晶体场理论
- 格式:ppt
- 大小:1.17 MB
- 文档页数:15
§3-2 晶体场理论㈠ 晶体场模型晶体场理论的基本观点:络合物的中心原子(或离子)和周围配体之间的相互作用是纯粹的静电作用。
♦ 这种化学键类似于离子晶体中正、负离子间的静电作用,不具有共价键的性质。
在自由的过渡金属离子中,5个d 轨道是能量简并的,但在空间的取向不同。
下面的角度分布图画出了各个d 轨道的空间取向,xyd xyxzd xzyzd yzxyd x -yxzd z在电场的作用下,原子轨道的能量升高。
① 在球形对称的电场中,各个d 轨道能量升高的幅度一致。
能量自由原子中的d 轨道球对称电场中原子中的d 轨道② 在非球形对称的电场中,由于5个d 轨道在空间有不同取向,根据电场的对称性不同,各轨道能量升高的幅度可能不同,即,原来的简并的d 轨道将发生能量分裂,分裂成几组能量不同的d 轨道。
配体形成的静电场是非球对称的。
配位场效应:中心原子(或离子)的简并的d 轨道能级在配体的作用下产生分裂。
㈡ 晶体场中的 d 轨道能级分裂 ⑴ 正八面体场(O h )中的d 轨道能级分裂① d 轨道的分裂六个配体沿 x,y,z 轴的正负6个方向分布,以形成电场。
配体的孤对电子的负电荷与中心原子d 轨道中的电子排斥,导致d 轨道能量升高。
• 如果将配体的静电排斥作用进行球形平均,该球形场中,d 轨道能量升高的程度都相同,为E s 。
• 实际上各轨道所受电场作用不同, d z 2和d x 2-y 2的波瓣与六个配体正对,受电场的作用大,因此能量的升高程度大于在球形场中能量升高的平均值。
而d xy 、d yz 、d xz 不与配体相对,能量升高的程度相对较少。
自由原子xy yz xzd x 2-y 2d z 2(d g 或e g )(d e 或t 2g )高能量的d z 2和d x 2-y 2轨道(二重简并)统称为d g 或e g 轨道;能量低的d xy 、d yz 、d xz 轨道(三重简并)统称为d e 或t 2g 轨道。
晶体场理论晶体场理论(英语:Crystal field theory,首字母縮略字:CFT)是配位化学理论的一种,1929-1935年由汉斯·贝特和约翰·哈斯布鲁克·范扶累克提出。
它以过渡金属配合物的电子层结构为出发点,可以很好地解释配合物的磁性、颜色、立体构型、热力学性质和配合物畸变等主要问题,但不能合理解释配体的光谱化学序列和一些金属有机配合物的形成。
晶体场理论将配位键看成纯离子键,着眼于中心原子的d轨道在各种对称性配位体静电场中的变化,简明直观,结合实验数据容易进行定量或半定量的计算。
但在实际配合物中,纯离子键或纯共价键都很罕见,目前配合物的结构理论兼有晶体场理论和分子轨道理论的精髓,称之为配位场理论。
[编辑]概述晶体场理论认为,配合物中心原子处在配体所形成的静电场中,两者之间完全靠静电作用结合,类似于正负离子之间的作用。
在晶体场影响下,五个简并的d 轨道发生能级分裂,d电子重新分布使配合物趋于稳定。
[编辑]能级分裂d原子轨道分为、、、和五种,其空间取向各不相同,但能级却是相同的,参见原子轨道。
在一定对称性的配体静电场(负)作用下,由于与配体的距离不同,d轨道中的电子将不同程度地排斥配体的负电荷,d轨道开始失去简并性而发生能级分裂。
能级分裂与以下因素有关:∙金属离子的性质;∙金属的氧化态,高氧化态的分裂能较大;∙配合物立体构型,即配体在金属离子周围的分布;∙配体的性质。
最常见的配合物构型为八面体,其中中心原子位于八面体中心,而六个配体则沿着三个坐标轴的正、负方向接近中心原子。
先将球形场的能级记为。
和轨道的电子云极大值方向正好与配体负电荷迎头相碰,排斥较大,因此能级升高较多,高于。
而、和轨道的电子云则正好处在配体之间,排斥较小,因此能级升高较小,低于。
因而d轨道分裂为两组能级:∙和轨道,能量高于,记为或轨道;∙、和轨道,能量低于,记为或轨道。
和是来自于群论的对称性符号。
第四节晶体场理论(CFT)一.知识储备1.晶体场理论的主要内容1.中心离子与配位体之间是纯粹的静电作用。
2.中心离子d轨道发生分裂:中心离子价电子所处的d轨道受到配位体所形成的晶体场的影响,d轨道发生分裂,有的能量升高,有的能量降低。
在配位体形成的八面体的负电场中,5个简并的d轨道在八面体场中分裂成两组:(1)能量较高的e g轨道或dγ轨道:d x2-y2、d z2;(2)能量较低的t2g轨道或dε轨道:d xy、d xz、d yz。
3.晶体场分裂能(△):在晶体场理论中,把d轨道分裂后,最高能级同最低能级间的能量差叫做分裂能△。
八面体场:令△o=10Dq,则E(dγ)-E(dε)=10Dq 解方程组得E(dr)=6Dq2E(dγ)-3E(dε)=0 E(dε)=-4Dq4.分裂能的影响因素:中心离子价层d轨道的分裂能决定于配合物的几何构型、中心离子电荷、半径、配体配位能力的强弱等(1)中心离子电荷越高,分裂能越大中心离子电荷越高,对配体的吸引力越大,中心离子与配体间的距离越近,因此价层d 轨道与配体负电场的排斥作用越强,分裂能越大。
对于第四周期常见过渡金属离子来讲,+2和+3氧化态的6配位的水合离子价层d轨道的分裂能大约为:∆o[M(H2O)62+]=7500~14000 cm-1∆o[M(H2O)63+]=14000~21000 cm-1(2)中心离子周期数越高,分裂能越大例如Cr3+与Mo3+同属VIB族,所带电荷也相同,但由于Cr3+属于第四周期,Mo 3+属于第五周期,MoCl 63-和CrCl 63的分裂能数值分别为:∆o [CrCl 63-]=13600cm -1,∆o [MoCl 63-]=19200cm -1。
(3)配体的种类配体的配位能力越强,配位原子提供的孤对电子形成的负电场也越强,中心离子价层d轨道与配体负电场的相互作用越大,因此分裂能越大。
例如CN -的配位能力远远大于F -的配位能力,因此[Fe(CN)63-]的分裂能远远大于[FeF 63-]的分裂能,其数值分别为:∆o [Fe(CN)63-]=34250cm -1,∆o [FeF 63-]=13700cm -1。