的曲线上的加密点。
曲线点的间距:一般规定,R> 150 m时曲线点的间距为20m, 50m W R<150m时曲线点的间距为10m 。
R<50m时曲线上每隔5m测设一个细部点;在点上要钉设木桩,在地形变化处还要钉加桩。
曲线测设:设置曲线点的工作,常用的方法有:偏角法和切线支距法。
1.偏角法的测设原理:1 )偏角:即弦切角2)原理:根据偏角(》)及弦长(c)测设曲线点。
如图11-4 :从ZY点出发,根据偏角3 1及弦长C(ZY-1 )测设曲线点1;根据偏角及弦长C( 1 一2)测设曲线点2… 等。
2•偏角及弦长的计算:(1)偏角计算:原理:偏角(弦切角)等于弦所对应的圆心角的一半。
心角:则相应的偏角:K 180 •如图11-4, ZY-1曲线长为K,所对圆= —* --------R 7Tu 舉K 180^爲"竺——•——-2 ZR n当所测曲线各点间的距离相等时,以后各点的偏角则为第一个偏角3的累计倍数。
即:§ =u ⑻)1I 2/?d; = 23】I6y—3*5] .....氏=吃(2)弦长计算(如图11-4)严密计算公式:Jrdi /f(' =2R sin $sin — =C二sin —1 2 R■※弦弧差(弦长与其相对应的曲线长之差):弦弧差=K i -C i = L i3/(24R2)当R=450m时,20m的弦弧差为2mm ,•••当R>400m时,不考虑弦弧差的影响。
由于铁路曲线半径一般很大,20m的弦长与其相对应的曲线长之差很小,就用弦长代替相应的曲线长进行圆曲线测设。
近似计算:'、"整弦:里程为20m倍数的两相邻曲线点间的弦长(曲线点间距20m对应的弦长)。
第四章圆曲线要素计算及测设根据提供资料,=40º20′(右),R=120米,转角点JD的桩号为K3+135.12,用偏角法测设各桩点(规定桩距为20米)。
切线长:曲线长:外矢距:切曲差:经计算,T=36.73 L=70.40 E=6.53根据JD的桩号为K3+135.12,则:JD桩号 K3+135.12-) T 36.73ZY桩号 K3+098.39+) L 70.40YZ桩号 K3+098.39-) L/2 35.20QZ桩号 K3+133.59+) D/2 1.53JD桩号 K3+135.12所以,经计算交点的里程与校核计算相符。
第一节仪器安置在ZY点上的施测法一、在ZY点上施测法11.计算根据转折角和半径R及交点桩计算三主点的桩号为:ZY: K3+098.39; QZ :K3+133.59 ;YZ: K3+168.79。
因ZY点的里程为3+098.39,在曲线上,它前面最近的整里程为3+100.00,所以起始弧长=(3+100)-(3+098.39)=1.61(m)。
又因点YZ点的里程为3+168.79,在曲线上,它后面最近的里程为3+160.00,弧长=(3+168.79)-(3+160.00)=8.79(m)。
现将计算的偏角值到列表如表4-1,供测设时使用。
为检查计算有无错误,可与总偏角核对。
本次研究课题中的总偏角为=20º10′00″,与计算之总偏角20º10′05″相差05″,这是因为偏角表计算至秒为止,秒后数值四舍五入所造成的误差,与测量精度无影响,属容许误差。
2、施测方法:如图4-1所示,将仪器安置在ZY点上,全站仪显示对准0º0′0″,后视JD,然后旋转望远镜,拨至第一桩点K3+100.00的偏角0º27′40″,从ZY点起沿此方向量出第一段曲线长 1.61米相应的弦长,定出第一桩点。
再拨至第二桩点K3+120.00的偏角6º11′26″,从第一桩点量出第二段曲线长20米相应的弦长,交出第二桩点。
毕业设计-圆曲线测设前言《礼记》有云:大学之道,在明德,在亲民。
在提笔撰写我的毕业设计论文的时候,我也在向我的大学生活做最后的告别仪式。
我不清楚过去的一切留给现在的我一些什么,也无从知晓未来将赋予我什么,但只要流泪流汗,拼过闯过,人生才会少些遗憾!非常幸运能够加入水利工程这个古老而又新兴的行业,即将走向工作岗位的时刻,我仿佛感受到水利行业对我赋予新的历史使命,水利是一项以除害兴利、趋利避害,协调人与水、人与大自然关系的高尚事业。
水利工作,既要防止水对人的侵害,更要防止人对水的侵害;既要化解自然灾害对人类生命财产的威胁,又要善待自然、善待江河、善待水,促进人水和谐,实现人与自然和谐相处。
这种使命,更让我用课堂中的知识用于实际生产中来。
特别是这两个月来的毕业设计,我越发感觉到学会学精测量基础知识对于我贡献水利是多么的重要。
所以,我越发不愿放弃不多的大学时光,努力提高自己的实践动手能力,而本学期的毕业设计,为我提供了绝好的机会,我又怎能放弃?刚刚从老师那里得到毕业设计的题目和任务时,我的心里真的没底。
作为毕业设计的主体工作,我们主要运用电子水准仪对某幢建筑物进行变形观测与计算,布设控制点进行平面控制测量和高程控制测量;用全站仪进行了中心多边行角度和距离的测量,并用条件平差原理进行平差,通过控制点的放样来计算土的挖方量,还有圆曲线的计算与测设。
而我研究的毕业课题是圆曲线测设。
大学的最后一个学期过得特别快,几乎每天扛着仪器,奔走在校园的每个角落,生活亦很有节奏。
今天我提笔写毕业论文,我的毕业设计也接近尾声。
不管成果如何,毕竟心里不再是没底了,挑着两个多月的辛苦换来的数据和成果,并不断的完善他们,心里感觉踏实多了。
在本次毕业设计论文的设计中要感谢水利系为我们的工作提供了测量仪器,还有各指导老师的教导和同学的帮助。
摘要:在公路、铁路的路线圆曲线测设中,一般是在测设出曲线各主点后,随之在直圆点或圆直点进行圆曲线详细测设。
填空题库及参考答案第1章绪论1-1 测量工作的基准线是铅垂线。
1-2 测量工作的基准面是水准面。
1-3测量计算的基准面是参考椭球面。
1-4水准面是处处与铅垂线垂直的连续封闭曲面。
1-5通过平均海水面的水准面称为大地水准面。
1-6地球的平均曲率半径为6371km。
1-7在高斯平面直角坐标系中,中央子午线的投影为坐标x轴。
1-8地面某点的经度为131°58′,该点所在统一6°带的中央子午线经度是129°。
1-9为了使高斯平面直角坐标系的y坐标恒大于零,将x轴自中央子午线西移500km。
1-10天文经纬度的基准是大地水准面,大地经纬度的基准是参考椭球面。
1-11我国境内某点的高斯横坐标Y=22365759.13m,则该点坐标为高斯投影统一 6°带坐标,带号为 22 ,中央子午线经度为 129°,横坐标的实际值为-134240.87m,该点位于其投影带的中央子午线以西。
1-12地面点至大地水准面的垂直距离为该点的绝对高程,而至某假定水准面的垂直距离为它的相对高程。
第2章水准测量2-1高程测量按采用的仪器和方法分为水准测量、三角高程测量和气压高程测量3种。
2-2水准仪主要由基座、水准器、望远镜组成。
2-3水准仪的圆水准器轴应与竖轴平行。
2-4水准仪的操作步骤为粗平、照准标尺、精平、读数。
2-5水准仪上圆水准器的作用是使竖轴铅垂,管水准器的作用是使望远镜视准轴水平。
2-6望远镜产生视差的原因是物像没有准确成在十字丝分划板上。
2-7水准测量中,转点TP的作用是传递高程。
2-8某站水准测量时,由A点向B点进行测量,测得AB两点之间的高差为0.506m,且B点水准尺的读数为2.376m,则A点水准尺的读数为 2.882 m。
2-9三等水准测量采用“后—前—前—后”的观测顺序可以削弱仪器下沉的影响。
2-10、水准测量测站检核可以采用变动仪器高或双面尺法测量两次高差。
浅谈圆曲线测设方法前言:在各类线路工程弯道处施工,常常会遇到圆曲线的测设工作。
目前,圆曲线测设的方法已有多种,如偏角法、切线支距法、弦线支距法、坐标法等。
然而,在实际工作中测设方法的选用要视现场条件、测设数据求算的繁简、测设工作量的大小,以及测设时仪器和工具情况等因素而定。
另外,上述的几种测设方法,都是先根据辅点的桩号(里程)来计算测设数据,然后再到实地放样。
单圆曲线简称圆曲线,若按常规方法测设,通常分两步进行,即:圆曲线主点(起控制作用的点)的测设和曲线细部点的测设。
(一)圆曲线要素及计算见图9-10,圆曲线的半径R、偏角α、切线长T、曲线长L、外矢距E、切曲差q,通称为圆曲线要素。
R、α是已知数据。
R是在线路设计中按线路等级及地形条件等因素选定的,α是线路定测时测定的。
(二)圆曲线主点及主点里程的计算圆曲线的主点一般为:直圆点-ZY、曲中点-QZ、圆直点-YZ。
各主点里程的计算:各主点里程依据交点(JD)的里程计算。
设交点里程为JD DK,则各主点的里程为:(9-6)(三)圆曲线主点的测设见图9-11,测设圆曲线各主点的步骤如下:1.在交点JD安置仪器,以线路方向(转点桩或交点桩)定向,即确定切线方向;2.从JD点起沿视线方向量分别取切线长T,确定ZY点和YZ点;3.后视YZ点,用正、倒分中法正拨(右偏)或反拨(左偏)90°~α/2(图中的β角)定出分中点视线方向;4.沿分中点视线方向量取外矢距E,确定QZ点。
图9-11 圆曲线主点测设(四)圆曲线细部点的测设一.偏角法偏角法实质是角度与距离交会的一种方法。
如图9-12所示。
(1)测设元素:给定的点间距l(以直代曲的长度)、曲线点的偏角δi 。
δi(以度为单位)的计算公式如下:(9-7)式中,li——i点至ZY点间的曲线弧长。
由于曲线半径R较大,相邻两个测设点间的弧长所对的圆心角较小,使得弦长(测设时为10m、20m或50m)和弧长之差很小(通常小于量距误差),图9-12 圆曲线细部点测设所以,实际测设时均以弦长代替弧长。
圆曲线测设计算公式弦线长 LT q R C R E R L tgR T -=⋅=⎪⎭⎫⎝⎛-⋅⋅=⋅⋅=⋅=22sin212se c1802切曲差:弦长:外矢距:弧长:切线长:αααπαα1、偏角法利用弦切角和弦长来测设曲线辅点。
2、直角坐标法(切线支距法)3、弦线支距法一、圆曲线1、根据弧长、半径计算偏角值△=L/R*180°/2*3.14 (弧长/半径*180/2*园周率)=偏角值L=园曲线上任意一点与园曲线起点(终点)的里程桩号之差R=半径2、以弧长对应的圆心角计算玄长C=2R*SIN*&/2 (2*半径*SIN*弧长对应的园心角/2)=玄长C=玄长&=以弧长对应的圆心角3、根据弧长、半径计算以弧长对应的圆心角&=L/R*180/3.14注:3.14=园周率弧长对应的圆心角=弧长/半径*180/园周率4、根据偏角值计算方位角5、以玄长、方位角计算坐标(X=起点坐标+玄长*COS*方位角)(Y=起点坐标+玄长*SIN*方位角)二、园曲线要素计算1、切线长T=R*(TAN)*A/2(切线长=半径*TAN*圆心至两切点夹角/2)2、曲线长L=R*a*3.14/180(曲线长=半径*园心至两切点夹角*园周率/180)3、外距E=R(SEC*A/2-1)≤外距=半径*(SEC*园心至两切点夹角/2再减去1)≥4、超距D=2T-L(超距=量边切线减去曲线长)注:为半径、A为圆心至两切点夹角、3.14=园周率。