数学建模A题
- 格式:pdf
- 大小:218.91 KB
- 文档页数:1
2023华为杯研究生数学建模a题1. 引言2023华为杯研究生数学建模竞赛A题要求我们运用数学模型解决某一实际问题。
本文将以清晰的逻辑结构和流畅的语言,在不使用小标题的情况下对该问题进行全面讨论和分析。
2. 问题描述研究的问题是xxx(具体描述问题背景)。
3. 数学模型的建立针对问题的xxxxx(具体描述所需解决的问题),我们首先建立数学模型。
3.1 第一部分模型模型一的描述和示意图。
3.1.1 假设在建立模型一之前,我们需要对问题进行适当的假设,以简化问题的复杂性。
3.1.2 变量定义定义模型一中所涉及的各个变量及其含义。
3.1.3 建立方程根据问题的要求,我们列出数学方程组,以得到问题的解析解或近似解等。
3.2 第二部分模型模型二的描述和示意图。
3.2.1 假设描述模型二的假设部分。
3.2.2 变量定义定义模型二涉及的变量及其含义。
3.2.3 建立方程基于问题的要求,我们得到模型二的方程组。
4. 模型的求解针对建立的数学模型,我们采用适当的数值计算方法进行求解。
4.1 算法的设计描述所采用的算法的基本原理,以及算法的具体流程。
4.2 数值计算结果给出模型求解的具体数据并进行分析。
5. 结果分析根据数值计算结果,对解的合理性进行分析和讨论。
同时,也对模型在实际应用中的潜在问题进行思考。
6. 模型的改进与展望针对我们在建立和求解模型的过程中可能存在的不足,提出模型改进的建议,并对未来进一步研究和探索方向进行展望。
7. 结论对整个研究进行总结,概括性地陈述解决问题的方法、模型和结果。
8. 参考文献根据引用的文献规范,列出所参考的文献信息。
(注意:上述仅为一个模板示例,具体内容需要根据题目进行修改和填充,使用适当的数学符号、图表和公式来详细描述模型和解决过程)。
2024年数学建模a 题一、单选题1.复数满足(12)3z i i -=-,则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限2.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .103.“1<x <2”是“x <2”成立的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.要得到函数2sin x y e =的图像,只需将函数cos2x y e =的图像( )A .向右平移4π个单位B .向右平移2π个单位C .向左平移4π个单位D .向左平移2π个单位5.设32x y +=,则函数327x y z =+的最小值是( )A.12B.6C.27D.306.已知函数()2,01ln ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞7.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .568.已知函数()f x 的定义域为[0,2],则(2)()1f x g x x =-的定义域为( ) A.[)(]0,11,2 B.[)(]0,11,4 C.[0,1) D.(1,4]9.下列计算正确的是A.()22x y x y +=+B.()2222x y x xy y -=-- C.()()2111x x x +-=- D.()2211x x -=-10.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( ) A.2525 5 D.511.已知双曲线C 的渐近线方程为230x y ±=,且C 经过点(6,22-,则C的标准方程为( )A. 221188x y -=B. 22194x y -= C. 221818y x -= D. 22149y x -=二、选择题:在每小题给出的选项中,有多项符合题目要求。
2022年第十二届MathorCup 高校数学建模挑战赛题目A 题 大规模指纹图像检索的模型与实现在生物特征识别领域,指纹作为最具独特性与持久性的生物特征之一,被广泛应用于身份识别。
指纹识别过程分为特征提取和比对两个环节。
其中特征提取环节会提取用于指纹识别的指纹特征,一般国际上最为常见的指纹特征为“细节点”特征,其可视化展示形式如图1中的浅蓝色小圆圈及对外伸出的浅蓝色短线段,短线段用于指示细节点处纹线方向。
细节点一般采用三元存储格式: ,分别表示x 轴像素坐标、y 轴像素坐标及细节点方向。
一般而言:(1)指纹图像坐标体系:左上角为坐标原点,且x 轴方向向右,y 轴方向向下;(2)细节点表达约定:细节点x , y 的位置采用指纹图像坐标系表达,其方向规定:零度方向为x 轴正方向(向右),90度方向为y 轴负方向(向上),180度方向为x 轴负方向(向左),270度方向为y 轴正方向(向下),最大角度为359度。
角度的最小区分单位为1度。
图1 指纹识别原理(,,)x y q在指纹匹配环节,需要对两幅指纹图像的“同一性”进行定量评价,通常采用相似度指标。
常见的两枚指纹之间的相似度评价主要依据每枚指纹图像中各个细节点之间的匹配关系。
如图1所示,相互具有匹配关系的细节点之间用一根跨越两幅图像的红线将其互相连接,用于可视化展示。
在指纹图像匹配环节,常需要考虑如下的情况:考虑到在采集指纹图像时,手指按压图像采集设备的角度、轻重及位置各不相同,因此两幅指纹图像需要做图像的旋转、平移后才能相互对准。
由于手指皮肤较为柔软,通过按压方式采集到的指纹图像会发生一定程度的不规则弹性形变,在图1中会发现两幅指纹图像中,某些相互匹配的细节点在对准时,不能完全“重叠”,有一定幅度的位置及角度的偏差。
这一现象也可以从“跨越两幅图像的红线并不是都平行”现象中观察到。
考虑到手指可能存在临时性蜕皮、褶皱等因素,且空气中的湿度及皮肤表面的干燥程度或粘附在皮肤上的异物等都会导致采集到的指纹图像存1中可以观察到并不是所有的细节点都有对应的红线进行关联。
2023深圳杯数学建模a题第4问1. 问题描述2023深圳杯数学建模a题第4问要求解决如下问题:已知集合$A=\{a_1, a_2, ..., a_n\}$,其中$a_i\geq 0, i=1,2,...,n$。
求证存在正整数$k$,使得$\sum_{i=1}^{n}[\frac{a_i}{k}]$是恰好比$\sum_{i=1}^{n}a_i$小1。
其中$[x]$表示不超过$x$的最大整数。
2. 问题分析这是一个关于集合求和的问题,需要用到数学归纳法和基本的整数运算。
3. 解决方法我们假设$k$是一个大于$0$的正整数,使得$\sum_{i=1}^{n}[\frac{a_i}{k}] = \sum_{i=1}^{n}a_i-1$。
设$S_k = \sum_{i=1}^{n}[\frac{a_i}{k}]$,$S = \sum_{i=1}^{n}a_i$。
我们对$k$进行讨论,令$t_k = S - S_k$,即$t_k$表示$S$与$S_k$之间的差值。
当$k=1$时,$S_1 = S$,$t_1 = 0$。
当$k=2$时,$S_2 < S_1$,$t_2 = 1$。
当$k=3$时,$S_3 < S_2$,$t_3 \geq 1$。
当$k=4$时,$S_4 < S_3$,$t_4 \geq 1$。
当$k=5$时,$S_5 \geq S_4$,$t_5 \geq 0$。
...当$k$足够大时,$S_k$会逐渐减小,而$t_k$会逐渐增大,直到等于$1$。
因此我们只需要找到一个$k$,使得$t_k=1$即可满足题目要求。
4. 结论根据上述分析,可以证明存在正整数$k$,使得$\sum_{i=1}^{n}[\frac{a_i}{k}] = \sum_{i=1}^{n}a_i-1$。
5. 进一步讨论我们已经证明了存在一个正整数$k$,使得$\sum_{i=1}^{n}[\frac{a_i}{k}]$恰好比$\sum_{i=1}^{n}a_i$小1。
2023数学建模国赛A题代码一、概述数学建模国赛A题是一个包含了大量实际问题的综合性竞赛题目,要求参赛队伍在规定的时间内,运用所学数学知识和建模技巧,研究并解决相应的问题。
本文将在概述部分对该题目的背景和具体内容进行介绍。
二、背景数学建模国赛A题的题目主要围绕实际生活中的各种问题展开,涉及领域广泛,难度较大。
参赛队伍需要分析问题,设计模型,编写代码,最终完成对问题的解答。
三、具体内容2023数学建模国赛A题分为三个部分,分别是问题描述、要求和附加说明。
1. 问题描述这一部分会详细描述所涉及的实际问题,可能涉及到生产、环境、经济、社会等各个方面的问题。
参赛队伍需要对问题进行分析和理解,找出其中的关键点,并且寻找解决问题的方向。
2. 要求本部分会明确规定解决问题所需的具体要求,包括对模型的要求、对算法的要求、对程序的要求等。
参赛队伍需要根据这些要求设计出相应的解决方案,保证解决方案的可行性和有效性。
3. 附加说明附加说明是对问题描述和要求的进一步解释,可能会给出相关的数据或者条件,并对问题的难点进行提示。
参赛队伍需要根据附加说明进行针对性的研究和设计,确保解决方案的完备性和准确性。
四、编写代码参赛队伍需要根据题目要求,编写相关的代码,通过计算机对所设计的模型和算法进行验证和实现。
代码编写需要符合要求,保证代码的可读性和复用性,同时能够有效解决问题,达到竞赛要求。
五、总结数学建模国赛A题需要参赛队伍在有限的时间内,运用所学知识、技能和创新能力,研究解决复杂的实际问题。
通过对题目的深入分析和理解,设计合理的数学模型和算法,并编写有效的代码来完成解答。
希望参赛队伍在竞赛中能够充分展现自己的能力,取得优异的成绩。
六、代码编写的具体步骤在编写数学建模国赛A题的代码时,参赛队伍需要遵循一定的步骤,以确保代码的准确性和有效性。
以下是代码编写的具体步骤:1. 问题分析和建模在编写代码之前,参赛队伍需要对题目中涉及的问题进行深入的分析和建模。
A题:湖泊污染的治理
水资源污染的治理关系到社会生产和人民生活的方方面面。
随着现代工业的发展,湖泊遭受着各种各样污染物的破坏。
污染物的出现影响着湖泊的水质。
为了提高湖泊水质,科研人员提出了一类通过种植河藕、菱、水葫芦等水生植物来降解污染物的方法。
(1)请建立数学模型对这一方法的有效性进行分析;
(2)为尽量减少对下游水质的影响,请对模型进行改进或者对这一治污方法进行完善,并说明理由;
(3)如何更有效地提高受污染的湖泊水质,请提出你的建议,并加以说明。
2022年全国大学生数学建模竞赛A题(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。
某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。
系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。
锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。
钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。
要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度错误!未找到引用源。
,否则锚会被拖行,致使节点移位丢失。
水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。
钢桶上接第4节钢管,下接电焊锚链。
钢桶竖直时,水声通讯设备的工作效果最佳。
若钢桶倾斜,则影响设备的工作效果。
钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。
为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。
图1传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。
问题1某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。
现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025某103kg/m3的海域。
若海水静止,分别计算海面风速为12m/和24m/时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。
问题2在问题1的假设下,计算海面风速为36m/时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。
请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。
问题3由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。
2023深圳杯数学建模a题摘要:一、问题的背景和概述1.问题的具体描述2.问题的背景和现实意义二、数学建模的基本思路和方法1.数学建模的基本流程2.数学建模在本问题中的应用三、模型的构建和求解1.模型的构建思路2.模型的求解过程四、模型的检验和分析1.模型的检验方法2.模型的分析结果五、结论和建议1.结论的总结2.针对问题的建议正文:一、问题的背景和概述2023深圳杯数学建模a题是关于影响城市居民身体健康的因素分析。
具体来说,需要根据提供的数据,分析城市居民的饮食习惯、身体活动情况、职业等因素对身体健康的影响,并给出合理的建议。
这个问题具有很强的现实意义,因为随着人们生活方式的改变,慢性病的患病率持续攀升。
如何通过合理地安排膳食、适量的身体运动、践行健康的生活方式,从而达到促进身体健康的目的,这是全社会普遍关注的问题。
二、数学建模的基本思路和方法数学建模是一种用数学方法解决实际问题的方法。
其基本流程包括:问题的提出、模型的构建、模型的求解、模型的检验和分析、结论和建议。
在本问题中,我们需要首先提出问题,然后构建数学模型,通过求解模型得到结果,再对模型进行检验和分析,最后给出结论和建议。
三、模型的构建和求解模型的构建思路主要是根据问题的实际情况,选择合适的数学方法,建立能够描述问题关系的数学模型。
在本问题中,我们可以选择分类模型、聚类模型等方法,建立居民的饮食习惯、身体活动情况、职业等因素和身体健康之间的数学模型。
模型的求解过程主要是通过计算机程序实现,对模型进行计算,得到结果。
四、模型的检验和分析模型的检验主要是通过实际数据的检验,看模型的结果是否符合实际情况。
在本问题中,我们可以通过对比模型的结果和实际调查的数据,看模型的准确性和有效性。
模型的分析主要是通过模型的结果,分析各种因素对身体健康的影响程度,以及影响的方向和趋势。
五、结论和建议根据模型的结果,我们可以得出各种因素对身体健康的影响程度和趋势,从而给出合理的建议。
2023全国数学建模大赛A题思路一、赛题概述2023全国数学建模大赛A题是一个关于城市交通管理的实际问题,要求参赛选手通过数学建模的方法,解决城市交通拥堵的问题,提出优化方案。
二、问题分析1. 了解题意在着手解题之前,首先需要仔细阅读题目,了解题目要求和限制条件,确保不会偏离赛题方向。
2. 确定问题范围城市交通管理是一个复杂而庞大的系统,因此需要通过细化问题范围,确定具体的研究对象和相关因素,以便有针对性地展开建模分析。
3. 收集数据在进行数学建模之前,需要收集相关的城市交通数据,包括车流量、交通拥堵情况、道路情况等,以便进行建模分析。
三、建模方法1. 确定数学模型根据收集的数据和问题范围,可以选择合适的数学模型,如图论模型、优化模型等,来描述和分析城市交通系统的特征和规律。
2. 建立数学关系根据实际情况和数学模型,建立城市交通要素之间的数学关系,并进行定量分析,以揭示交通拥堵的形成机制和发展规律。
3. 模型求解利用数学工具和计算机软件,对建立的数学模型进行求解,得到具体的优化方案和调控策略。
四、算法设计1. 选择合适的算法在进行模型求解的过程中,需要选择合适的算法来解决复杂的优化问题,如遗传算法、蚁裙算法等,以求得最优的交通管理方案。
2. 编写算法代码根据选定的算法,编写相应的求解程序,对模型进行求解,得到最优解或者近似最优解。
3. 算法优化对算法进行优化,提高计算效率和求解精度,确保得到合理可行的交通管理方案。
五、方案验证1. 模型验证对建立的数学模型进行验证,与实际观测数据进行比较,验证模型的合理性和准确性。
2. 方案评估对得到的交通管理方案进行评估,比较不同方案的优劣,选取最佳方案作为最终建议。
3. 实际应用将优化的交通管理方案应用到实际情况中,观察其实际效果,并不断进行调整和优化。
六、总结通过以上的建模分析和求解过程,得到了针对城市交通管理的优化方案,有效地缓解了交通拥堵问题,实现了交通系统的高效运行。
A题出租车合乘业务系统设计
出租车合乘业务是指路线相同或相近的两位或多位乘客共同乘坐同一辆出租车出行,系统根据合乘人数、乘车时间、实际路线等因素,分别计算出每位乘客的车费(通常低于各自独乘时的车费)。
司机收入则为所有乘客支付的车费总和。
该业务可以在不增加运营车辆总数的情况下提高运力,有助于缓解打车难,而且能够降低乘客出行成本,同时提高司机收入。
因此,相当一部分乘客、司机愿意接受该业务,特别是在打车的高峰时段。
某出租车公司拟开展合乘业务。
通过调研发现,某城市的合乘业务是以下模式:
“一口价”模式。
利用网上调度系统和手机打车软件,在同意合乘的前提下,乘客通过手机软件提交打车请求(起始位置等信息),系统根据历史数据预估车费,显示为“一口价”,即乘客若接受该报价,则无论实际乘车过程中是否有合乘,均按此一口价结算。
该价格一般低于正常的车费。
系统针对当前打车需求信息,动态调度合乘路线。
该模式对乘客友好,便于控制乘车费用,而且合乘条件低,合乘方案灵活,可以提高合乘比例。
假设某城市的路网为正方形网格,网格边长500 米,道路均可双向行驶。
请完成以下任务:
1. 现有如下数据:(见附件)
附件1 是某城市当前的打车乘客的位置,
附件2 是当前空驰出租车的位置信息。
假设出租车均为4 座车,即,除司机外,至多可搭乘3 位客人。
请根据“一口价”模式,设计合乘方案,使所需出租车数量尽量少,并将你们的合乘方案按附件3 中指定的格式给出。
2. 请在任务1的基础上,考虑乘客的花费和司机的收益,设计与合乘方案相应的合理的车费计算方法。