2019年人教版八年级上册数学第13章测试卷附答案
- 格式:pdf
- 大小:401.13 KB
- 文档页数:8
《轴对称》单元检测题一、单选题1.如图,AC=BC=10 cm,∠B=15°,若AD⊥BD于点D,则AD的长为( )A.3 cm B.4 cm C.5 cm D.6 cm2.如图,在等腰中,,在BC上截取,作的平分线与AD相交于点P,连接PC,若的面积为,则的面积为A.B.C.D.3.如图,在中,,,点E在BC的延长线上,的平分线BD与的平分线CD相交于点D,连接AD,则下列结论中,正确的是A.B.C.D.4.如图,一张△ABC纸片,小明将△ABC沿着DE折叠并压平,点A与A′重合,若∠A=78°,则∠1+∠2=()A.156°B.204°C.102°D.78°5.如图,已知∠O=30°,点B是OM边上的一个点光源,在边ON上放一平面镜.光线BC经过平面镜反射后,反射光线与边OM的交点记为E,则△OCE是等腰三角形的个数有()A.1个B.2个C.3个D.3个以上6.如图所示,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于点E.若AB=6 cm,则△DEB的周长为( )A.5cm B.6cm C.7cm D.8cm7.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC与△A′B′C′全等,则△A′B′C′的腰长等于( ).A.8 cm B.2 cm或8 cm C.5 cm D.8 cm或5 cm8.下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形底边上的中线与底边上的高相等;③等腰三角形的两底角相等;④等腰三角形两底角的平分线相等.A.1个B.2个C.3个D.4个9.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论中正确的有 ( ).①A、B关于x轴对称;②A、B关于y轴对称;③A、B不轴对称;④A、B之间的距离为4.A.1个B.2个C.3个D.4个10.下列由数字组成的图形中,是轴对称图形的是( )A.B.C.D.11.如图,直线m∥n,点A在直线m上,点B、C在直线n上,AB=CB,∠1=70°,则∠BAC等于()A.40°B.55°C.70°D.110°12.如图,∠AOP=∠BOP=15°,PC//OA,PD⊥OA,若PC=10,则PD等于()A.10B.8C.5D.2.5二、填空题13.在等腰三角形ABC中,AB=AC=10,BC=12,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=______.14.如图,AB∥CD,AF=EF,若∠C=62°,则∠A=___度.15.如图,某汽车从A处出发准备开往正北方向M处,但是由于AM之间道路正在整修,所以需先到B处,再到M处,若B在A的北偏东25°,汽车到B处发现,此时正好BM=BA,则汽车要想到达M处,此时应沿北偏西________的方向行驶.16.如图,AD是△ABC的对称轴,∠DAC=30°,DC=4cm,则△ABC是___三角形,△ABC的周长=___cm.三、解答题17.如图,BD是△ABC的角平分线,DE∥BC交AB于点E.(1)求证:BE=DE;(2)若AB=BC=10,求DE的长.18.如图,在△ABC中,AD平分∠BAC,CD⊥AD于点D,∠DCB=∠B.若AC=10,AB=25,求CD的长.19.如图,在△ABC中,AB=AC,△ABC的两条中线BD、CE交于O点,求证:OB=OC.20.如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.(1)求作∠ABC的平分线(要求:尺规作图,保留作图痕迹,不写作法);(2)若∠ABC的平分线分别交AD,AC于P,Q两点,证明:AP=AQ.21.如图,在△ABC中,AB=AC,D、E是BC边上的点,连接AD,AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′;()求证:△ABD≌△ACD′;()若∠BAC=120°,求∠DAE的度数;参考答案1.C【解析】【分析】根据等边对等角的性质可得∠B=∠BAC,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ACD=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半解答即可.【详解】∵AC=BC,∴∠BAC=∠B=15°,∴∠ACD=∠B+∠BAC=15°+15°=30°,∵AD⊥BC,∴AD=AC=×10=5cm,故选C.【点睛】本题考查了等腰三角形的性质、三角形外角的性质、含30度角的直角三角形的性质,熟练掌握和灵活运用相关性质是解题的关键.2.A【解析】【分析】根据等腰三角形三线合一的性质可得AP=PD,然后根据等底等高的三角形面积相等求出△BPC的面积等于△ABC面积的一半,代入数据计算即可得解.【详解】∵BD=BA,BP是∠ABC的平分线,∴AP=PD,∴S△BPD=S△ABD,S△CPD=S△ACD,∴S△BPC=S△BPD+S△CPD=S△ABD+S△ACD=S△ABC,∵△ABC的面积为8cm2,∴S△BPC=×8=4cm2,故选A.【点睛】本题考查了等腰三角形三线合一的性质,三角形的面积,利用等底等高的三角形的面积相等求出△BPC的面积与△ABC的面积的关系是解题的关键.3.B【解析】【分析】由∠ABC=50°,∠ACB=60°,可判断出AC≠AB,根据三角形内角和定理可求出∠BAC的度数,根据邻补角定义可求出∠ACE度数,由BD平分∠ABC,CD平分∠ACE,根据角平分线的定义以及三角形外角的性质可求得∠BDC的度数,继而根据三角形内角和定理可求得∠DOC的度数,据此对各选项进行判断即可得.【详解】∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=70°,∠ACE=180°-∠ACB=120°,AC≠AB,∵BD平分∠ABC,CD平分∠ACE,∴∠DBC=∠ABC=25°,∠DCE=∠ACD=∠ACE=60°,∴∠BDC=∠DCE-∠DBC=35°,∴∠DOC=180°-∠OCD-∠ODC=180°-60°-35°=85°,∵∠DBC=25°,∠BDC=35°,∴BC≠CD,故选B.【点睛】本题考查了三角形内角和定理,等腰三角形判定,角平分线的定义等,熟练掌握角平分线的定义以及三角形内角和定理是解本题的关键.4.A【解析】【分析】先根据翻折变换的性质得出△AED≌△A′ED,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE=∠A′ED+∠A′DE=102°,然后根据平角的性质即可求出∠1+∠2的度数.【详解】∵△A′DE是△ABC翻折变换而成,∴△AED≌△A′ED,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=78°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣78°=102°,∴∠1+∠2=360°﹣2×102°=156°,故选A.【点睛】本题考查了翻折变换的性质,熟知折叠前后图形的大小和形状不变,对应角相等,对应边相等是解题的关键.5.B【解析】解:分两种情况:①作OC的垂直平分线交OM于E,连接CE,∴OE=EC,∴∠ECO=∠O=30°.∵CD⊥ON,∴∠ECD=60°,∴∠BCD=60°,∴光线BC以60°入射角经过平面镜反射后,经过点E,此时△OCE是等腰三角形.②以O为圆心,OC为半径画圆,交OM于E′,此时△COE′是等腰三角形.∵OC=OE′,∴∠OCE′=∠OE′C=75°,∴∠E′CD=∠BCD=90°-75°=15°,即光线BC以15°入射角经过平面镜反射后,经过点E′,此时△OCE′是等腰三角形.综上所述:共有两种情况.故选B.6.B【解析】【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE,然后求出△DEB的周长=AB即可得解.【详解】∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE,∴△DEB的周长=BD+DE+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=6cm,∴△DEB的周长=6cm,故选B.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质是解题的关键.7.D【解析】分析:因为BC是腰是底不确定,因而有两种可能,当BC是底时,△ABC的腰长是5cm,当BC是腰时,腰长就是8cm,且均能构成三角形,因为△A′B′C′与△ABC全等,所以△A′B′C′的腰长也有两种相同的情况:8cm或5cm.详解:分为两种情况:当BC是底时,△ABC的腰长是5cm,∵△ABC与△A′B′C′全等,∴△A′B′C′的腰长也是5cm;当BC是腰时,腰长就是8cm,且均能构成三角形,∵△A′B′C′与△ABC全等,∴△A′B′C′的腰长也等于8cm,即△A′B′C′的腰长为8cm或5cm,故选:D.点睛:本题考查了全等三角形的性质和等腰三角形的性质的应用,用了分类讨论思想.8.D【解析】分析:等腰三角形中顶角平分线,底边中线及高互相重合,即三线合一,两腰上的角平分线、中线及高都相等.详解:①等腰三角形的两腰相等;正确;②等腰三角形底边上的中线与底边上的高相等;正确;③等腰三角形的两底角相等;正确;④等腰三角形两底角的平分线相等.正确.故选D.点睛:本题主要考查了等腰三角形的性质以及命题与定理的概念,能够熟练掌握.9.B【解析】分析:利用关于坐标轴对称的性质以及结合图形分析得出即可.详解:如图所示:①A、B关于x轴对称,错误;②A、B关于y轴对称,正确;③A、B不轴对称,说法不正确;④A、B之间的距离为4,正确.故正确的有两个,故选:B.点睛:此题主要考查了关于x轴、y轴对称的点的坐标的性质,利用数形结合分析得出是解题关键.10.A【解析】分析:根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,进行判断即可.详解:A、是轴对称图形,本选项正确;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:A.点睛:本题考查了轴对称图形,判断轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.11.C【解析】试题解析:∵m∥n,∴∵AB=BC,∴故选C.点睛:平行线的性质:两直线平行,内错角相等.12.C【解析】分析:过点P作PM⊥OB于M,根据平行线的性质可得到∠BCP的度数,再根据直角三角形的性质可求得PM的长,根据角平分线上的点到角两边的距离相等得到PM=PD,从而求得PD的长.详解:过点P作PM⊥OB于M.∵PC∥OA,∴∠COP=∠CPO=∠POD=15°,∴∠BCP=30°,∴PM=PC=5.∵PD=PM,∴PD=5.故选:C.点睛:本题考查了等腰三角形的性质及含30°角的直角三角形的性质;解决本题的关键就是利用角平分线的性质,把求PD的长的问题进行转化.13.9.6【解析】分析:如图连接AD,作AH⊥BC于H.首先利用勾股定理求出AH,再根据S△ABC=S+S△ACD,DE⊥AB,DF⊥AC,可得•BC•AH=•AB•DE+•AC•DF,由此即可解决问题.△ABD详解:如图,连接AD,作AH⊥BC于H.∵AB=AC=10,AH⊥BC,∴BH=CH=6.在Rt△ABH中,AH===8.∵S△ABC=S△ABD+S△ACD,DE⊥AB,DF⊥AC,∴•BC•AH=•AB•DE+•AC•DF,∴6×8=5DE+5DF,∴DE+DF=9.6.故答案为:9.6.点睛:本题考查了等腰三角形的性质,勾股定理,三角形的面积等知识,解题的关键是学会利用面积法解决问题,属于中考常考题型.14.31【解析】【分析】根据AF=EF,可得∠A=∠E,再根据平行线的性质可得∠EFB=∠C=62°,根据三角形的外角等于不相邻的两个内角的和可得∠EFB=∠A+∠E,从而可得∠A=31°.【详解】∵AF=EF,∴∠A=∠E,∵AB//CD,∴∠EFB=∠C=62°,∵∠EFB是△AEF的外角,∴∠EFB=∠A+∠E,∴∠A=31°,故答案为:31.【点睛】本题考查了平行线的性质、等腰三角形的性质、三角形外角的性质,熟练掌握各性质是解题的关键.15.25°【解析】解:∵BM=BA,∴∠M=∠A=25°,∴∠1=∠M=25°.故答案为:25°.16.等边,24【解析】分析:根据轴对称图形的性质得出∠BAC=60°,AB=AC,BC=8cm,从而得出△ABC的性质以及△ABC的周长.详解:∵AD是△ABC的对称轴∴AB=AC,∠DAC=30°,∴∠BAC=2∠DAC=60°,∴△ABC为等边三角形,∵DC=4cm,∴BC=2DC=8cm,∴△ABC的周长=8×3=24cm.点睛:本题主要考查的是轴对称图形的性质,属于基础题型.根据题意得出△ABC为等边三角形是解题的关键.17.(1)见解析;(2)5【解析】分析:(1)根据角平分线和平行线的性质证明即可;(2)利用平行线的性质和成比例解答即可.详解:(1)证明:∵BD是△ABC的角平分线,∴∠EBD=∠CBD.∵DE∥BC,∴∠EDB=∠CBD.∴∠EDB=∠EBD.∴BE=DE.(2)∵AB=BC,BD是△ABC的角平分线,∴AD=DC.∵DE∥BC,∴,∴.∴DE=5.点睛:此题考查等腰三角形的判定和性质,关键是根据角平分线和平行线的性质证明. 18.7.5【解析】分析:延长CD交AB于点E,构建全等三角形:△ADE≌△ADC(ASA).由全等三角形的对应边相等推知AE=AC=10,DE=DC;根据BE=CE,AB=25,得出AB=AE +BE=10+2DC=25,即可求得DC=7.5.详解:如图,延长CD交AB于点E.∵AD平分∠BAC,∴∠1=∠2.∵CD⊥AD,∴∠ADE=∠ADC=90°.∵在△ADE与△ADC中,,∴△ADE≌△ADC(ASA).∴AE=AC=10,DE=DC.∵∠DCB=∠B,∴BE=CE=2DC.∴AB=AE+BE=10+2DC=25.∴DC=7.5.点睛:本题考查了全等三角形的判定与性质、等腰三角形的性质.注意此题中辅助线的作法.19.见解析【解析】分析:求出CD=BE,∠EBC=∠DCB,证△EBC≌△DCB,推出∠DBC=∠ECB即可.详解:证明:∵BD、CE分别是AC、AB边上的中线,∴BE=,CD=.又∵AB=AC,∴BE=CD.在△BCE和△CBD中,∴△BCE≌△CBD(SAS).∴∠ECB=∠DBC.∴OB=OC.点睛:本题考查了全等三角形的性质和判定,等腰三角形的性质和判定的应用,关键是推出△EBC≌△DCB,注意:等角对等边.20.(1)(2)见解析【解析】试题分析:(1)作出角平分线BQ即可.(2)根据余角的定义得出∠AQP+∠ABQ=90°,根据角平分线的性质得出∠ABQ=∠PBD,再由∠BPD=∠APQ可知∠APQ=∠AQP,据此可得出结论.试题解析:解:(1)BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.(2)证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.21.(1)见解析;(2)【解析】(1)根据对称得出AD=AD′,根据SSS证△ABD≌△ACD′即可;(2)根据全等得出∠BAD=∠CAD′,求出∠BAC=∠DAD′,根据对称得出∠DAE=∠DAD′,代入求出即可.()证明:∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,∴,在△ABD和△ACD′中,∵,∴△ABD≌△ACD′(SSS).()解:∵≌,∴,∴,∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,∴,即.点睛:本题考查了轴对称的性质及全等三角形的性质.熟练应用轴对称的性质是解题的关键.。
人教版八年级数学上册第十三章测试题含答案)13.1 轴对称一、选择题1. 点M(3,2)关于x轴对称的点的坐标为()A. (-3,2)B. (3,-2)C. (-3,-2)D. (3,2)2. 如图,线段AB与A′B′(AB=A′B′)不关于直线l成轴对称的是()3. 如果点(m-1,-1)与点(5,-1)关于y轴对称,那么m的值为()A.4 B.-4 C.5 D.-54. 将一张长与宽的比为2∶1的长方形纸片按图①②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④中的纸片展开铺平,所得到的图案是()5. 在平面直角坐标系中,作点A(3,4)关于x轴的对称点A′,再将点A′向左平移6个单位长度,得到点B,则点B的坐标为()A.(4,-3) B.(-4,3)C.(-3,4) D.(-3,-4)6. [2018·河北] 图是由“○”和“□”组成的轴对称图形,则该图形的对称轴是直线()A.l1B.l2C.l3D.l47. 如图,以C为圆心,大于点C到AB的距离为半径作弧,交AB于点D,E,再以D,E为圆心,大于12DE的长为半径作弧,两弧交于点F,作射线CF,则()A.CF平分∠ACB B.CF⊥ABC.CF平分AB D.CF垂直平分AB8. 已知:在平面直角坐标系中,A(a,b)(b≠0),B(m,n).若a-m=4,b+n=0,则下列结论正确的是()A.把点A向左平移4个单位长度后,与点B关于x轴对称B.把点A向右平移4个单位长度后,与点B关于x轴对称C.把点A向左平移4个单位长度后,与点B关于y轴对称D.把点A向右平移4个单位长度后,与点B关于y轴对称9. 如图,分别以线段AB的两端点A,B为圆心,大于12AB的长为半径画弧,在线段AB的两侧分别交于点E,F,作直线EF交AB于点O.在直线EF上任取一点P(不与点O重合),连接PA,PB,则下列结论不一定成立的是()A.PA=PB B.OA=OBC.OP=OF D.PO⊥AB10. 如图,在RtABC 中,90ACB ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于D E ,两点,作直线DE 交AB 于点F ,交BC 于点G ,连接CF .若3AC =,2CG =,则CF 的长为A .52B .3C .2D .72二、填空题11. 如图,在△ABC 中,AB =BC ,∠ABC =110°.AB 的垂直平分线DE 交AC 于点D ,连接BD ,则∠ABD =________度.12. 如图,△ABO 是关于y 轴对称的轴对称图形,点A 的坐标为(-2,3),则点B 的坐标为________.13. 如图所示,分别将标号为A ,B ,C ,D 的正方形沿图中的虚线剪开后,得到标号为E ,F ,G ,H 的四个图形,则剪前与剪后拼接的图形的对应关系是:A 与________对应,B 与________对应,C 与________对应,D 与________对应.14. 已知点P(x,y)的坐标满足等式(x-2)2+|y-1|=0,且点P与点P′关于y轴对称,则点P′的坐标为________.15. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是________.16. 数学活动课上,两名同学围绕作图问题:“如图①,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥直线l于点Q.”分别作出了如图②③所示的两个图形,其中作法正确的为图(填“②”或“③”).三、解答题17. 如图所示,两个四边形关于直线l对称,∠C=90°,试写出边a,b的长,并求出∠G的度数.18. 如图,在△ABC中,AB边的垂直平分线DE分别与AB边和AC边交于点D 和点E,BC边的垂直平分线FG分别与BC边和AC边交于点F和点G,若△BEG的周长为16,GE=3,求AC的长.19. 如图,在四边形ABCD中,AB=AD,BC边的垂直平分线MN经过点A.求证:点A在线段CD的垂直平分线上.人教版八年级数学上册13.1 轴对称一、选择题1. 【答案】B2. 【答案】A3. 【答案】B[解析] ∵点(m-1,-1)与点(5,-1)关于y轴对称,∴m-1=-5,解得m=-4.4. 【答案】A5. 【答案】D[解析] 点A(3,4)关于x轴的对称点A′的坐标为(3,-4),将点A′向左平移6个单位长度,得到点B(-3,-4).6. 【答案】C[解析] 沿着直线l3折叠,直线两旁的部分能够互相重合,因此该图形的对称轴是直线l3.7. 【答案】B8. 【答案】A[解析] ∵a -m =4,∴a -4=m.又∵b +n =0(b≠0),∴b =-n.∴把点A 向左平移4个单位长度后,与点B 关于x 轴对称.9. 【答案】C[解析] 由作图可知,EF 垂直平分AB ,因此可得OA =OB ,PO ⊥AB ,由线段垂直平分线的性质可得PA =PB ,但不能得到OP =OF.10. 【答案】A【解析】由作法得GF 垂直平分BC , ∴FB FC =,2CG BG ==,FG BC ⊥, ∵90ACB ∠=︒,∴FG AC ∥,∴BF CF =, ∴CF 为斜边AB 上的中线,∵5AB ==, ∴1522CF AB ==.故选A .二、填空题11. 【答案】35 【解析】∵AB =BC ,∠ABC =110°,∴∠A =∠C =35°,∵DE 垂直平分AB ,∴DA =DB ,∴∠ABD =∠A =35°.12. 【答案】(2,3)[解析] ∵△ABO 是关于y 轴对称的轴对称图形,∴点A(-2,3)与点B 关于y 轴对称.∴点B 的坐标为(2,3).13. 【答案】GE F H [解析] A 剪开后是三个三角形,B 剪开后是两个直角梯形和一个三角形,C 剪开后是一个直角三角形和两个四边形,D 剪开后是两个三角形和一个四边形,因而,A 与G 对应,B 与E 对应,C 与F 对应,D 与H 对应.14. 【答案】(-2,1)[解析] ∵(x -2)2≥0,|y -1|≥0,又(x -2)2+|y -1|=0,∴x-2=0且y -1=0,即x =2,y =1.∴点P 的坐标为(2,1).那么点P 关于y 轴的对称点P′的坐标为(-2,1).15. 【答案】3[解析] ∵AD 平分∠BAC ,且DE ⊥AB ,∠C =90°,∴CD =DE=1.∵DE是AB的垂直平分线,∴AD=BD.∴∠B=∠DAB.∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B.∵∠C=90°,∴∠CAD+∠DAB+∠B=90°.∴∠B=30°.∴BD=2DE=2.∴BC=BD+CD=2+1=3.16. 【答案】③三、解答题17. 【答案】解:∵两个四边形关于直线l对称,∴四边形ABCD≌四边形FEHG,∴∠H=∠C=90°,∠A=∠F=80°,∠E=∠B=135°,a=5 cm,b=4 cm. ∴∠G=360°-∠H-∠E-∠F=55°.18. 【答案】解:∵DE垂直平分线段AB,GF垂直平分线段BC,∴EB=EA,GB=GC.∵△BEG的周长为16,∴EB+GB+GE=16.∴EA+GC+GE=16.∴GA+GE+GE+GE+EC=16.∴AC+2GE=16.∵GE=3,∴AC=10.19. 【答案】证明:连接AC.∵点A在线段BC的垂直平分线MN上,∴AB=AC.∵AB=AD,∴AC=AD.∴点A在线段CD的垂直平分线上.13.2 画轴对称图形课时训练一.选择题1.点A(3,4)关于x轴的对称点的坐标为()A.(3,﹣4)B.(﹣3,﹣4)C.(﹣3,4)D.(﹣4,3)2.在平面直角坐标系中,点M(12,﹣17)关于x轴对称的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点P(3,﹣2),点Q(﹣3,2),点R(﹣3,﹣2),点H(3,2),下面选项中关于y轴对称的是()A.P和Q B.P和H C.Q和R D.P和R4.若点A(﹣4,m﹣3),B(2n,1)关于x轴对称,则()A.m=2,n=0B.m=2,n=﹣2C.m=4,n=2D.m=4,n=﹣2 5.蝴蝶标本可以近似地看做轴对称图形.如图,将一只蝴蝶标本放在平面直角坐标系中,如果图中点A的坐标为(5,3),则其关于y轴对称的点B的坐标为()A.(5,﹣3)B.(﹣5,3)C.(﹣5,﹣3)D.(3,5)6.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)7.在平面直角坐标系中,点A(﹣3,﹣4)平移后能与原来的位置关于y轴对称,则应把点A()A.向左平移6个单位B.向右平移6个单位C.向下平移8个单位D.向上平移8个单位8.已知点M(2,2),规定一次变换是:先作点M关于x轴对称,再将对称点向左平移1个单位长度,则连续经过2020次变换后,点M的坐标变为()A.(﹣2018,2)B.(﹣2018,﹣2)C.(﹣2017,2)D.(﹣2017,﹣2)二.填空题9.点A(5,﹣1)关于x轴对称的点A'的坐标是.10.若点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),则m+a的值为.11.如图,点P(﹣2,1)与点Q(a,b)关于直线l(y=﹣1)对称,则a+b=.12.已知点M(a,3),点N(2,b)关于y轴对称,则(a+b)2019的值是.三.解答题13.已知点M(﹣2,2b﹣1),N(3a﹣11,5).(1)若M,N关于y轴对称,试求a,b的值;(2)若M,N关于x轴对称,试求a+b的算术平方根.14.△ABC在平面直角坐标系中的位置如图.请画出△ABC关于y轴对称的△A1B1C1,并求出A1、B1、C1三点的坐标.15.如图,在长方形网格中有一个△ABC.(1)画出△ABC关于y轴对称的△A1B1C1.(2)若网格中的最小正方形边长为1,求△A1B1C1的面积.16.如图,△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上.(1)写出△ABC三个顶点的坐标.(2)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标.17.如图,在平面直角坐标系中,A(1,0),B(3,3),C(5,1).(1)画出△ABC关于x轴的对称图形△AB1C1;(2)△ABC的面积为;(3)在x轴上求一点P,使得△APB的面积等于△ABC的面积.18.如图,在平面直角坐标系中.(1)作△ABC关于x轴对称的△A1B1C1;(2)求出△ABC的面积;(3)在x轴上是否存在一点P,使得△AA1P与△ABC面积相等?若存在,请求出点P 的坐标;若不存在,说明理由.参考答案一.选择题1.解:点A(3,4)关于x轴对称点的坐标为:(3,﹣4).故选:A.2.解:∵点(12,﹣17)关于x轴对称的坐标是(12,17),∴点M(12,﹣17)关于x轴对称的点在第一象限.故选:A.3.解:点P(3,﹣2),点Q(﹣3,2),点R(﹣3,﹣2),点H(3,2)中Q和H,P和R都关于y轴对称.故选:D.4.解:根据题意:m﹣3=﹣1,2n=﹣4,所以m=2,n=﹣2.故选:B.5.解:∵A,B关于y轴对称,A(5,3),∴B(﹣5,3),故选:B.6.解:由坐标系可得B(﹣3,1),将△ABC先沿y轴翻折得到B点对应点为(3,1),再向上平移3个单位长度,点B的对应点B'的坐标为(3,1+3),即(3,4),故选:C.7.解:∵点A(﹣3,﹣4)平移后能与原来的位置关于y轴轴对称,∴平移后的坐标为(3,﹣4),∵横坐标增大,∴点是向右平移得到,平移距离为|3﹣(﹣3)|=6.故选:B.8.解:由题可得,第2019次变换后的点M在x轴下方,∴点M的纵坐标为2,横坐标为2﹣2020×1=﹣2018,∴点M的坐标变为(﹣2018,﹣2),故选:B.二.填空题9.解:点A(5,﹣1)关于x轴对称的点A'的坐标是(5,1).故答案为:(5,1).10.解:∵点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),∴3+m=﹣3,a﹣2=2,解得:m=﹣6,a=4,则m+a的值为:﹣6+4=﹣2.故答案为:﹣2.11.解:∵点P(﹣2,1)与点Q(a,b)关于直线l(y=﹣1)对称,∴a=﹣2,b=﹣3,∴a+b=﹣2﹣3=﹣5,故答案为﹣5.12.解:∵点M(a,3),点N(2,b)关于y轴对称,∴a=﹣2,b=3,∴(a+b)2019=(﹣2+3)2019=1.故答案为:1.三.解答题13.解:(1)依题意得3a﹣11=2,2b﹣1=5,∴a=,b=3.(2)依题意得3a﹣11=﹣2,2b﹣1=﹣5,∴a=3,b=﹣2,∴=1.14.解:A1(2,3)(1分)B1(3,2)(2分)C1(1,1)(3分)15.解:(1)△A1B1C1即为所求;(2)△A1B1C1的面积为:3×5﹣×2×3﹣×2×3﹣×1×5=15﹣3﹣3﹣2.5=6.5.16.解:(1)A、B、C三点的坐标分别为(2,4),(1,1),(3,2);(2)如图所示:△A1B1C1,点C1的坐标为:(﹣3,2).17.解:(1)如图所示,△AB1C1即为所求.(2)△ABC的面积为4×3﹣×2×3﹣×1×4﹣×2×2=5,故答案为:5;(3)设点P坐标为(m,0),根据题意,得:×|m﹣1|×3=5,解得m=或m=﹣,∴点P的坐标为(,0)或(﹣,0).18.解:(1)如图所示,△A1B1C1即为所求;(2)S△ABC=×(1+3)×5﹣×1×2﹣×3×3=;(3)存在,设点P坐标为(a,0),根据题意,得:×4×|a﹣1|=,解得a=或a=﹣,∴点P坐标为(,0)或(﹣,0).13.3 等腰三角形一、选择题1. 如图,等腰三角形的对称轴是()A.直线l1B.直线l2C.直线l3D.直线l42. 如图,AC=AD,BC=BD,则有()A.CD垂直平分ABB.AB垂直平分CDC.AB与CD互相垂直平分D.CD平分∠ACB3. 已知等腰三角形的一个角等于42°,则它的底角为() A.42°B.69°C.69°或84°D.42°或69°4. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是()A. 20或16B. 20C. 16D. 以上答案均不对5. 如图,AD是△ABC的中线,下列条件中不能推出△ABC是等腰三角形的是()A.∠BAD+∠B=∠CAD+∠C B.AB-BD=AC-CDC.AB+BD=AC+CD D.AD=BC6. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°7. 如图,△ABC是等边三角形,DE∥BC.若AB=10,BD=6,则△ADE的周长为()A.4 B.12 C.18 D.308. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°9. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是()A. 6B. 7C. 8D. 910. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°二、填空题11. 如图,在△ABC中,AB=AC,D是AC上一点,且BC=BD.若∠CBD=46°,则∠A=________°.12. 如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1=________.13. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.14. 如图所示,在△ABC中,DE是AC的垂直平分线,AE=5 cm,△ABD的周长为18 cm,则△ABC的周长为.15. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.16. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.三、解答题17. 如图,在△ABC中,AB=BD,根据图中的数据,求∠BAC的度数.18. 如图,在△ABC中,O是边AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交△ABC的外角平分线于点F.探究线段OE与OF的数量关系,并说明理由.19. 如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠BAC的平分线分别交BC,CD于点E,F.求证:△CEF是等腰三角形.人教版八年级数学上册13.3 等腰三角形同步训练-答案一、选择题1. 【答案】A2. 【答案】B3. 【答案】D[解析] 在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形的底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角为42°或69°.4. 【答案】B【解析】∵|x -4|+y -8=0,∴x -4=0,y -8=0,解得x =4,y =8.分两种情况讨论:①当4为腰时,根据三角形三边关系知4+4=8,∴这样的等腰三角形不存在;②当8为腰时,则有4+8>8,这样能够组成等腰三角形,∴此三角形的周长是8+8+4=20.5. 【答案】D[解析] 由∠BAD +∠B =∠CAD +∠C 可得∠ADB =∠ADC ,又∠ADB +∠ADC =180°,所以∠ADB =∠ADC =90°,又BD =DC ,由垂直平分线的性质可得AB =AC.由等式的性质,根据AB -BD =AC -CD ,AB +BD =AC +CD ,又BD =CD ,均可得AB =AC.选项D 不能得到AB =AC.6. 【答案】C[解析] ∵OM 平分∠AOB ,MA ⊥OA 于点A ,MB ⊥OB 于点B ,∴∠AOM =∠BOM =25°,MA =MB.∴∠OMA =∠OMB =65°.∴∠AMB =130°.∴∠MAB =12×(180°-130°)=25°.故选C.7. 【答案】B[解析] ∵△ABC 为等边三角形,∴∠A =∠B =∠C =60°.∵DE ∥BC ,∴∠ADE =∠B =60°,∠AED =∠C =60°.∴△ADE 为等边三角形.∵AB =10,BD =6,∴AD =AB -BD =10-6=4.∴△ADE 的周长为4×3=12.8. 【答案】A[解析] ∵AB ∥ED ,∴∠E =180°-∠EAB =180°-120°=60°. 又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A. 9. 【答案】C10. 【答案】D[解析] ∵OC =CD =DE ,∴∠O =∠ODC ,∠DCE =∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.二、填空题11. 【答案】46[解析] ∵BC=BD,∠CBD=46°,∴∠C=∠BDC=12(180°-46°)=67°.∵AB=AC,∴∠ABC=∠C=67°.∴∠A=46°.12. 【答案】40°[解析] 如图.∵△BCD是等边三角形,∴∠BDC=60°.∵a∥b,∴∠2=∠BDC=60°.由三角形的外角性质和对顶角的性质可知,∠1=∠2-∠A=40°.13. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.14. 【答案】28 cm15. 【答案】30[解析] ∵MN∥BC,∴∠MOB=∠OBC.∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.16. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.三、解答题17. 【答案】解:∵∠ADB=30°+40°=70°,AB=BD,∴∠BAD=∠ADB=70°.∴∠BAC=∠BAD+∠CAD=100°.18. 【答案】解:OE=OF.理由:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF.∵CE平分∠ACB,CF平分∠ACD,∴∠OCE=∠BCE,∠OCF=∠DCF.∴∠OEC=∠OCE,∠OFC=∠OCF.∴OE=OC,OC=OF.∴OE=OF.19. 【答案】证明:∵∠ACB=90°,∴∠B+∠BAC=90°.∵CD⊥AB,∴∠CAD+∠ACD=90°.∴∠ACD=∠B.∵AE是∠BAC的平分线,∴∠CAE=∠EAB.∵∠EAB+∠B=∠CEF,∠CAE+∠ACD=∠CFE,∴∠CFE=∠CEF. ∴CF=CE.∴△CEF是等腰三角形.。
八年级上册数学第十三章基础测试卷基础巩固1.如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做 ,这条直线就是它的 。
2.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线 ,这条直线叫做 ,折叠后重合的点是 点,叫做 点。
3.经过线段 这条线段的直线,叫做这条线段的垂直平分线。
4.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的 。
5.线段垂直平分线上的点与这条线段两个端点的距离 。
6.与一条线段两个端点距离相等的点,在这条线段的 上。
7.点(x ,y)关于x 轴对称的点的坐标为 ;点(x ,y)关于y 轴对称的点的坐标为 。
8.等腰三角形的两个底角 。
9.等腰三角形的顶角 ,底边上的 ,底边上的 相互重合10.如果一个三角形有两个角相等,那么这两个角 也相等。
1L.等边三角形的三个内角都相等,并且每一个内角都等于 。
12.三个角都相等的 是等边三角形;有一个角是60°的是等边三角形。
13.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的 。
针对训练★知识点1:轴对称图形1.如图所示,判断下列图形是否为轴对称图形,若是,说出它们有几条对称轴。
★知识点2:轴对称2.如图,△ABC 沿着直线MN 折叠后,与△DEF 完全重合。
(1)△ABC 和△DEF 关于直线 对称,直线MN 是 ; (2)点B 的对称点是点 ,点C 的对称点是点 ;(3)连接AD ,线段AD 被直线MN ; (4)PC= , 。
★知识点3:线段的垂直平分线3.如图,在△ABC 中,AB =6cm ,AC =4cm ,BC 的垂直平分线分别交AB 、BC 于D ,E ,则△ACD 的周长为 cm.4.(1)如图①所示,已知线段AB,直线l为线段AB的垂直平分线,垂足为C,P为上的任一点,求证:PA=PB.(2)如图②所示,已知线段AB,PA=PB,求证:点P在线段AB的垂直平分线上.★知识点4:画轴对称图形或成轴对称的两个图形的对称轴5.如图所示的虚线中,是该图形对称轴的是( )A.直线a与直线b B直线a与直线cC.直线a与直线dD.直线a、b、c、d6.画出如图所示图形的对称轴.★知识点5:画轴对称图形7.如图所示,已知△ABC,直线MN.画△A'B'C',使△A'B'C'与△ABC关于直线MN对称.★知识点6:用坐标表示轴对称8.点P(-2,1)关于x轴对称的点的坐标是( )A.(-2,-1)B.(2,-1)C.(2.1)D.(1,2)9.已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,那么点A的对应点A'的坐标为( ).A.(-4,2)B.(-4,-2)C.(4,-2)D.(4,2)★知识点7:等腰三角形的性质10.如图,在△ABC中,AB=AC,∠B=35°,则∠C= ()A.17.5°B.20°C.35°D.70°11.下列叙述正确的是( )A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.顶角相等的两个等腰三角形全等D.等腰三角形是锐角三角形12.已知:如图在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.★知识点8:等腰三角形的判定13.如图所示,已知BD是△ABC的角平分线,DE∥BC交AB于点E,求证:△BED是等腰三角形。
第十三章轴对称周周测 3一、选择题(每小题3分,共18分)1.如图,已知DE∥BC,AB=AC,∠1=125°,则∠C的度数是( )A.55°B.45°C.35°D.65°2.如图,在△ABC中,AB=AC,AD平分∠BAC,那么下列结论不一定成立的是( )A.△ABD≌△ACDB.AD是△ABC的高线C.AD是△ABC的角平分线D.△ABC是等边三角形3.等边三角形的三条对称轴中任意两条夹角(锐角)的度数为( )A.30°B.45°C.60°D.75°4.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是( ) A.70°B.110°C.140°D.150°5.如图,等腰△ABC中,AB=AC,∠A=24°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于( )A.78°B.60°C.54°D.50°6.(深圳中考)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64二、填空题(每小题4分,共16分)7.如图,在△ABC中,B是AC上一点,AD=BD=BC,若∠C=25°,则∠ADB=________.8.如图,在△ABC中,∠A=60°,分别以A,B为圆心,大于AB长的一半为半径画弧交于两点,过两点的直线交AC于点D,连接BD,则△ABD是________三角形.9.如图,∠AOB=30°,P是∠AOB的平分线上的一点,PC∥OA,交OB于点C,PD⊥OA,垂足为D,如果PC =4 cm,那么PD=________.10.如图,在直角坐标系中,点A的坐标是(2,0),点B的坐标是(0,3),以AB为腰作等腰三角形,则在坐标轴上的另一个顶点有________个.三、解答题(共66分)11.(10分)如图,点D是△ABC中BC边上的一点,且AB=AC=CD,AD=BD,求∠BAC的度数.12.(10分)(肇庆中考)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.13.(10分)如图,一艘轮船以15海里/小时的速度由南向北航行,在A处测得小岛P在北偏西15°方向上,2小时后,轮船在B处测得小岛P在北偏西30°方向上,在小岛P周围18海里内有暗礁,若轮船继续向前航行,有无触礁的危险?14.(12分)如图,△ABD中,AB=AD,AC平分∠BAD,交BD于点E.(1)求证:△BCD是等腰三角形;(2)若∠ABD=50°,∠BCD=130°,求∠ABC的度数.15.(12分)如图,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延长AC至E,使CE=AC.(1)求证:DE=DB;(2)连接BE,试判断△ABE的形状,并说明理由.16.(12分)已知:如图,△ABC是边长3 cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1 cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),则当t为何值时,△PBQ是直角三角形?参考答案1.A 2.D 3.C 4.D 5.C 6.C 7.80° 8.等边 9.2 cm 10.6 11.∵AD =BD ,∴设∠BAD =∠DBA =x °.∵AB =AC =CD ,∴∠CAD =∠CDA =∠BAD +∠DBA =2x °,∠DBA =∠C =x °.∴∠BAC =3∠DBA =3x °.∵∠ABC +∠BAC +∠C =180°,∴5x =180.∴∠DBA =36°.∴∠BAC =3∠DBA =108°. 12.证明:(1)∵AC ⊥BC ,BD ⊥AD ,∴∠D =∠C =90°.在Rt △ACB 和Rt △BDA 中,⎩⎪⎨⎪⎧AB =BA ,AC =BD ,∴Rt △ACB ≌Rt △BDA(HL).∴BC =AD.(2)∵△ACB ≌△BDA ,∴∠CAB =∠DBA.∴OA =OB ,即△OAB 是等腰三角形. 13.过点P 作PC ⊥AB ,垂足为点C ,∵∠PAB =15°,∠PBC =30°,∴∠APB =∠PBC -∠PAB =30°-15°=15°.∴PB =BA.由题意知AB =15×2=30(海里),∴PB =30海里.在Rt △PBC 中,∵∠PBC =30°,∴PC =12PB =15海里.∴PC<18海里.∴轮船继续向前航行有触礁的危险. 14.(1)证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC.在△ABC 和△ADC 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAC AC =AC ,,∴△ABC ≌△ADC(SAS).∴BC =DC.∴△BCD 是等腰三角形.(2)∵BC =DC ,∠BCD =130°,∴∠CBD=∠CDB=12(180°-∠BCD)=12(180°-130°)=25°.∴∠ABC=∠ABD+∠CBD=50°+25°=75°. 15.(1)证明:∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°.∵AD平分∠CAB,∴∠DAB=12∠CAB=30°=∠ABC.∴DA=DB.∵CE=AC,BC⊥AE,∴BC是线段AE的垂直平分线.∴DE=DA.∴DE=DB.(2)△ABE 是等边三角形.理由如下:∵BC是线段AE的垂直平分线,∴BA=BE,即△ABE是等腰三角形.又∵∠CAB =60°,∴△ABE是等边三角形.16.根据题意:AP=t cm,BQ=t cm.△ABC中,AB=BC=3 cm,∠B=60°,∴BP=(3-t)cm.在△PBQ中,BP=3-t,BQ=t,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°.当∠BQP=90°时,BQ=12BP,即t=12(3-t),解得t=1.当∠BPQ=90°时,BP=12BQ,即3-t=12t,解得t=2.答:当t=1秒或t=2秒时,△PBQ是直角三角形.别浪费一分一秒——如何利用零散时间学人们常说,时间是公平的,每个人的一天只有24个小时,所以应该珍惜时间去充实自己。
精品基础教育教学资料,仅供参考,需要可下载使用!《轴对称》综合测试一一、选择题(每小题3分,共24分)1.下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是()A.B.C.D.2.下列说法不正确的是()A.两个关于某直线对称的图形一定全等B.对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称3.下列条件中,不能得到等边三角形的是()A.有两个角是60°的三角形B.有一个角是60°的等腰三角形C.有两个外角相等的等腰三角形D.三边都相等的三角形4.如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC 于点E,则△BEC的周长为()A.13 B.14 C.15 D.165.如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是()A.BD=AB B.BD=AB C.BD=AB D.BD=AB6.如图,△ABC中,AB=AC,点D是BC的中点,E是AC上一点,且AE=AD,若∠AED=75°,则∠EDC的度数是()A. 10°B. 15°C. 20°D. 25°7.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是()A.(0,3)B.(1,2) C.(0,2)D.(4,1)8. 如图,已知△ABC的面积为10cm2,BP为∠ABC的角平分线,AP垂直BP于点P,则△PBC的面积为( B )A. 6cm2B. 5cm2C. 4cm2D. 3cm2二、填空题(每小题4分,共24分)9.已知点A(a,2019)与点B(2020,b)关于y轴对称,则a+b的值为.10.等腰三角形一个角等于100°,则它的一个底角的度数是.11.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为.12.如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F分别是AD的三等分点,若△ABC的面积为18cm2,则图中阴影部分面积为cm2.13.如图,在△ABC中,∠B与∠C的平分线交于点O.过O点作DE∥BC,分别交AB、AC 于D、E.若AB=8,AC=6,则△ADE的周长是 .14.如图:D、E是三角形ABC的边BC上的两点,且BD=DE=AD=AE=EC,则∠BAC的大小等于.三、解答题(5个小题,共52分)15.(8分)如图所示,写出△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2.16.(10分)如图是由16个小正方形组成的正方形网格图,现已将其中的两个涂黑.请你用三种不同的方法分别在下图中再涂黑三个空白的小正方形,使它成为轴对称图形.17.(10分)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.18.(12分)如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F.(1)若△CMN的周长为20cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.19.(12分)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N 第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.《轴对称》综合测试一参考答案一、1. D 2.B 3.C 4.A 5.C 6.B 7.A 8.B.提示:1. 提示:A、有3条对称轴;B、有4条对称轴;C、有2条对称轴;D、有6条对称轴.故选D.2.提示:A、两个关于某直线对称的图形一定全等,本选项正确;B、对称图形的对称点不一定在对称轴的两侧,如可能在对称轴上,故本选项错误;C、两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴,本选项正确;D、平面上两个全等的图形不一定关于某直线对称,本选项正确.故选B.3.提示:A、有两个角是60°的三角形,那么第三个角也是60°,故是等边三角形;B、有一个角是60°的等腰三角形是等腰三角形;C、有两个外角相等的等腰三角形,不一定是等边三角形;D、三边都相等的三角形是等边三角形,正确;故选:C.4.提示:∵DE是AB的垂直平分线,∴AE=BE,∴△BEC周长=BE+CE+BC=AE+CE+BC=AC+BC,∵腰长AB=8,∴AC=AB=8,∴△BEC周长=8+5=13.故选A.5.提示:∵∠ACB=90°,∠A=30°,∴BC=AB.∵CD是高,∴∠BCD=∠A=30°,∴BD=BC,∴BD=AB.故选C.小结:30º锐角所对的边等于斜边的一半,只有在直角三角形中才成立,其他三角形中不成立.6.提示:∵在△ABC中,D为BC中点,AB=AC,∴AD⊥BC;又∵AD=AE,∠AED=75°,∴∠ADE=75°∴∠EDC=∠ADC-∠ADE=90°-75°=15°.故选B.小结:本题主要考查了等腰三角形的两条重要性质:等边对等角和“三线合一”.7.提示:如图所示,点B′(0,3).故选A.小结:本题考查的是画轴对称图形,旨在培养学生的动手操作能力和观察能力.8.提示:如图,延长AP交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP(ASA),∴S△ABP=S△BEP,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,设△ACE的面积为m,∴S△ABE=S△ABC+S△ACE=10+m,∴S△PBC=S△ABE-S△ACE=1022m m+-=5.故选:B.小结:因为等底同高的两个三角形面积相等,所以三角形被中线分成的两个三角形面积相等.二、9. -1 10.40°11.10°12.9 13.14 14.120°提示:9. 提示:由点A(a,2019)与点B(2020,b)关于x轴对称,得a=-2020,b=2019,a+b=-1,故答案为:-1.10.提示:∵一个角为100°,∴这个角只能是等腰三角形的顶角,∴该等腰三角形的顶角为100°,∴底角为=40°,故答案为:40°.11.提示:由题意得:∠CA′D=∠A=50°,∠B=40°,由外角定理可得:∠CA′D=∠B+∠A′DB,∴可得:∠A′DB=10°.故答案为:10°.12.提示:根据等腰三角形是轴对称图形,△CEF和△BEF的面积相等,所以阴影部分的面积是三角形面积的一半.∵S△ABC=18cm2,∴阴影部分面积=×18=9cm2.故答案为:9.小结:本题考查了等腰三角形的性质及轴对称性质,利用对称发现△CEF和△BEF的面积相等是正确解答本题的关键.13.提示:∵BO平分∠ABC,∴∠DBO=∠CBO,∵DE∥BC,∴∠CBO=∠DOB,∴∠DBO=∠DOB,∴BD=DO,同理OE=EC,∴△ADE的周长=AD+AE+ED=AB+AC=8+6=14.故答案为14.小结:本题考查等腰三角形的性质,平行线的性质及角平分线的性质.有效的进行线段的等量代换是正确解答本题的关键.14.提示:∵AD=AE=DE,∴△ADE是等边三角形,∴∠ADE=∠AED=∠DAE=60°,∵AD=AB,AE=EC,∴∠B=∠BAD,∠C=∠CAE,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠CAE,∴∠BAD=∠CAE=30°,∴∠BAC=∠BAD+∠DAE+∠CAE=120°.故答案为:120°.小结:本题考查了等边三角形的判定的性质,发现并利用等边三角形是解题的关键.三、15. 解:△ABC各顶点的坐标以及△ABC关于x轴对称的△A1B1C1的各顶点坐标:A1(﹣3,﹣2),B1(﹣4,3),C1(﹣1,1),如图所示:△A2B2C2,即为所求.16.解:本题画法较多,只要满足题意均可,如图所示:17.思路分析:根据等腰直角三角形的性质,得到△BEH是等腰直角三角形,然后利用角平分线的性质,得到DE=HE,再利用BM=2DE,得到△HEM是等腰直角三角形,从而获证. 解:∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵EH⊥AB于H,∴△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC.小结:等腰直角三角形既是等腰三角形也是直角三角形,因此它兼具这两种三角形的所有性质.18.思路分析:(1)利用垂直平分线的性质求AB的长;(2)由四边形内角和得∠ACB的度数,再由三角形内角和得∠A+∠B的度数,最后根据等腰三角形的性质求∠MCN的度数.解:(1)∵DM是AC边的垂直平分线,∴MA=MC,∵EN是BC边的垂直平分线,∴NB=NC,∴AB=AM+MN+NB=MC+MN+NC=△CMN的周长=20cm;(2)∵MD⊥AC,NE⊥BC,∠MFN=70°,∴∠ACB=180°﹣∠MFN=110°,∴∠A+∠B=70°,∵MA=MC,NB=NC,∴∠MCA=∠A,∠NCB=∠B,∴∠MCA+∠NCB=70°,∴∠MCN=110°-70°=40°.小结:本题主要考查了线段垂直平分线和等腰三角形的性质.线段垂直平分线经转化后就是等腰三角形.19.思路分析:(1)当M、N两点重合时,它们的路程差是12,据此可求出运动时间;(2)当M在AC上,N在AB上时,可得到等边三角形△AMN,根据等边三角形的性质得运动时间;(3)根据点M、N将在点C重合,所以点M、N在BC上时,能得到以MN为底边的等腰三角形AMN,证明△ACM≌△ABN,由全等三角形的性质求得运动时间.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.小结:动点问题要动中求静,将动点运动的路径进行分段,逐段分析可解决问题.《轴对称》综合测试二一、选择题(每小题3分,共24分)1.在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.2.已知点A(﹣2,3)关于x轴对称的点是点B,点B关于y轴对称的点是C,则点C的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)3.已知a、b、c是三角形的三边长,且满足(a﹣b)2+|b﹣c|=0,那么这个三角形一定是()A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形4.如图,在△ABC中,AB=AC,D、E两点分别在AC、BC上,BD是∠ABC的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CDE的周长是()A.15cm B.13cm C.11cm D.9cm5.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A.(1,2)B.(2,2)C.(3,2)D.(4,2)6.将一张正方形按图1,图2方式折叠,然后用剪刀沿图3中虚线剪掉一角,再将纸片展开铺平后得到的图形是()A.B.C.D.7.已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③8.图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的12)后,得图③,④,…,记第n(n≥3)块纸板的周长为Pn,则P n﹣P n﹣1的值为()A.114n-⎛⎫⎪⎝⎭B.C.112n-⎛⎫⎪⎝⎭D.二、填空题(每小题4分,共24分)9.我国国旗上的五角星有条对称轴.10.已知点P(2a+b,b)与P1(8,﹣2)关于y轴对称,则a+b= .11.如图,CD是△ABC的边AB上的高,且AB=2BC=8,点B关于直线CD的对称点恰好落在AB的中点E处,则△BEC的周长为.12.已知一个等腰三角形的两边长分别是6和5,那么它的周长为.13.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为.14.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有个.三、解答题(5个小题,共52分)15.(8分)某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使得三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.16.(10分)如图,一艘轮船从点A向正北方向航行,每小时航行15海里,小岛P在轮船的北偏西15°,2小时后轮船航行到点B,小岛P此时在轮船的北偏西30°方向,在小岛P 的周围18海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由.17.(10分)如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B= °,∠C= °;(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2.①求证:△ANE是等腰三角形;②试写出线段BN、CE、CD之间的数量关系,并加以证明.18.(12分)(1)如图1,直线同侧有两点A、B,在直线上求一点C,使它到A、B之和最小.(保留作图痕迹不写作法)(2)知识拓展:如图2,点P在∠AOB内部,试在OA、OB上分别找出两点E、F,使△PEF周长最短(保留作图痕迹不写作法)(3)解决问题:①如图3,在五边形ABCDE中,在BC,DE上分别找一点M,N,使得△AMN周长最小;②若∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,∠AMN+∠ANM的度数为.19.(12分)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB 于点E.(1)如图1,连接EC,求证:△EBC是等边三角形;(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG 与AD之间的数量关系;(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.《轴对称》综合测试二参考答案一、1. D 2.B 3.B 4.B 5.C 6.B 7.A 8.C.提示:1. 提示:利用轴对称图形定义判断.下列四个汉字中,可以看作轴对称图形的是“中”,故选D.2.提示:点A(﹣2,3)关于x轴对称的点B的坐标为(﹣2,﹣3).点B(﹣2,﹣3)关于y轴对称的点C的坐标为(2,-3).故选:B.3.提示:根据非负数的性质,得∴a﹣b=0,且b﹣c=0,∴a=b,且b=c,∴a=b=c,∴这个三角形一定是等边三角形,故选B.4.提示:∵AB=AC,∴∠ABC=∠C.∵DE∥AB,∴∠DEC=∠ABC=∠C,∠ABD=∠BDE,∴DE=DC,∵BD是∠ABC的平分线,∴∠ABD=∠DBE.∴∠DBE=∠BDE,∴BE=DE=DC=5cm,∴△CDE 的周长为DE+DC+EC=5+5+3=13(cm),故选B.5.提示:如图,∵点P (﹣1,2),∴点P 到直线x=1的距离为1﹣(﹣1)=2,∴点P 关于直线x=1的对称点P ′到直线x=1的距离为2,∴点P ′的横坐标为2+1=3,∴对称点P ′的坐标为(3,2).故选C .小结:本题采用数形结合的办法更容易得到答案,找一个点的坐标,应分为求点的横坐标与纵坐标两个小题.6.提示:由于剪去的是一个等腰直角三角形,四个等腰直角三角形直角顶点重合可以得到一个正方形.故选:B .小结:此题主要考查了剪纸问题,解答此类题最好动手操作,易得出答案. 7.提示:由题意知,要求“被一条直线分成两个小等腰三角形”,(1)中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°,72°,能; (2)不能;(3)显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能; (4)中的为36°,72,72°和36°,36°,108°,能.故选A .小结:在等腰三角形中,从一个顶点向对边引一条线段,分原三角形为两个新的等腰三角形,必须存在新出现的一个小等腰三角形与原等腰三角形形状相同才有可能. 8.提示:P 1=1+1+1=3,P 2=1+1+12=52,P 3=1+12+12+14×3=114,P 4=1+12+12+14×2+18×3=238,… ∴p 3﹣p 2=114﹣52=14=212,P 4﹣P 3=238﹣114=18=312,则Pn ﹣Pn ﹣1=112n -=112n -⎛⎫⎪⎝⎭.故选C .小结:本题考查了等边三角形的性质;要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.二、9. 5 10.﹣5 11.12 12.16或17 13.5.5 14.8.提示:9. 提示:过五角星的五个顶点中任意一个,与所对的两边的交点可作一条对称轴,∴五角星有5条对称轴.故答案为:5.10.提示:∵点P(2a+b,b)与P1(8,﹣2)关于y轴对称,∴2a+b=﹣8,b=﹣2,解得:a=﹣3,则a+b=﹣3﹣2=﹣5.故答案为:﹣5.11.提示:∵点B与点E关于DC对称,∴BC=CE=4.∵E是AB的中点,∴BE=12AB=4.∴△BEC的周长12.故答案为:12.12.提示:当腰为6时,则三角形的三边长分别为6、6、5,满足三角形的三边关系,周长为17;当腰为5时,则三角形的三边长分别为5、5、6,满足三角形的三边关系,周长为16;综上可知,等腰三角形的周长为16或17.故答案为:16或17.小结:已知等腰三角形的两边长求周长,不仅要分类讨论,还要看是否符合三角形三边关系.13.提示:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=12∠BAD=12×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°﹣60°=30°,∴AD=12AB=12×11=5.5,∴DF=5.5.故答案为:5.5.小结:角平分线与平行线结合时,常有等腰三角形出现.14.提示:如图,AB是腰长时,有4个点可以作为点C,AB是底边时,有4个点都可以作为点C,所以,满足条件的点C的个数是4+4=8.故答案为8.小结:掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.三、15. 解:如图,①连接AB,AC,②分别作线段AB,AC的垂直平分线,两垂直平分线相较于点P,则P即为售票中心.16.解:如图,过P作PE⊥AB于E,由题意得:∠PAE=15°,∠PBE=30°,AB=30海里.∴AB=BP=30,在Rt△BPE中,∵∠PBE=30°,∴PE=12BP=12×30=15.又∵周围18海里都会有危险,∴轮船继续向北航行,有触礁危险.17.思路分析:(1)由等边对等角,得∠C=∠ADC=∠BAC=2∠B,∠DAC=∠B,在△ADC中由三角形内角和可求得∠B,∠C;(2)①由(1)可知∠BAD=∠CAD=36°,利用三角形内角和求得∠ANH、∠AEH的度数,可得AN=AE;②由①知AN=AE,借助已知利用线段的和差可得CD=BN+CE.解:(1)∵BA=BC,∴∠BCA=∠BAC,∵DA=DB,∴∠BAD=∠B,∵AD=AC,∴∠ADC=∠C=∠BAC=2∠B,∴∠DAC=∠B,∵∠DAC+∠ADC+∠C=180°,∴2∠B+2∠B+∠B=180°,∴∠B=36°,∠C=2∠B=72°,故答案为:36;72;(2)①在△ADB中,∵DB=DA,∠B=36°,∴∠BAD=36°,在△ACD中,∵AD=AC,∴∠ACD=∠ADC=72°,∴∠CAD=36°,∴∠BAD=∠CAD=36°,∵MH⊥AD,∴∠AHN=∠AHE=90°,∴∠AEN=∠ANE=54°,即△ANE是等腰三角形;②CD=BN+CE.证明:由①知AN=AE,又∵BA=BC,DB=AC,∴BN=AB﹣AN=BC﹣AE,CE=AE﹣AC=AE﹣BD,∴BN+CE=BC﹣BD=CD,即CD=BN+CE.小结:本题主要考查等腰三角形的判定和性质,掌握等角对等边、等边对等角是解题的关键,注意方程思想的应用.18.思路分析:(1)根据两点之间线段最短,作A关于直线MN的对称点E,连接BE交直线MN于C,即可得出答案;(2)作P关于OA、OB的对称点C、D,连接CD交OA、OB于E、F.此时△PEF周长有最小值;(3)①取点A关于BC的对称点P,关于DE的对称点Q,连接PQ与BC相交于点M,与DE相交于点N,根据轴对称的性质可得AM=PM,AN=QN,然后求出△AMN周长=PQ,根据轴对称确定最短路线问题,PQ的长度即为△AMN 的周长最小值;②根据三角形的内角和等于180°求出∠P+∠Q,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠AMN=2∠P,∠ANM=2∠Q,然后求解即可得出答案.解:(1)作A关于直线MN的对称点E,连接BE交直线MN于C,连接AC,BC,则此时C点符合要求.(2)作图如下:(3)①作图如下:②∵∠BAE=125°,∴∠P+∠Q=180°﹣125°=55°,∵∠AMN=∠P+∠PAM=2∠P,∠ANM=∠Q+∠QAN=2∠Q,∴∠AMN+∠ANM=2(∠P+∠Q)=2×55°=110°.小结:在平面内找最短路径,要利用轴对称,用这个点的对称点去代替这个点,化曲为直.19.思路分析:(1)利用“三边相等”的三角形是等边三角形证得△EBC是等边三角形;(2)延长ED使得DW=DM,连接MN,即可得出△WDM是等边三角形,利用△WGM≌△DBM即可得出BD=WG=DG+DM,再利用AD=BD,即可得出答案;(3)利用等边三角形的性质得出∠H=∠2,进而得出∠DNG=∠HNB,再求出△DNG≌△HNB 即可得出答案.(1)证明:如图1所示:在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,BC=.∵BD平分∠ABC,∴∠CBD=∠DBA=∠A=30°.∴DA=DB.∵DE⊥AB于点E.∴AE=BE=.∴BC=BE.∴△EBC是等边三角形;(2)结论:AD=DG+DM.证明:如图2所示:延长ED使得DW=DM,连接MW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,又∵DM=DW,∴△WDM是等边三角形,∴MW=DM,在△WGM和△DBM中,∵∴△WGM≌△DBM,∴BD=WG=DG+DM,∴AD=DG+DM.(3)结论:AD=DG﹣DN.证明:延长BD至H,使得DH=DN.由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.小结:此题主要考查了等边三角形的判定与性质以及全等三角形的判定与性质,根据已知做出正确辅助线是解题关键.。
人教版八年级上册数学第13章测试题含答案一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的)1.下列图形中,是轴对称图形的是( )2.点M (1,-2)关于x 轴对称的点的坐标为( )A .(1,2)B .(-1,-2)C .(-1,2)D .(-2,1)3.一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为( )A .18B .24C .30D .24或304.如图,AD 是等腰三角形ABC 的顶角平分线,BD =5,则CD 等于( )A .10B .5C .4D .3(第4题)5.如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1 B.12 C.13D.146.如图,等腰三角形ABC 的周长为21,底边BC =5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为( ) A .13B .14C .15D .16(第5题) (第6题) (第8题) (第9题) (第10题)7.将两个全等的直角三角形(有一锐角为30°)拼成一个四边形,其中是轴对称图形的四边形有()A.1个B.2个C.3个D.4个8.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以40 n mile/h的速度向正北方向航行,2 h后到达灯塔P的北偏东40°方向的N处,则N处与灯塔P的距离为()A.40 n mile B.60 n mile C.70 n mile D.80 n mile 9.如图,将长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC′一定是全等三角形10.如图,直线AB,CD交于点O,若AB,CD是等边三角形MNP的两条对称轴,且点P在直线CD上(不与点O重合),则点M,N中必有一个在() A.∠AOD的内部B.∠BOD的内部C.∠BOC的内部D.直线AB上二、填空题(本题共6小题,每小题3分,共18分)11.如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=________.(第11题)(第12题)(第13题)12.小明上午在理发店时,从镜子内看到背后的时钟的时针与分针的位置如图所示,此时的时间是________.13.如图,在正方形方格中,阴影部分是涂灰7个小正方形所形成的图案,再将方格内空白的1个小正方形涂灰,使得到的新图案(阴影部分)成为一个轴对称图形的涂法有________种.14.如图,点D,E分别在等边三角形ABC的边AB,BC上,将△BDE沿直线DE翻折,使点B落在B1处.若∠ADB1=70°,则∠CEB1=________.(第14题)(第15题)(第16题)15.如图,在等腰三角形ABC中,AB=AC,P,Q分别是边AC,AB上的点,且AP=PQ=QC=BC,则∠PCQ的度数为________.16.如图,∠ABC是某钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE,EF,F G,….假设添加的钢管的长度都与BD的长度相等.如果∠ABC=10°,那么最多可以添加这样的钢管________根.三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(8分)如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求△ABC的面积;(2)在图中作出△ABC关于y轴对称的△A1B1C1;(3)写出点A1,B1,C1的坐标.18.(8分)如图,P为∠MON的平分线上的一点,P A⊥OM于A,PB⊥ON于B.求证:OP垂直平分AB.19.(8分)如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.20.(8分)(1)在等腰三角形ABC中,∠A=100°,求∠B的度数.(2)在等腰三角形ABC中,∠A=40°,求∠B的度数.(3)根据(1)(2)发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.21.(10分)如图,△ABC是边长为3 cm的等边三角形,动点P,Q同时从A,B 两点出发,分别沿AB,BC方向匀速移动,它们的速度都是1 cm/s,当点P 到达点B时,P,Q两点停止运动.设点P的运动时间为t s,则当t为何值时,△PBQ是直角三角形?22.(10分)如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 是AB 的中点,点E 是AB 边上一点.(1)若BF ⊥CE 于点F ,交CD 于点G (如图①),求证AE =CG ;(2)若AH ⊥CE ,垂足为H ,AH 的延长线交CD 的延长线于点M (如图②),找出图中与BE 相等的线段,并证明.答案一、1.C 2.A 3.C 4.B 5.D 6.A 7.B 8.D 9.B 10.D 二、11.40° 12.10:45 13.3 14.50° 15.⎝ ⎛⎭⎪⎫3607° 16.8三、17.解:(1)S △ABC =12×5×3=152.(2)△A 1B 1C 1如图所示.(3)A 1(1,5),B 1(1,0),C 1(4,3).18.证明:∵OP 平分∠MON ,P A ⊥OM ,PB ⊥ON ,∴P A =PB . 又∵OP =OP ,∴Rt △POA ≌Rt △POB (HL). ∴OA =OB . ∴OP 垂直平分AB . 19.(1)证明:∵AB =AC ,∴∠B =∠C .在△DBE 和△ECF 中,⎩⎨⎧BE =CF ,∠B =∠C ,BD =CE ,∴△DBE ≌△ECF (SAS). ∴DE =EF .∴△DEF 是等腰三角形.(2)解:由(1)可知△DBE ≌△ECF ,∴∠BDE =∠CEF . ∵∠A +∠B +∠C =180°,∠A =40°,∠B =∠C , ∴∠B =12×(180°-40°)=70°. ∴∠BDE +∠BED =110°. ∴∠CEF +∠BED =110°. ∴∠DEF =70°.20.解:(1)∵∠A =100°>90°,∴∠B =∠C =12×(180°-100°)=40°. (2)若∠A 为顶角,则∠B =(180°-∠A )÷2=70°; 若∠A 为底角,∠B 为顶角, 则∠B =180°-2×40°=100°; 若∠A 为底角,∠B 为底角, 则∠B =40°,故∠B 为70°或100°或40°.(3)分两种情况:①当90≤x<180时,∠A 只能为顶角, ∴∠B 的度数只有一个. ②当0<x<90时,若∠A 为顶角,则∠B =⎝ ⎛⎭⎪⎫180-x 2°;若∠A 为底角,∠B 为顶角,则∠B =(180-2x)°; 若∠A 为底角,∠B 为底角,则∠B =x°. 当180-x 2≠180-2x 且180-2x ≠x 且180-x2≠x ,即x ≠60时,∠B 有三个不同的度数.综上所述,可知当0<x<90且x ≠60时,∠B 有三个不同的度数. 21.解:根据题意,得AP =t cm ,BQ =t cm.在△ABC 中,AB =BC =3 cm ,∠B =60°,∴BP =(3-t )cm. 在△PBQ 中,BP =(3-t )cm ,BQ =t cm ,若△PBQ 是直角三角形, 则∠BQP =90°或∠BPQ =90°. 当∠BQP =90°时,∠BPQ =30°, ∴BQ =12BP ,即t =12(3-t ),解得t =1; 当∠BPQ =90°时,∠BQP =30°, ∴BP =12BQ ,即3-t =12t ,解得t =2.综上,当t =1或t =2时,△PBQ 是直角三角形. 22.(1)证明:∵点D 是AB 的中点,AC =BC ,∠ACB =90°,∴CD ⊥AB ,∠ACD =∠BCD =45°, ∠CAD =∠CBD =45°. ∴∠CAE =∠BCG . ∵BF ⊥CE ,∴∠CBG +∠BCF =90°.又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.又∵AC=CB,∴△AEC≌△CGB(ASA).∴AE=CG.(2)解:BE=CM.证明如下:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°. ∴∠CMA=∠BEC.又∵AC=CB,∠ACM=∠CBE=45°,∴△BCE≌△CAM(AAS).∴BE=CM.。
第11讲等腰三角形1、等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).1、定义:三条边都相等的三角形,叫等边三角形。
它是特殊的等腰三角形。
2、性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60º。
(2)三个角都相等的三角形是等边三角形。
(3)有一个角是60º的等腰三角形是等边三角形。
(4)在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。
(1)三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
(2)三角形三个边的中垂线交于一点,并且这一点到三个顶点的距离相等。
(3)常用辅助线:①三线合一;②过中点做平行线考点1、等腰三角形性质例1、一个等腰三角形的一个内角是40°,则它的顶角是()A.40°B.50°C.60°D.40°,100°例2、在钝角三角形ABC中,AB=AC,点D是BC上一点,AD把△ABC分成两个等腰三角形,则∠BAC的度数为().A.150° B.124°C.120° D.108°例3、如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF =DE,则∠E=______度.(例2)(例3)例4、已知△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为。
例5、在△ABC中,AB=AC,CD=CB,若∠ACD=42°,则∠BAC=______°.例6、已知一个等腰三角形的周长为18cm。
(1)如果腰长是底边的2倍,那么各边的长是多少?(2)如果一腰上的中线将该等腰三角形的周长分为1:2两部分,那么各边的长为多少?例7、如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.1、对“等角对等边”这句话的理解,正确的是()A.只要两个角相等,那么它们所对的边也相等B.在两个三角形中,如果有两个角相等,那么它们所对的边也相等C.在一个三角形中,如果有两个角相等,那么它们所对的边也相等D.以上说法都是错误的2、等腰三角形的两内角度数之比是1∶2,则顶角的度数是()A.90°B.45° C.36° D.90°或36°3、△ABC中AB=AC,∠A=36°,BD平分∠ABC交AC于D,则图中的等腰三角形有()A.1个 B.2个 C.3个 D.4个4、如图,在△ABC中,∠B=∠C,D在BC上,∠ADE=∠AED,且∠BAD=60°,则∠EDC= 度.5、如图所示,AD是△ABC的中线,∠ADC=60°,把△ADC沿直线AD折过来,点C落在C′处,如果BC′=5,则BC=______.6、如图,在△ABC中,AB=AC,∠BAC与∠ACB的平分线相交于点D,若∠ADC=130°,则∠BAC=_____度.(4)(5)(6)7、如图,△ABC中,AB=AC,D、E分别是BC、AC上的点,∠BAD与∠CDE满足什么条件时AD=AE?写出你的推理过程.8、如图,在△ABC中,AB=AC,CD为AB边上的高,求证:∠BCD=1∠A.29、如图.在△ABC中,AB=AC,F为AC上一点,FD⊥BC于D,DE⊥AB于E,∠AFD=145°,求∠A和∠EDF的值.考点2、等腰三角形的判定例1、下列能断定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C.AB=AC=2,BC=4D.AB=3,BC=7,周长为10例2、如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()例3、如图,已知△ABC中,AC+BC=24,AO、BO分别是角平分线,且MN∥BA,分别交AC于N、BC于M,则△CMN的周长为______.例4、如图,P是∠AOB的角平分线上一点,PD⊥OB,垂足为D,PC∥OB交OA于点C,(例3)(例4)例5、如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.(1)上述三个条件中,哪两个条件______可判定△ABC是等腰三角形(用序号写出所有情形);(2)选择第(1)小题中的一种情形,证明△ABC是等腰三角形.例6、如图AB=AC,∠A=36°,AB的垂直平分线MN交AC于点D,交AB于E.①求∠DBC的度数.②猜想△BDC的形状并证明.例7、如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF。
人教版八年级数学上学期期末复习:第13章《轴对称》填空题精选一.填空题(共30小题)1.(2020春•渝中区校级期末)如图,P为△ABC内一点,过点P的线段MN分别交AB、BC于点M、N,且M、N分别在P A、PC的中垂线上.若∠ABC=80°,则∠APC的度数为.2.(2020春•沙坪坝区期末)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=6,BD是△ABC的角平分线,点P,点N分别是BD,AC边上的动点,点M在BC上,且BM=1,则PM+PN的最小值为.3.(2019秋•九龙坡区校级期末)已知△ABC为等腰三角形,AB=AC=10,BC=8,BD为∠ABC的平分线,点P 为线段BD上的一动点,过点P作线段AB的垂线,垂足为点M,连接AP,则PM+P A的最小值为.4.(2020春•沙坪坝区校级期末)如图所示,在等腰△ABC中,AB=AC,∠B=50°,D为BC的中点,点E在AB 上,∠AED=73°,若点P是等腰△ABC的腰上的一点,则当△EDP为以DE为腰的等腰三角形时,∠EDP的度数是.5.(2019秋•渝中区校级期末)如图所示,在△ABC中,∠C=90°,DE垂直平分AB,交BC于点E,垂足为点D,BE=6cm,∠B=15°,则AC等于.6.(2019秋•渝中区校级期末)在平面直角坐标系中,若点A(a,b)与点B(1,﹣2)关于y轴对称,则a+b=.7.(2019秋•巴南区期末)如图,△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于点D,点E,F分别在线段BD、CD上,点G在EF的延长线上,△EFD与△EFH关于直线EF对称,若∠A=60°,∠BEH=84°,∠HFG=n°,则n=.8.(2019秋•开州区期末)如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=4cm,△ADC的周长为10cm,则△ABC的周长是cm.9.(2019秋•两江新区期末)如图,在△ABC中,DB和DC分别平分∠ABC和∠ACB,过D作EF∥BC,分别交AB、AC于点E、F,若EF=5,BE=3,则线段CF的长为.10.(2019秋•江津区期末)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE= 12∠ACB,则∠A的度数是.11.(2019秋•九龙坡区期末)在平面直角坐标系中,点P(1,﹣5)关于x轴对称点的点的坐标是.12.(2019秋•梁平区期末)如图,△ABC是等边三角形,D,E分别是BC,AB的中点,且AD=4cm.F是AD上一动点,则BF+EF的最小值为cm.13.(2019秋•江北区期末)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=7,则CE的长为.14.(2019秋•万州区期末)如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE=.15.(2019秋•长寿区期末)在线段、直角、等腰三角形、直角三角形中,成轴对称图形的是.16.(2019秋•长寿区期末)等腰三角形一边长为4,另一边长为9,则它的周长是.17.(2019春•南岸区期末)如图,在△ABC中,过A作DE∥BC交∠ABC的平分线BD于点D、交∠ACB的平分线CE于点E.若BC=7,DE=9,则△ABC的周长为.18.(2018秋•南岸区期末)如图,在平面直角坐标系中,将△ABC三个顶点的横坐标分别乘以﹣1,而纵坐标保持不变,得到△A′B′C′,则△A′B′C′和△ABC关于对称(横线上填“x轴”、“y轴”或“原点”).19.(2019春•渝中区校级期末)如图,△ABC中,AC=BC,CE为△ABC的中线,BD为AC边上的高,BF平分∠CBD交CE于点G,连接AG交BD于点M,若∠AFG=63°,则∠AMB的度数为°.20.(2018秋•渝中区期末)如图,已知∠BAC=65°,D为∠BAC内部一点,过D作DB⊥AB于B,DC⊥AC于C,设点E、点F分别为AB、AC上的动点,当△DEF的周长最小时,∠EDF的度数为.21.(2018秋•合川区期末)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BCD=60°,若BD=3cm,则AD=cm.22.(2018秋•渝北区期末)如图,∠ABC=20°,点D,E分别在射线BC,BA上,且BD=3,BE=3,点M,N 分别是射线BA,BC上的动点,求DM+MN+NE的最小值为.23.(2018秋•巴南区期末)如图,BE、CD分别是等边△ABC的高和角平分线,点O是它们的交点,若∠BOC=m°,则m=.24.(2018秋•江北区期末)在等腰△ABC中,一腰上的高与另一腰的夹角为26°,则底角的度数为.25.(2019春•沙坪坝区校级期末)如图,已知△ABC是等边三角形,点B、C、D、F在同一直线上,CD=CE,DF=DG,则∠F=度.26.(2019春•南岸区校级期末)如图,在等腰△ABC中,AB=BC,∠B=120°,线段AB的垂直平分线分别交AB、AC于点D、E,若AC=12,则DE=.27.(2019春•沙坪坝区校级期末)如图,在直角三角形ABC中,∠A=90°,AB=8,AC=15,BC=17.D,P分别是线段AC,BC上的动点,则BD+DP的最小值是.28.(2019春•渝中区校级期末)在△ABC中,AB=AC,AC的垂直平分线与AB所在直线相交所得的锐角为40°,∠C=.29.(2019春•渝中区校级期末)如图,△ABC中,AC=BC=5,AB=6,CD=4,CD为△ABC的中线,点E、点F分别为线段CD、CA上的动点,连接AE、EF,则AE+EF的最小值为.30.(2018秋•九龙坡区校级期末)在平面直角坐标系中,点P(﹣2,﹣3)关于x轴对称点的坐标为.参考答案一.填空题(共30小题)1.【解答】解:∵∠ABC =80°,∴∠BMN +∠BNM =100°,∵M 、N 分别在P A 、PC 的中垂线上,∴MA =MP ,NP =NC ,∴∠MP A =∠MAP =12∠BMN ,∠NPC =∠NCP =12∠BNM ,∴∠MP A +∠NPC =12×100°=50°,∴∠APC =180°﹣50°=130°, 故答案为:130°.2.【解答】解:如图所示,作点M 关于BD 的对称点M ',连接PM ',则PM '=PM ,BM =BM '=1, ∴PN +PM =PN +PM ',当N ,P ,M '在同一直线上,且M 'N ⊥AC 时,PN +PM '的最小值等于垂线段M 'N 的长,此时,∵Rt △AM 'N 中,∠A =30°,∴M 'N =12AM '=12(6﹣1)=52,∴PM +PN 的最小值为52, 故答案为:52.3.【解答】解:如图,过点P 作PK ⊥BC 于K ,过点A 作AH ⊥BC 于H .∵AB =AC =10,AH ⊥BC ,∴BH =CH =4,∴∠AHB =90°,∴AH =√AA 2−AA 2=√102−42=2√21,∵BD 平分∠ABC ,PM ⊥AB ,PK ⊥BC ,∴PM =PK ,∴P A +PM =P A +PK ≥AH ,∴P A +PM ≥2√21,∴P A +PM 的最小值为2√21.4.【解答】解:∵AB =AC ,∠B =50°,∠AED =73°,∴∠EDB =23°,∵当△DEP 是以DE 为腰的等腰三角形,①当点P 在AB 上,∵DE =DP 1,∴∠DP 1E =∠AED =73°,∴∠EDP 1=180°﹣73°﹣73°=34°,②当点P 在AC 上,∵AB =AC ,D 为BC 的中点,∴∠BAD =∠CAD ,过D 作DG ⊥AB 于G ,DH ⊥AC 于H ,∴DG =DH ,在Rt △DEG 与Rt △DP 2H 中,{AA =AA 2AA =AA, ∴Rt △DEG ≌Rt △DP 2H (HL ),∴∠AP 2D =∠AED =73°,∵∠BAC =180°﹣50°﹣50°=80°,∴∠EDP 2=134°,③当点P 在AC 上,同理证得Rt △DEG ≌Rt △DPH (HL ),∴∠EDG =∠P 3DH ,∴∠EDP 3=∠GDH =180°﹣80°=100°,④当点P 在AB 上,EP =ED 时,∠EDP =12(180°﹣73°)=53.5°.故答案为:34°或53.5°或100°或134°.5.【解答】解:∵在△ABC 中,∠ACB =90°,∠B =15°,∴∠BAC=90°﹣15°=75°,∵DE垂直平分AB,BE=6cm,∴BE=AE=6cm,∴∠EAB=∠B=15°,∴∠EAC=75°﹣15°=60°,∵∠C=90°,∴∠AEC=30°,∴AC=12AE=12×6cm=3cm,故答案为:3cm.6.【解答】解:∵点A(a,b)与点B(1,﹣2)关于y轴对称,∴a=﹣1,b=﹣2,∴a+b=﹣3,故答案为:﹣3.7.【解答】解:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠ABD=∠DBC,∠ACD=∠DCM,设∠ABD=∠DBC=x,∠ACD=∠DCM=y,∵∠A+∠ABC=∠ACM,∴12∠A+12∠ABC=12∠ACM,即30°+x=y,∵∠D+∠DBC=∠DCM,∴∠D+x=y,∴∠D=30°,∵EFD与△EFH关于直线EF对称,∠BEH=84°,∴∠DEG=∠HEG=180°−84°2=48°,∴∠HFG=n°=∠DFG=48°+30°=78°则n=78.故答案为:78.8.【解答】解:∵DE是△ABC中边AB的垂直平分线,∴AD=BD,AB=2AE=2×4=8(cm),∵△ADC的周长为10cm,即AD+AC+CD=BD+CD+AC=BC+AC=10cm,∴△ABC的周长为:AB+AC+BC=8+10=18(cm).故答案为:18.9.【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵EF∥BC,∴∠EDB=∠DBC,∴∠ABD=∠EDB,∴BE=ED,同理DF=CF,∴EF=3+CF=5,∴CF=2,故答案为:2.10.【解答】解:设∠B=x.∵DB=DE,∴∠DEB=∠B=x,∴∠ADE=∠DEB+∠B=2x,∴∠ACB=2∠ADE=4x.∵AB=BC,∴∠ACB=∠A=4x.在△ABC中,∵∠A+∠B+∠C=180°,∴4x+x+4x=180°,∴x=20°.即∠B=20°∴∠A=4x=80°故答案为:80°11.【解答】解:点P(1,﹣5)关于x轴对称点的点的坐标是:(1,5).故答案为:(1,5).12.【解答】解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CE,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB =∠CEB =90°,在△ADB 和△CEB 中,{∠AAA =∠AAAAAAA =AAAA AA =AA,∴△ADB ≌△CEB (AAS), ∴CE =AD =4cm ,即BF +EF =4cm .故答案为:4.13.【解答】解:∵AB =AC ,∴∠B =∠C ,在△BAD 和△CAE 中,{∠AAA =∠AAA AA =AAAA =AA ,∴△BAD ≌△CAE (ASA ),∴BD =CE =7,故答案为:7.14.【解答】解:连接CD ,BD ,∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE ,∠F =∠DEB =90°,∠ADF =∠ADE , ∴AE =AF ,∵DG 是BC 的垂直平分线,∴CD =BD ,在Rt △CDF 和Rt △BDE 中,{AA =AA AA =AA, ∴Rt △CDF ≌Rt △BDE (HL ),∴BE =CF ,∴AB =AE +BE =AF +BE =AC +CF +BE =AC +2BE , ∵AB =6,AC =3,∴BE =1.5.故答案为:1.5.15.【解答】解:线段的垂直平分线所在的直线是对称轴,是轴对称图形,符合题意;直角的角平分线所在的直线就是对称轴,是轴对称图形,符合题意;等腰三角形底边中线所在的直线是对称轴,是轴对称图形,符合题意;直角三角形不一定是轴对称图形,不符合题意.故成轴对称图形的是:线段、直角、等腰三角形.故答案为:线段、直角、等腰三角形.16.【解答】解:当等腰三角形的三边为:4、4、9时,不符合三角形三边关系,因此这种情况不成立;当等腰三角形的三边为:4、9、9时,符合三角形三边关系,则三角形的周长为:4+9+9=22.因此等腰三角形的周长为22.故填22.17.【解答】解:∵DE∥BC,∴∠E=∠ECB,∠D=∠DBC,∵CE平分∠ACB,BD平分∠ABC,∴∠ECB=∠ACE,∠DBC=∠ABD,∴∠E=∠ACE,∠D=∠ABD,∴AE=AC,AB=AD,∵AB+AC=AD+AE=DE=9,BC=7,∴△ABC的周长为AB+AC+BC=DE+BC=9+7=16.故答案为16.18.【解答】解:∵横坐标乘以﹣1,∴横坐标相反,又纵坐标不变,∴关于y轴对称.故答案为:y轴.19.【解答】解:∵BD为AC边上的高,∴BD⊥AC,∴∠BDF=90°,∵∠AFG=63°,∴∠DBF=90°﹣63°=27°,∵BF平分∠CBD交CE于点G,∴∠CBD=2∠DBF=54°,∴∠ACB=90°﹣∠CBD=36°,∵AC=BC,∴∠CAB=∠CBA=12(180°﹣36°)=72°,∴∠ABD=72°﹣54°=18°,∴∠ABG=27°+18°=45°,∵CE为△ABC的中线,∴CE⊥AB,∴CE垂直平分AB,∴AG=BG,∴∠GAB=∠GBA=45°,∴∠AMB=180°﹣45°﹣18°=117°,故答案为:117.20.【解答】解:如图所示:延长DB和DC至M和N,使MB=DB,NC=DC,连接MN交AB、AC于点E、F,连接DE、DF,此时△DEF的周长最小.∵DB⊥AB,DC⊥AC,∴∠ABD=∠ACD=90°,∠BAC=65°,∴∠BDC=360°﹣90°﹣90°﹣65°=115°,∴∠M+∠N=180°﹣115°=65°根据对称性质可知:DE=ME,DF=NF,∴∠EDM=∠M,∠FDN=∠N,∴∠EDM+∠FDN=65°,∴∠EDF=∠BDC﹣(∠EDM+∠FDN)=115°﹣65°=50°.故答案为50°.21.【解答】解:∵在△ABC中,∠ACB=90°,CD是AB边上的高,∠BCD=60°,BD=3cm,∴BC=2CD,可得:BC2﹣CD2=4CD2﹣CD2=9,解得:CD=√3cm,∴BC=2√3cm,∴AC=AA√3=2cm,∴AB=4cm,∴AD=4﹣3=1cm.故答案为:122.【解答】解:如图所示:作点D关于AB的对称点G,作点E关于BC的对称点H,连接GH交AB于点M、交BC于点N,连接DM、EN,此时DM+MN+NE的值最小.根据对称的性质可知:DB=BG=3,∠GBE=∠DBE=20°,BH=BE=3,∠HBD=∠EBD=20°,∴∠GBH=60°,∴△BGH是等边三角形,∴GH=GB=HB=3,∴DM+MN+NE的最小值为3.故答案为3.23.【解答】解:∵BE、CD分别是等边△ABC的高和角平分线,∴∠ODB=90°,∠ABE=30°,∴∠BOC=∠ODB+∠DBE=90°+30°=120°,故答案为:12024.【解答】解:①∵AB=AC,∠ABD=26°,BD⊥AC,∴∠A=64°,∴∠ABC=∠C=(180°﹣64°)÷2=58°.②∵AB=AC,∠ABD=26°,BD⊥AC,∴∠BAC=26°+90°=116°∴∠ABC=∠C=(180°﹣116°)÷2=32°.故答案为:58°或32°.25.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CE=CD,∴∠CDE=30°,∠FDG=150°,∵DF=DG,∴∠F=15°.故答案为:15.26.【解答】解:连接BE,∵AB=BC,∠B=120°,∴∠A=∠C=30°,∵DE是线段AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=30°,∴∠CBE=90°,又∠C=30°,∴BE=12EC,∴AE=12EC,∴AE=13AC=4,在Rt△ADE中,∠A=30°,∴DE=12AE=2,故答案为:2.27.【解答】解:作B关于AC的对称点E,过E作EP⊥BC于P,交AD于D,则AE=AB=8,此时,BD+DP的值最小,BD+DP的最小值=EP,∵∠BAC=∠BPE=90°,∠C=∠E,∴△ABC∽△PBE,∴AAAA=AAAA,∴1617=AA 15,∴PE =24017, 故答案为:24017.28.【解答】解:当△ABC 为锐角三角形时,如图1,设AC 的垂直平分线交线段AB 于点D ,交AC 于点E ,∵∠ADE =40°,DE ⊥AC ,∴∠A =90°﹣40°=50°,∵AB =AC ,∴∠C =12(180°﹣∠A )=65°;当△ABC 为钝角三角形时,如图2,设AC 的垂直平分线交AC 于点E ,交AB 于点D ,∵∠ADE =40°,DE ⊥AC ,∴∠DAC =50°,∵AB =AC ,∴∠B =∠C ,∵∠B +∠C =∠DAB ,∴∠C =25°;综上可知∠C 的度数为65°或25°,故答案为:65°或25°.29.【解答】解:过B 作BF ⊥AC 于F ,交CD 于E , 则BF 的长即为AE +EF 的最小值,∵AC =BC =5,CD 为△ABC 的中线,∴AD =12AB =3,∵S △ABC =12AB •CD =12AC •BF ,∴BF =6×45=245, ∴AE +EF 的最小值为245, 故答案为:245.30.【解答】解:点P (﹣2,﹣3)关于x 轴对称点的坐标为:(﹣2,3). 故答案为:(﹣2,3).。
D C B A 人教版数学八年级上册第13章能力测试题含答案(时限:100分钟 总分:100分)班级 姓名 总分一、选择题(本大题共12小题,每小题2分,共24分)1.下列几何图形中,是轴对称图形且对称轴的条数大于1的有( )⑴ 长方形; ⑵正方形; ⑶圆; ⑷三角形; ⑸线段; ⑹射线; ⑺直线.A. 3个B. 4个C. 5个D. 6个2.下列说法正确的是( )A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若△ABC 与△DEF 成轴对称,则△ABC ≌△DEFD.点A ,点B 在直线L 两旁,且AB 与直线L 交于点O ,若AO =BO ,则点A 与点B 关于直线L 对称3.如图所示是一只停泊在平静水面的小船,它的“倒影”应是图中的( )4.在平面直角坐标系中,有点A (2,-1),点A 关于y 轴的对称点是( )A.(-2,-1)B.(-2,1)C.(2,1)D.(1,-2)5.已知点A 的坐标为(1,4),则点A 关于x 轴对称的点的纵坐标为( )A. 1B. -1C. 4D. -46.等腰三角形是轴对称图形,它的对称轴是( )A.过顶点的直线B.底边上的高C.底边的中线D.顶角平分线所在的直线.7.已知点A (-2,1)与点B 关于直线x =1成轴对称,则点B 的坐标为( )A.(4,1)B.(4,-1)C.(-4,1)D.(-4,-1)8.已知点P (1,a )与Q (b ,2)关于x 轴成轴对称,又有点Q (b ,2)与点M (m ,n )关于y 轴成轴对称,则m -n 的值为( )A. 3B.-3C. 1D. -19.等腰三角形的一个内角是50°,则另外两个角的度数分别为( )A.65°,65°B.50°,80°C.65°,65°或50°,80°D.50°,50°10.等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角为( )A. 30°B. 150°C. 30°或150°D.12°11.等腰三角形底边长为6cm ,一腰上的中线把它的周长分成两部分的差为2cm ,则腰长为( )A. 4cmB. 8cmC. 4cm 或8cmD. 以上都不对12.已知∠AOB =30°,点P 在∠AOB 的内部,点P 1和点P 关于OA 对称,点P 2和点P第14题第15题第16题O21题⑴L21题⑵B关于OB对称,则P1、O、P2三点构成的三角形是()A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形二、填空题:(本大题共8小题,每小题3分,共24分)13.等边三角形是轴对称图形,它有条对称轴.14.如图,如果△A1B1C1与△ABC关于y轴对称,那么点A的对应点A1的坐标为15.如图是某时刻在镜子中看到准确时钟的情况,则实际时间是.16.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,则PQ=.17.等腰三角形顶角为30°,腰长是4cm,则三角形的面积为.18.点P(1,2)关于直线y=1对称的点的坐标是;关于直线x=1对称的的坐标是.19.三角形三内角度数之比为1∶2∶3,最大边长是8cm,则最小边的长是.20.在△ABC和△ADC中,下列3个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:.三、解答题:(本大题共52分)21.(每小题5分,共10分)作图题:(不写作法,保留作图痕迹)⑴如图,已知线段AB和直线L,作出与线段AB关于直线L对称的图形.⑵已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.22.(5分)如图所示,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).⑴求出△ABC的面积.⑵在图形中作出△ABC关于y轴的对称图形△A1B1C1.⑶写出点A1,B1,C1的坐标.E D C B A P D C B A P E D CB A23.(5分)如图所示,梯形ABCD 关于y 轴对称,点A 的坐标为(-3,3),点B 的坐标为(-2,0). ⑴ 写出点C 和点D 的坐标; ⑵ 求出梯形ABCD 的面积.24.(5分)如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm.求△ABC 的周长.25.(6分)如图,D 是等边三角形ABC 内一点,DB =DA ,BP =AB ,∠DPB =∠DBC.求证:∠BPD =30°.26.(8分)如图,△ABC 为任意三角形,以边AB 、AC 为边分别向外作等边三角形ABD和等边三角形ACE ,连接CD 、BE 并且相交于点P. 求证:⑴CD =BE. ⑵∠BPC =120°27.(6分)下面有三个结论:NM F E CB A ⑴ 等腰三角形两底角的平分线的交点到底边两端的距离相等.⑵ 等腰三角形两腰上中线的交点到底边两端的距离相等.⑶ 等腰三角形两腰上的高的交点到底边两端的距离相等.请你任选一个结论进行证明.28.(7分)如图,在△ABC 中,AB =AC ,∠A =120°,BC =6,AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N ,交AC 于F ,求证:BM =MN =NC.ED CB A一、选择题:1.C;2.C;3.B;4.A;5.D;6.D;7.A;8.B;9.C;10.C;11.C;12.D;二、填空题:13. 3;14.(-1,3);15. 4点40分;16. 2;17. 4cm2;18.(1,0),(1,2);19.4cm;20.等腰三角形的顶角平分线和底边上的中线重合.三、解答题:21.略;22.⑴=×5×3=7.5(平方单位);⑵略;⑶A1(1,5),B1(1,0);C1(4,3).23.⑴C(2,0),D(3,3).⑵=(4+6)×3=15(平方单位).24.∵DE是线段AC的垂直平分线∴AD=CD∵△ABD的周长为13cm∴AB+BC=13cm∵AE=3cm∴AC=2AE=6cm. ∴△ABC的周长为:AB+BC+AC=19cm.25.连接CD,并延度CD交AB于E,证CE垂直平分AB,可得∠DCB=30°再证△BDC≌△BDP即可.26.略;27.略28.连接MA、NA,证明:MA=NA=MN.。
人教版八年级数学上册第十三章达标检测卷一、选择题(每题3分,共30分)1.下列图案是轴对称图形的是()2.点A(3,2)关于y轴对称的点的坐标是()A.(-3,-2) B.(-3,2) C.(3,-2) D.(2,-3)3.如图,AD,CE分别是△ABC的中线和角平分线,若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°4.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使P A+PC=BC,则符合要求的作图痕迹是()5.如图,已知△ABC为等边三角形,BD为中线,延长BC至点E,使CE=CD,连接DE,则∠BDE的度数为()A.105°B.120°C.135°D.150°6.如图,在平面直角坐标系中,点A(-2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是()A.(-2,0) B.(4,0) C.(2,0) D.(0,0)7.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E,若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为()A.4 B.5 C.6 D.88.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为() A.30°或60°B.75°C.30°D.75°或15°9.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点P,使△AOP 为等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个10.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°二、填空题(每题3分,共30分)11.若点P(m,n)关于x轴的对称点的坐标为(a,-2),关于y轴的对称点的坐标为(1,b),则m+n=________.12.如图,是轴对称图形且只有两条对称轴的是________(填序号).13.若等腰三角形的周长为10 cm,其中一边长为2 cm,则该等腰三角形的底边长为__________.14.如图,在三角形纸片ABC中,AB=8 cm,BC=5 cm,AC=6 cm,沿过点B 的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED 的周长等于________cm.15.如图,在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,交BC于点E,BE=4,则AC=________.16.如图,小明上午在理发店时,从镜子内看到背后普通时钟的时针与分针的位置如图所示,此时的时间是__________.17.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线DE交BC于E,交AC于D,∠B=70°,∠F AE=19°,则∠C=________°.18.如图,∠ABC,∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC于点E,那么下列结论:①△BDF,△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为A;B+AC;④BD=CE.其中正确的有__________(填序号).19.如图,在四边形ABCD中,AB=BC=CD=AD,点D到AB的距离为3,∠BAD=60°,点F为AB的中点,点E为AC上的任意一点,则EF+EB的最小值为________.20.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…;这样画下去,直到得到第n条线段之后就不能再画出符合要求的线段了,则n=________.三、解答题(21题6分,22,23题每题7分,24,25题每题8分,26,27题每题12分,共60分)21.如图,在四边形ABCD中,AD∥BC,对角线AC的中点为O,过点O作AC 的垂线分别与AD,BC相交于点E,F,连接AF.求证AE=AF.22.如图,已知等腰三角形ABC的顶角∠A=36°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)求证:△BCD是等腰三角形.23.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.24.如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积为________.25.在△ABC中,AC<AB<BC.(1)如图①,已知线段AB的垂直平分线与BC边交于点P,连接AP,求证∠APC=2∠B.(2)如图②,以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.26.如图,已知点B,C,D在同一条直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H.(1)求证△BCE≌△ACD;(2)求证CF=CH;(3)判断△CFH的形状并说明理由.27.在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且AE=BD.试探索以下问题:(1)当点E为AB的中点时,如图①,求证EC=ED.(2)如图②,当点E不是AB的中点时,过点E作EF∥BC,交AC于点F,求证:△AEF是等边三角形.(3)在(2)的条件下,EC与ED还相等吗?请说明理由.答案一、1.D 2.B 3.B 4.D 5.B 6.C7.C8.D9.D【点拨】当OA为等腰三角形的腰时,以O为圆心,OA为半径画弧与y 轴有两个交点;以A为圆心,OA为半径画弧与y轴除点O外还有一个交点.当OA为等腰三角形的底边时,作线段OA的垂直平分线,与y轴有一个交点.所以符合条件的点一共有4个.10.D【点拨】如图,分别作点A关于直线BC和CD的对称点A′,A″,连接A′A″,交BC于点E,交CD于点F,连接AE,AF,则A′A″的长即为△AEF的周长的最小值.作DA的延长线AH.∵∠C=50°,∠ABC=∠ADC=90°,∴∠DAB=130°.∴∠HAA′=50°.∴∠AA′E+∠A″=∠HAA′=50°.∵∠EA′A=∠EAA′,∠A″AF=∠A″,∴∠EAA′+∠A″AF=50°.∴∠EAF=130°-50°=80°.二、11.112.①②13.2 cm14.915.216.10:4517.24【点拨】∵DE垂直平分AC,∴EA=EC.∴∠EAC=∠C.∴∠F AC=∠EAC+∠F AE=∠EAC+19°=∠C+19°.∵AF平分∠BAC,∴∠BAC=2∠F AC=2(∠C+19°).∵∠B+∠BAC+∠C=180°,∴70°+2(∠C+19°)+∠C=180°.∴∠C=24°.18.①②③19.3【点拨】如图,连接BD.∵AB=BC=CD=AD,∴AC垂直平分BD.∴点B关于直线AC的对称点为点D.连接DF,则DF的长即为EF+EB的最小值.在△ABD中,由∠BAD=60°,AD=AB,可得△ABD为等边三角形.∵点F为AB 的中点,∴DF⊥AB.∴DF=3.∴EF+EB的最小值为3.20.9【点拨】由题意可知AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,….∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B =36°,∠A4A3C=45°,…,∴9°·(n+1)≤90°,解得n≤9.三、21.证明:∵AD∥BC,∴∠EAO=∠FCO.∵OA=OC,∠AOE=∠COF,∴△AOE≌△COF(ASA).∴OE=OF.∵EF⊥AC,∴AC垂直平分EF.∴AE=AF.22.(1)解:如图所示.(2)证明:∵AB=AC,∠A=36°,∴∠C=12(180°-∠A)=72°.∵AD=BD,∴∠A=∠ABD.∴∠BDC=2∠A=72°.∴∠BDC=∠C.∴BD=BC.∴△BCD是等腰三角形.23.解:(1)∵△ABC是等边三角形,∴∠B=60°.∵DE∥AB,∴∠EDC=∠B=60°.∵EF⊥DE,∴∠DEF=90°.∴∠F=90°-∠EDC=30°.(2)∵∠ACB=60°,∠EDC=60°,∴∠CED=60°.∴△EDC是等边三角形.∴ED=DC=2.∵∠DEF=90°,∠F=30°,∴DF=2DE=4.24.解:(1)如图所示.(2)A1(0,-4),B1(-2,-2),C1(3,0).(3)725.(1)证明:∵点P在线段AB的垂直平分线上,∴P A=PB.∴∠P AB=∠B.∵∠APC=∠P AB+∠B,∴∠APC=2∠B.(2)解:根据题意,得BQ=BA,∴∠BAQ=∠BQA.设∠B=x,则∠AQC=∠B+∠BAQ=3x,∴∠BAQ=∠BQA=2x.在△ABQ中,x+2x+2x=180°,解得x=36°.∴∠B=36°.26.(1)证明:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠ACB=∠ECD=60°.∴∠BCE=60°+∠ACE=∠ACD.∴△BCE≌△ACD(SAS).(2)证明:∵△BCE≌△ACD,∴∠FBC=∠HAC.∵∠ACB=60°,∠FCH=180°-∠ACB-∠ECD=60°,∴∠BCF=∠ACH.又∵BC=AC,∴△BCF≌△ACH(ASA).∴CF=CH.(3)解:△CFH是等边三角形.理由:∵CF=CH,∠FCH=60°,∴△CFH是等边三角形.27.(1)证明:∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠A=60°.∵E是AB的中点,∴AE=EB,∠ECB=12∠ACB=30°.∵AE=BD,∴BE=BD.∴∠EDB=∠DEB=12∠ABC=30°.∴∠EDB=∠ECB.∴EC=ED.(2)证明:∵EF∥BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°. 又∵∠A=60°,∴△AEF是等边三角形.(3)解:ED=EC.理由如下:由(2)得△AEF是等边三角形,∴AE=EF=AF.∵∠AFE=∠ABC=60°,∴∠EFC=∠DBE=120°.又∵AE=BD,AB=AC,∴BD=EF,BE=FC.∴△DBE≌△EFC(SAS).∴ED=EC.。
人教版数学八年级上册第13章基础检测含答案13.1轴对称一.选择题1.下列交通指示标识中,不是轴对称图形的有()A.1个B.2个C.3个D.4个2.如图,在△ABC中,PM、QN分别是线段AB、AC的垂直平分线,若∠P AQ=40°,则∠BAC的度数是()A.110°B.100°C.120°D.70°3.如图所示的图形是轴对称图形,点A和点D,点B和点E是对应点.若∠A=50°,∠B=70°,则∠D+∠E的度数为()A.100°B.110°C.120°D.130°4.下列说法错误的是()A.三角形的三条高的交点一定在三角形内部B.三角形的三条中线的交点一定在三角形内部C.三角形的三条角平分线的交点一定在三角形内部D.三角形的三条边的垂直平分线的交点可能在三角形内部,也可能在三角形外部5.如图,DE是△ABC中AC边的垂直平分线,若BC=4cm,AB=5cm,则△EBC的周长为()A.8cm B.9cm C.10cm D.11cm6.如图,在△ABC中,AD⊥BC,垂足为D,EF垂直平分AC,交AC于点F,交BC于点E,BD=DE,若△ABC的周长为26cm,AF=5cm,则DC的长为()A.8cm B.7cm C.10cm D.9cm7.在国家精准扶贫政策的指导下,湖南龙山县有两个村庄P、Q种植了大量猕猴桃,现在正是丰收的季节.为了让猕猴桃通过互联网迅速销往各地,当地准备在两个村庄的公路m旁建立公用移动通信基站,要使基站到两个村庄的距离相等,基站应该建立在()A.A处B.B处C.C处D.D处8.如图,∠B=35°,CD为AB的垂直平分线,则∠ACE=()A.55°B.60°C.70°D.80°9.如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,若∠AOB=40°,则∠MPN的度数是()A.90°B.100°C.120°D.140°10.如图,在△ABC中,AB的垂直平分线交AB于点E,交BC于点D,△ADC的周长为10,且BC﹣AC=2,则BC的长为()A.4B.6C.8D.10二.填空题11.小华从镜子中看到身后电子钟的示数如图所示,则此时的时间应是.12.如图,∠ABC=58°,AD垂直平分BC,垂足为D,BE平分∠ABD交AD于E,连接CE,若∠AEC=m°,则m=.13.如图,线段AB,DE的垂直平分线交于点C,且∠ABC=∠EDC=72°,∠AEB=92°,则∠EBD的度数为.14.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM =3cm,PN=4cm,MN=5.5cm,则线段QR的长为.15.如图,AD垂直平分BC于点D,EF垂直平分AB于点F,点E在AC上,BE+CE=20cm,则AB=.三.解答题16.如图所示,在△ABC中,AB,AC的垂直平分线分别交BC于D,E,垂足分别是M,N.(1)若△ADE的周长为6,求BC的长;(2)若∠BAC=100°,求∠DAE的度数.17.如图,已知AB=AC,DE垂直平分AB交AC、AB于E、D两点,若AB=12cm,BC=10cm,∠A=50°,求△BCE的周长和∠EBC的度数.18.如图,已知∠AOB=25°,把∠AOB绕顶点O按逆时针旋转55°到∠MON,点C、D 分别是OB、OM上的点,分别作C点关于OA、ON的对称点E、F,连接DE、DF.(1)求∠ECF的度数;(2)说明DE=DF的理由.19.在一节数学实践活动课上,吕老师手拿着三个正方形硬纸板和几个不同的圆形的盘子,他向同学们提出了这样一个问题:已知手中圆盘的直径为13cm,手中的三个正方形硬纸板的边长均为5cm,若将三个正方形纸板不重叠地放在桌面上,能否用这个圆盘将其盖住?问题提出后,同学们七嘴八舌,经过讨论,大家得出了一致性的结论是:本题实际上是求在不同情况下将三个正方形硬纸板无重叠地适当放置,圆盘能盖住时的最小直径.然后将各种情形下的直径值与13cm进行比较,若小于或等于13cm就能盖住,反之,则不能盖住.吕老师把同学们探索性画出的四类图形画在黑板上,如下图所示.(1)通过计算,在①中圆盘刚好能盖住正方形纸板的最小直径应为cm.图②能盖住三个正方形硬纸板所需的圆盘最小直径为cm图③能盖住三个正方形硬纸板所需的圆盘最小直径为cm?(结果填准确数)(3)按④中的放置,考虑到图形的轴对称性,当圆心O落在GH边上时,此时圆盘的直径最小.请你写出该种情况下求圆盘最小直径的过程.由(1)(2)(3)的计算可知:A.该圆盘能盖住三个正方形硬纸板,B.该圆盘不能盖住三个正方形硬纸板.你的结论是.(填序号)参考答案与试题解析一.选择题1.【解答】解:从左起第一、二、四个图形是轴对称图形,第三个不是轴对称图形,故选:A.2.【解答】解:∵PM、QN分别是线段AB、AC的垂直平分线,∴P A=PB,QA=QC,∴∠P AB=∠B,∠QAC=∠C,∴∠P AB+∠QAC=∠B+∠C,∵∠P AB+∠B+∠P AQ+∠QAC+∠C=180°,∴∠P AB+∠QAC=70°,∴∠BAC=∠P AB+∠QAC+∠P AQ=110°,故选:A.3.【解答】解:由题意可得∠D=∠A=50°,∠E=∠B=70°,∴∠D+∠E=120°.故选:C.4.【解答】解:A、三角形的三条高的交点在三角形内部、外部或顶点上,本选项说法错误,符合题意;B、三角形的三条中线的交点一定在三角形内部,本选项说法正确,不符合题意;C、三角形的三条角平分线的交点一定在三角形内部,本选项说法正确,不符合题意;D、三角形的三条边的垂直平分线的交点可能在三角形内部,也可能在三角形外部,本选项说法正确,不符合题意;故选:A.5.【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=AB=5cm,∴△EBC的周长=BC+BE+CE=5+4=9(cm).故选:B.6.【解答】解:∵AD⊥BC,BD=DE,EF垂直平分AC,∴AB=AE=EC,∵△ABC周长26cm,AF=5cm,∴AC=10(cm),∴AB+BC=16(cm),∴AB+BE+EC=16(cm),即2DE+2EC=16(cm),∴DE+EC=8(cm),∴DC=DE+EC=8(cm),故选:A.7.【解答】解:基站应该建立在B处,故选:B.8.【解答】解:∵CD为AB的垂直平分线,∴AC=BC,∴∠B=∠A=35°∴∠ACE=∠B+∠A=70°.故选:C.9.【解答】解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N,∠P2=∠P2PN,∠P1=∠P1PM,∵∠AOB=40°,∴∠P2PP1=140°,∴∠P1+∠P2=40°,∴∠PMN=∠P1+∠MPP1=2∠P1,∠PNM=∠P2+∠NPP2=2∠P2,∴∠PMN+∠PNM=2×40°=80°,∴∠MPN=180°﹣(∠PMN+∠PNM)=180°﹣80°=100°,故选:B.10.【解答】解:∵DE是线段AB的垂直平分线,∴DA=DB,∵△ADC的周长为10,∴AC+DC+AD=10,∴AC+CD+BD=AC+BC=10,∵BC﹣AC=2,∴BC=6,故选:B.二.填空题(共5小题)11.【解答】解:方法一:将显示的像数字依次左右互换并将每一个数字左右反转,得到时间为21:05;方法二:将显示的像后面正常读数为21:05就是此时的时间.故答案为:21:05.12.【解答】解:∵BE平分∠ABD,∠ABC=58°,∴∠EBC=∠ABC=29°,∵AD垂直平分BC,∴EB=EC,∠ADC=90°,∴∠C=∠EBC=29°,∴∠AEC=∠ADC+∠C=119°,即m=119,故答案为:119.13.【解答】解:连接CE,如图所示:∵线段AB,DE的垂直平分线交于点C,∴CA=CB,CD=CE,∴∠BAC=∠ABC=72°,∠DEC=∠EDC=72°,∴∠ACB=∠DCE,∴∠ACE=∠BCD,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴∠CBD=∠CAE=72°+∠BAE,∵∠AEB=92°,∴∠ABE=180°﹣∠AEB﹣∠BAE=180°﹣92°﹣∠BAE=88°﹣∠BAE,∴∠EBD=360°﹣∠CBD﹣∠ABC﹣∠ABE=360°﹣(72°+∠BAE)﹣72°﹣(88°﹣∠BAE)=128°,故答案为:128°.14.【解答】解:∵点P关于OA的对称点Q恰好落在线段MN上,∴OA垂直平分PQ,∴QM=PM=3cm,∴QN=MN﹣QM=5.5﹣3=2.5(cm),∵点P关于OB的对称点R落在MN的延长线上,∴OB垂直平分PR,∴RN=PN=4cm,∴QR=QN+RN=2.5+4=6.5(cm).故答案为:6.5cm.15.【解答】解:∵EF垂直平分AB于点F,∴AE=BE,∵BE+CE=20cm,∴AE+CE=20cm,即AC=20cm,∵AD垂直平分BC于点D,∴AB=AC=20cm,故答案为:20cm.三.解答题(共4小题)16.【解答】解:(1)∵DM和EN分别垂直平分AB和AC,∴AD=BD,EA=EC,∵△ADE的周长为6,∴AD+DE+EA=6.∴BD+DE+EC=6,即BC=6;(2)∵DM和EN分别垂直平分AB和AC,∴AD=BD,EA=EC,∴∠B=∠BAD=∠ADE,∠C=∠EAC=∠AED.∵∠BAC=∠BAD+∠DAE+∠EAC=∠B+∠DAE+∠C=100°,∴∠B+∠C=100°﹣∠DAE,在△ADE中,∠DAE=180°﹣(∠ADE+∠AED)=180°﹣(2∠B+2∠C)∴∠DAE=180°﹣2(100°﹣∠DAE)∴∠DAE=20°.17.【解答】解:∵DE是AB的垂直平分线,∴AE=BE,∠DBE=∠A=50°,∵AB=12cm,BC=10cm,∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC=12+10=22cm;∵AB=AC,∠A=50°,∴∠ABC===65°,∴∠EBC=65°﹣50°=15°.故答案为:22cm,15°.18.【解答】解:(1)∵C点关于OA、ON的对称点分别为E、F,∴OA、ON分别是EC、CF的垂直平分线,∵∠AON=55°+25°=80°,∴∠OCE=90°﹣∠COA=65°,∠OCF=90°﹣∠BON=35°,∴∠ECF=∠OCE+∠OCF=100°.(2)连接OE、OF,由(1)知,OA、ON分别是EC、CF的垂直平分线,∴OE=OC=OF,由对称性知:∠EOA=∠AOB=25°∠NOF=∠NOB=55°,∴∠EOD=∠FOD=80°,在△OED与△OFD中,,∴△OED≌△OFD(SAS),∴DE=DF.19.【解答】解:(1)通过计算,在①中圆盘刚好能盖住正方形纸板的最小直径应为5cm;(2)图②能盖住三个正方形硬纸板所需的圆盘最小直径为10cm,图③能盖住三个正方形硬纸板所需的圆盘最小直径为10cm;(3)如图设圆心到最上面横线的距离为x,到最下面横线的距离为y,则x+y=10,∵OB=OA,∴AK=BK,根据勾股定理可得,x2+()2=y2+52,解得x=,y=,则OB=≈6.4413.2画对称图形一.选择题1.在平面直角坐标系中,点P(﹣2,5)与点Q关于x轴对称,则点Q的坐标是()A.(﹣2,5)B.(2,5)C.(﹣2,-5)D.﹣(2,-5)2.已知点P1(a,3),P2(2,b)关于x轴对称,则a的值为()A.﹣3B.2C.3D.﹣23.在平面直角坐标系中,将点P(﹣2,3)沿x轴方向向右平移个单位得到点,再作出点Q关于y轴对称的对称点得到点M,点M的坐标是()A.(﹣1,-3)B.(1,3)C.(1,-3)D.(﹣1,3)4.点P(﹣2,﹣8)关于y轴的对称点P1的坐标是(a﹣2,3b+4),则a,b的值为()A.a=﹣4,b=﹣4B.a=﹣4,b=4C.a=4,b=4D.a=4,b=﹣4 5.在直角坐标系中,O为坐标原点,A点坐标为(3,4)先将△ABC向下平移2个单位长度得到△A1B1C1,再作△A1B1C1关于y轴的对称图形△A2B2C2,则点A2的坐标为()A.C.6.在平面直角坐标系中,点P(a,﹣5)与点Q(3,b)关于x轴对称,则a﹣b的值为()A.8B.﹣8C.2D.﹣27.在平面直角坐标系中,点(﹣7,6)关于x轴对称点是()A.C.(7,﹣6)D.(﹣7,﹣6)8.点P(﹣2,3)关于y轴对称点的坐标在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限9.如图,分别以△ABC的边AB,AC所在直线为对称轴作△ABC的对称图形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE、ED、DC、OA.有如下结论:①∠EAD=90°;②∠BOE=60°;③OA平分∠BOC;④EA=ED;⑤BP=EQ.其中正确的结论个数是()A.4个B.3个C.2个D.1个10.在平面直角坐标系中,把一个封闭图形的各个顶点的横坐标都乘以﹣1,纵坐标不变,并把得到的顶点依次连接,那么得到的封闭图形与原来图形相比位置上()A.向左平移了1个单位B.关于y轴对称C.关于x轴对称D.向下平移了2个单位二.填空题11.若点P(2,3)关于y轴的对称点是点P'(a+1,3),则a=.12.点A的坐标为(6,﹣8),点A关于x轴的对称点为点B,则点B的坐标是.13.把点A(a+2,a﹣1)向上平移3个单位,所得的点与点A关于x轴对称,则a的值为.14.点A(2,﹣3)关于x轴对称的点的坐标为,点B(﹣3,1)到y轴的距离是.15.已知A(a,2)和B(1,b)关于x轴对称,则(a+b)2016=.三.解答题16.如图,利用关于坐标轴对称的点的坐标的特点.(1)画出与△ABC的关于y轴对称的图形△A1B1C1;(2)写出各点坐标:A1(),B1(),C1();(3)直接写出△ABC的面积是.17.如图,作出三角形ABC关于x轴对称的图形三角形A1B1C1,并指出点A1、B1、C1的坐标.18.如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1,写出点A1,B1,C1的坐标(直接写答案).(2)△A1B1C1的面积为.(3)在y轴上画出点Q,使△QAB的周长最小.19.在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)△ABC的面积为;(2)在直线l上找一点P,使点P到边AB、BC的距离相等.(3)画出△ABC关于直线l对称的图形△A1B1C1;再将△A1B1C1向下平移4个单位,画出平移后得到的△A2B2C2.(4)结合轴对称变换和平移变换的有关性质,两个对应三角形△ABC和△A2B2C2的对应点所具有的性质是().A.对应点连线与对称轴垂直B.对应点连线被对称轴平分或与对称轴重合C.对应点连线被对称轴垂直平分D.对应点连线互相平行参考答案与试题解析一.选择题1.【解答】解:点P(﹣2,5)关于x轴对称的点的坐标为(﹣2,﹣5),∴点Q的坐标为(﹣2,﹣5),故选:C.2.【解答】解:∵点P1(a,3),P2(2,b)关于x轴对称,∴a=2,则a的值为:2.故选:B.3.【解答】解:∵将点P(﹣2,3)沿x轴正方向向右平移3个单位得到点Q,∴点Q的坐标是(1,3),∴点Q关于y轴的对称点的坐标是(﹣1,3).故选:D.4.【解答】解:∵点P(﹣2,﹣8)关于y轴的对称点P1的坐标是(a﹣2,3b+4),∴a﹣2=2,3b+4=﹣8,解得:a=4,b=﹣4.故选:D.5.【解答】解:∵A点坐标为(3,4)先将△ABC向下平移2个单位长度得到△A1B1C1,∴A1(3,2),∵作△A1B1C1关于y轴的对称图形△A2B2C2,∴点A2的坐标为:(﹣3,2).故选:D.6.【解答】解:∵点P(a,﹣5)与点Q(3,b)关于x轴对称,∴a=3,b=5,则a﹣b=3﹣5=﹣2.故选:D.7.【解答】解:点(﹣7,6)关于x轴对称点是(﹣7,﹣6),故选:D.8.【解答】解:点P(﹣2,3)关于y轴的对称点的坐标为(2,3),则此点在第一象限.故选:A.9.【解答】解:∵△ABD和△ACE是△ABC的轴对称图形,∴∠BAD=∠CAE=∠BAC,AB=AE,AC=AD,∴∠EAD=3∠BAC﹣360°=3×150°﹣360°=90°,故①正确;∴∠BAE=∠CAD=(360°﹣90°﹣150°)=60°,由翻折的性质得,∠AEC=∠ABD=∠ABC,又∵∠EPO=∠BP A,∴∠BOE=∠BAE=60°,故②正确;∵△ACE≌△ADB,∴S△ACE =S△ADB,BD=CE,∴BD边上的高与CE边上的高相等,即点A到∠BOC两边的距离相等,∴OA平分∠BOC,故③正确;只有当AC=AB时,∠ADE=30°,才有EA=ED,故④错误;在△ABP和△AEQ中,∠ABD=∠AEC,AB=AE,∠BAE=60°,∠EAQ=90°,∴BP<EQ,故⑤错误;综上所述,结论正确的是①②③共3个.故选:B.10.【解答】解:∵封闭图形的各个顶点的横坐标都乘以﹣1,纵坐标不变,∴原图形各点的纵坐标相同,横坐标互为相反数,∴得到的封闭图形与原来图形相比位置上关于y轴对称.故选:B.二.填空题(共5小题)11.【解答】解:根据两点关于y轴对称,则横坐标互为相反数,纵坐标不变,可得a+1=﹣2,∴a=﹣3.故答案为:﹣3.12.【解答】解:∵点A的坐标为(6,﹣8),∴点A关于x轴的对称点B的坐标是(6,8),故答案为:(6,8).13.【解答】解:点A(a+2,a﹣1)向上平移3个单位,得(a+2,a﹣1+3).由所得的点与点A关于x轴对称,得a﹣1+(a﹣1+3)=0,解得a=﹣0.5,故答案为:﹣0.5.14.【解答】解:点A(2,﹣3)关于x轴对称的点的坐标为(2,3);点B(﹣3,1)到y轴的距离是3.故答案为:(2,3);3.15.【解答】解:∵A(a,2)和B(1,b)关于x轴对称,∴a=1,b=﹣2,所以,(a+b)2016=(1﹣2)2016=1.故答案为:1.三.解答题(共4小题)16.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,A1(4,1),B1(1,﹣1),C1(3,2);故答案为:4,1;1,﹣1;3,2;(3)S=3×3﹣×1×1﹣×2×3﹣×2×3=2.5△ABC故答案为:2.5.17.【解答】解:如图所示:△A1B1C1,即为所求,A1(﹣3,﹣5);B1(﹣5,2);C1(3,﹣2).18.【解答】解:(1)如图所示:△A1B1C1即为所求;由图可知:A1(﹣1,2),B1(﹣3,1),C1(2,﹣1);(2)S△A1B1C1=S矩形EFGH﹣S△A1EB1﹣S△B1FC1﹣S△A1HC1=3×5﹣×1×2﹣×2×5﹣×3×3=15﹣1﹣5﹣=4.5.故答案为:4.5;(3)连接A1B交y轴于Q,则此时△QAB的周长最小.19.【解答】解:(1)△ABC的面积=4×3﹣×4×2﹣×2×1﹣×2×3=4;故答案为4;(2)如图,点P为所作13.3 等腰三角形一、选择题(本大题共10道小题)1. 如图,已知P A=PB,在证明∠A=∠B时,需要添加辅助线,下面有甲、乙两种辅助线的作法:甲:作底边AB的中线PC;乙:作PC平分∠APB交AB于点C.则()A.甲、乙两种作法都正确B.甲的作法正确,乙的作法不正确C.甲的作法不正确,乙的作法正确D.甲、乙两种作法都不正确2. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是()A. 20或16B. 20C. 16D. 以上答案均不对3. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 104. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°5. 如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD6. 如图所示,△ABC是等边三角形,D为AB的中点,DE⊥AC,垂足为E. 若AE=1,则△ABC的边长为( )A. 2B. 4C. 6D. 87. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°8. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形()A.0个B.1个C.2个D.3个9. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是( )A. 6B. 7C. 8D. 910. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°二、填空题(本大题共6道小题)11. 如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE 折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=________°.12. 如图,在△ABC中,AB=AC,D是AC上一点,且BC=BD.若∠CBD=46°,则∠A=________°.13. 在△ABC中,若∠A=100°,∠B=40°,AC=5,则AB=________.14. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.15. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.16. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.三、解答题(本大题共4道小题)17. 如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点E,DF⊥AC 于点F.求证:DE=DF.18. 如图,在等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE ⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,求BF的长.19. 如图,将一张长方形的纸条ABCD沿EF折叠,若折叠后∠AGC′=48°,AD 交EC′于点G.(1)求∠CEF的度数;(2)求证:△EFG是等腰三角形.20. 如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.求证:DF=2DC.人教版八年级数学13.3 等腰三角形培优训练-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】B 【解析】∵|x -4|+y -8=0,∴x -4=0,y -8=0,解得x =4,y =8.分两种情况讨论:①当4为腰时,根据三角形三边关系知4+4=8,∴这样的等腰三角形不存在;②当8为腰时,则有4+8>8,这样能够组成等腰三角形,∴此三角形的周长是8+8+4=20.3. 【答案】C【解析】∵AB =AC ,AD 平分∠BAC ,∴根据等腰三角形三线合一性质可知AD ⊥BC ,BD =CD ,在Rt △ABD 中,AB =5,AD =3,由勾股定理得BD =4,∴BC =2BD =8.4. 【答案】C[解析] ∵OM 平分∠AOB ,MA ⊥OA 于点A ,MB ⊥OB 于点B ,∴∠AOM =∠BOM =25°,MA =MB.∴∠OMA =∠OMB =65°.∴∠AMB =130°.∴∠MAB =12×(180°-130°)=25°.故选C.5. 【答案】D[解析] 选项A 由等角对等边可得△ABC 是等腰三角形;选项B 由所给条件可得△ADB ≌△ADC ,由全等三角形的性质可得AB =AC ;选项C 由垂直平分线的性质可得AB =AC ;选项D 不可以得到AB =AC.6. 【答案】 B7. 【答案】A [解析] ∵AB ∥ED ,∴∠E =180°-∠EAB =180°-120°=60°. 又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°.故选A.8. 【答案】D[解析] ∵∠BAC=72°,∠C=36°,∴∠ABC=72°.∴∠BAC=∠ABC.∴CA=CB.∴△ABC是等腰三角形.∵∠BAC的平分线AD交BC于点D,∴∠DAB=∠CAD=36°.∴∠CAD=∠C.∴CD=AD,∴△ACD是等腰三角形.∵∠ADB=∠CAD+∠C=72°,∴∠ADB=∠B.∴AD=AB.∴△ADB是等腰三角形.9. 【答案】C10. 【答案】D[解析] ∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.二、填空题(本大题共6道小题)11. 【答案】120[解析] 由于△ABC是等边三角形,所以∠A=60°.所以∠ADE+∠AED=120°.因为将△ADE折叠,使点A落在BC边上的点F处,所以∠ADE=∠EDF,∠AED=∠DEF.所以∠ADF+∠AEF=2(∠ADE+∠AED)=240°.所以∠BDF+∠CEF=360°-(∠ADF+∠AEF)=120°.12. 【答案】46[解析] ∵BC=BD,∠CBD=46°,∴∠C=∠BDC=12(180°-46°)=67°.∵AB=AC,∴∠ABC=∠C=67°.∴∠A=46°.13. 【答案】514. 【答案】30[解析] ∵MN∥BC,∴∠MOB=∠OBC.∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.15. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.16. 【答案】6 [解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.三、解答题(本大题共4道小题)17. 【答案】证明:连接AD.∵AB =AC ,D 为BC 的中点, ∴AD 平分∠BAC.又∵DE ⊥AB ,DF ⊥AC ,∴DE =DF.18. 【答案】解:(1)证明:如图,过点D 作DM ∥AB ,交CF 于点M ,则∠MDF =∠E.∵△ABC 是等边三角形, ∴∠CAB =∠CBA =∠C =60°. ∵DM ∥AB ,∴∠CDM =∠CAB =60°,∠CMD =∠CBA =60°. ∴△CDM 是等边三角形. ∴CM =CD =DM.在△DMF 和△EBF 中,⎩⎨⎧∠MDF =∠E ,DF =EF ,∠DFM =∠EFB ,∴△DMF ≌△EBF(ASA).∴DM =BE. ∴CD =BE.(2)∵ED ⊥AC ,∠CAB =∠CBA =60°,∴∠E=∠FDM=30°.∴∠BFE=∠DFM=30°.∴BE=BF,DM=MF.∵△DMF≌△EBF,∴MF=BF. ∴CM=MF=BF.又∵BC=AB=12,∴BF=13BC=4.19. 【答案】解:(1)∵四边形ABCD是长方形,∴AD∥BC.∴∠BEG=∠AGC′=48°. 由折叠的性质得∠CEF=∠C′EF,∴∠CEF=12(180°-48°)=66°.(2)证明:∵四边形ABCD是长方形,∴AD∥BC.∴∠GFE=∠CEF.由折叠的性质得∠CEF=∠C′EF,∴∠GFE=∠C′EF.∴GE=GF,即△EFG是等腰三角形.20. 【答案】证明:∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°.∵DE∥AB,∴∠EDC=∠B=60°,∠DEC=∠A=60°.∵EF⊥DE,∴∠DEF=90°.∴∠F=90°-∠EDC=30°.∵∠ACB=∠EDC=∠DEC=60°,∴△EDC是等边三角形.∴DE=DC. ∵∠DEF=90°,∠F=30°,∴DF=2DE=2DC.。
人教版八年级上册数学第13章测试题附答案(时间:120分钟满分:120分)分数:________一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下面是我国其中五个国有银行的图标,其中轴对称图形有(B)A.2个B.3个C.4个D.5个2.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出,该球最后落入1号袋,那么该球经过反弹的次数是(C)A.4次B.5次C.6次D.7次第2题图第3题图3.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°.若CF 与EF的长度相等,则∠C的度数为(D)A.48°B.40°C.30°D.24°4.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是(B)A.BF=EF B.DE=EFC.∠EFC=45°D.∠BEF=∠CBE第4题图第5题图5.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB′关于直线AD对称,点B的对称点是点B′,则∠CAB′的度数为(A)A.10°B.20°C.30° D.40°6.如图,两个完全相同的含30°角的Rt△ABC和Rt△AED叠放在一起,BC交DE于点O,AB交DE于点G,BC交AE于点F,且∠DAB=30°,以下三个结论:①AF⊥BC;②△ADG≌△ACF;③点O为BC的中点;④AG=BG.其中正确的个数为(D)A.1 B.2 C.3 D.4第6题图第7题图二、填空题(本大题共6小题,每小题3分,共18分)7.如图是由四个完全相同的基本图形组成的图案,则与图形②成轴对称的图形序号是①④.8.(2020·滨州)在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为80°.9.如图,已知△ABC为等边三角形,点O是BC上任意一点,OE,OF分别与两边垂直,且等边三角形的高为1,则OE+OF的值为 1 .第9题图第10题图10.如图,∠A=15°,AB=BC=CD=DE…,依次作下去,最多可作 5 条与AB相等的线段(不包括AB).11.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为45°.12.★在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2 cm,D为BC的中点,若动点E以1 cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为2或3.5或4.5 .三、(本大题共5小题,每小题6分,共30分)13.如图,已知△ABC≌△DEF,且A,B,D,E四点在同一直线上.(1)在图①中,请你用无刻度的直尺作出线段BE的垂直平分线;(2)在图②中,请你用无刻度的直尺作出线段AD的垂直平分线.解:(1)如图①,直线l为所作.(2)如图②,直线l′为所作.14.如图,在四边形ABCD中,AD∥BC,对角线AC的中点为O,过点O作AC的垂线分别与AD,BC相交于点E,F,连接AF.求证:AE=AF.证明:∵AD∥BC,∴∠EAO=∠FCO.∵∠EAO=∠FCO,OA=OC,∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF,∴AC垂直平分EF,∴AE=AF.15.如图,等边三角形ABC中,O是BC上一点,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.求证:BE=AD.证明:∵△ABC,△DEC为等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,∴△ACD≌△BCE (SAS),∴BE=AD.16.如图,在△ABC中,∠ABC=90°,BA=BC.过点B作直线MN.(1)画出线段BC关于直线MN的轴对称图形BD;(2)连接AD,CD,如果∠NBC=25°,求∠BAD的度数.解:(1)过点C作CE⊥MN于E,延长CE到点D,使DE=CE,连接BD,BD即为所求.(2)由题意可知,BC=BD,∠NBC=∠NBD=25°.∵AB=BC,∴AB=BD,∴∠BAD=∠BDA.∵∠ABD=∠ABC+∠NBC+∠NBD=140°,∴∠BAD+∠BDA=40°,∴∠BAD=20°.17.如图,在四边形ABCD中,点E是边BC的中点,点F是边CD的中点,且AE⊥BC,AF⊥CD.(1)试说明:AB=AD;(2)若∠BCD=114°,求∠BAD的度数.解:(1)连接AC.∵点E是边BC的中点,AE⊥BC,∴AE垂直平分BC,∴AB=AC,同理可得AD=AC,∴AB=AD.(2)∵AB=AC,AD=AC,∴∠B=∠1,∠D=∠2,∴∠B+∠D=∠1+∠2=∠BCD,∴∠BAD=360°-2∠BCD=360°-2×114°=132°.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6 cm.(1)求BC的长:(2)分别连接OA,OB,OC,若△OBC的周长为16 cm,求OA的长.解:(1)∵l1垂直平分AB,∴AD=BD.∵l2垂直平分AC,∴EA=EC.∵AD+DE+AE=6 cm,∴BD+DE+ED=6 cm,即BC=6 cm.(2)∵l1垂直平分AB,∴OB=OA.∵l2垂直平分AC,∴OA=OC,∴OB=OA=OC,∵OB+OC+BC=16 cm,∴2OA+6=16 cm,∴OA=5 cm.19.如图,在△ABC 中,AB =BC ,DE ⊥AB 于点E ,DF ⊥BC 于点D ,交AC 于F. (1)若∠AFD =155°,求∠EDF 的度数; (2)若点F 是AC 的中点,求证:∠CFD =12∠ABC.(1)解:∵∠AFD =155°,∴∠DFC =25°. ∵DF ⊥BC ,DE ⊥AB , ∴∠FDC =∠AED =90°.在Rt △FDC 中, ∴∠C =90°-∠DFC =65°. ∵AB =BC , ∴∠A =∠C =65°,∴∠EDF =360°-65°-155°-90°=50°.(2)证明:连接BF.∵AB =BC ,且点F 是AC 的中点,∴BF ⊥AC ,∠ABF =∠CBF =12∠ABC ,∴∠CFD +∠BFD =90°, ∠CBF +∠BFD =90°, ∴∠CFD =∠CBF ,∴∠CFD =12∠ABC.20.如图,△ABC 为等边三角形,点D 为BC 边上一动点(不与B ,C 重合),∠DAE =60°,过点B 作BE ∥AC 交AE 于点E.(1)求证:△ADE 是等边三角形;(2)当点D 在何处时,AE ⊥BE ?指出点D 的位置并说明理由.(1)证明:∵△ABC 为等边三角形,∴∠BAC =∠C =60°,AB =AC.∵BE ∥AC , ∴∠ABE =∠BAC =60° ∴∠ABE =∠C =60°. ∵∠DAE =60°,∴∠BAE +∠BAD =60°. ∵∠CAD +∠BAD =60°,∴∠BAE =∠CAD , ∴△ABE ≌△ACD (ASA ),∴AE =AD. ∵∠DAE =60°, ∴△ADE 是等边三角形.(2)解:当点D 在BC 的中点时,AE ⊥BE.理由:∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADC=90°.由(1)知△ABE≌△ACD ,∴∠AEB=∠ADC=90°,∴AE⊥BE.五、(本大题共2小题,每小题9分,共18分)21.如图,在等腰三角形△ABC中,AC=BC,D,E分别为AB,BC上一点,∠CDE =∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE-BE的值.(1)证明:∵AC=BC,∠CDE=∠A,∴∠A=∠B=∠CDE,∵∠CDB=∠A+∠ACD=∠CDE+∠BDE,∴∠ACD=∠BDE.∵BC=BD,∴BD=AC.∴△ADC≌△BED(ASA).∴CD=DE.(2)解:∵CD=BD,∴∠B=∠DCB.∵∠CDE=∠A,∠A=∠B,∴∠DCB=∠CDE,∴CE=DE.在DE上取点F,使得FD=BE,∴△CDF≌△DBE(SAS),∴CF=DE=CE.∵CH⊥EF,∴FH=HE,∴DE-BE=DE-DF=EF=2HE=2.22.如图,等边△ABC中,E为AC边的中点,点F为AB边上一点,作∠FED=120°,角的另一边交BC于D,(1)当F点与B点重合时,EF与ED的数量关系为EF=ED ;(2)转动∠FED(大小不变),当F点在AB边上或在AB边的延长线上时,试找出EF与ED的数量关系,并说明理由.解:EF=ED,理由如下:①如答图①,过E作EH∥BC.∵∠B=∠ACB=60°,∴∠A=∠AHE=∠AEH=60°,∴△AHE 为等边三角形. ∵E 为AC 中点,∴HE =AE =CE.∵∠ACB =∠AEH =60°,∴∠ECD =∠FED =∠HEC =∠FHE =120°, ∴∠HEF =∠CED ,∴△HEF ≌△CED (ASA ), ∴EF =ED. ②如答图②,过E 作EH ∥BC , 易证△EFH ≌△EDC ,∴EF =ED.六、(本大题共12分) 23.情景观察:(1)如图①,在△ABC 中,AB =AC ,∠BAC =45°,CD ⊥AB 于D ,AE ⊥BC 于E ,CD 与AE 相交于点F.①写出图①中两对全等三角形________;②线段AF 与线段CE 的数量关系是________; 问题探究:(2)如图②,在△ABC 中,AB =BC ,∠BAC =45°,AD 平分∠BAC ,且AD ⊥CD 于点D ,AD 与BC 交于点E.求证:AE =2CD ;拓展延伸:(3)如图③,在△ABC 中,AB =BC ,∠BAC =45°,点D 在AC 上,∠EDC =12∠BAC ,DE ⊥CE 于点E ,DE 与BC 交于点F.求证:DF =2CE.(1)解:①△ABE ≌△ACE ,△ADF ≌△CDB ; ②AF =2CE.(2)证明:延长AB ,CD 交于点G .∵AD 平分∠BAC ,∴∠CAD =∠GAD. ∵AD ⊥CD ,∴∠ADC =∠ADG =90°, ∴△ADC ≌△ADG (ASA ),∴CD =GD , 即CG =2CD.∵∠BAC =45°,AB =BC , ∴∠BAC =∠BCA =45°, ∴∠ABC =90°=∠CBG =90°, ∴∠G +∠BCG =90°,∵∠G +∠BAE =90°, ∴∠BAE =∠BCG ,∴△ABE ≌△CBG (ASA ), ∴AE =CG =2CD.(3)证明:作DG ⊥BC 于点H ,交CE 的延长线于点G , ∵∠BAC =45°,AB =BC , ∴∠BAC =∠ACB =45°,∴AB ⊥BC. ∵DG ⊥BC ,∴DG ∥AB , ∴∠GDC =∠BAC =45°. ∵∠EDC =12∠BAC ,∴∠EDC =12∠BAC =22.5°=∠EDG ,∴DH =CH.∵DE ⊥CE , ∴∠DEC =∠DEG =90°, ∴△DEC ≌△DEG (ASA ), ∴DC =DG ,GE =CE. ∵∠DHF =∠CEF =90°,∠DFH =∠CFE , ∴∠FDH =∠GCH ,∴△DHF ≌△CHG (ASA ), ∴DF =CG =2CE.。
勤学早八上数学第13章《轴对称》周测一(测试范围:13.1轴对称~13.2画轴对称图形 参考时间:90分钟,满分:120分)一.选择题(每小题3分,共30分)1.下列图形中,不是轴对称图形的是( )2.等边三角形的对称轴共有( )A .2条B .3条C .5条D .10条3.△ABC 和△'''A B C 关于直线l 对称,若△ABC 的周长为24cm ,则'''A B C 的周长为( ) A .24cm B .12cm C .6cm D .4cm 4.点A (-2,-3)关于x 轴对称的点'A 的坐标为( ) A .(-2,-3) B .(-2, 3) C .(2,-3) D .(3,-2) 5.已知点A (x ,4)与点B (3,y )关于y 轴对称,那么x +y 的值为( ) A .-1 B .-7 C .7 D .1 6.如图,△ABC 与△111A B C 与关于直线l 对称,则∠B 的度数为( ) A .30° B .105° C .90° D .100°l30°45°第6题图B 1B C 1A 1CA第7题图DABC第9题图MNAB DC7.如图,点在AC 的垂直平分线上,AB ∥CD ,若∠D =140°,则∠BAC 的度数是( ) A .15° B .20° C .25° D .30° 8.点(3,5)关于直线x =1的对称点的坐标为( ) A .(-1,5) B .(-3,5) C .(4,5) D .(0,5)9.如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,若△ADC 的周长的15,AB =7,则△ABC 的周长为( ) A .7 B .14 C .17 D .2210.如图,已知A (2,4)是OB 的垂直平分线上一点,P 为y 轴上一点且∠OPB =∠OAB ,则OP +PB 的值是( )A .4B .6C .8D .10y x第10题图OB AP l第11题图C'B'A'ABCB A第13题图NMP P 1OP二.填空题(每小题3分,共18分)11.如图,AB =8,AC =10,BC =6,△ABC 与△'''A B C 关于直线l 对称 ,则的长为 . 12.如图,点A 关于y 轴对称的点的坐标是 .13.如图,∠AOB 内一点P ,1P ,2P 分别是点P 关于OA 、OB 的对称点,1P 2P 交OA 于M ,交OB 于N ,若1P 2P =7cm ,则△PMN 的周长是 cm .14.如图,将长方形纸片ABCD 折叠,使点D 与点B 重合,点C 落在'C 处,折痕为EF ,若AB =1,BC =2,则△ABE 和△B 'C F 的周长之和为 .第14题图第15题图第16题图15.如图,△ABC 的面积为4cm 2,AP 与∠B 的平分线垂直,垂足是点P ,则△PBC 的面积为 cm 2. 16.如图,在△ABC 中,∠C =90°,AC =6cm ,BC =8 cm ,将直角边AC 沿直线AM 折叠,使点C 恰好落在斜边AB 上的点N ,BN =4 cm ,则CM 的长是 cm . 三.解答题 17.(本题8分)如图,点A 在BD 的垂直平分线上,BF ⊥AD 于F ,DE ⊥AB 于E . 求证:AF =AE .18.(本题8分)如图,将长方形ABCD 沿EF 折叠,使CD 落在GH 的位置,GH 交BC 于M ,若∠HMB =54°,求∠HEF 的度数.GE19.(本题8分)已知点A (2m +n ,2),B(1,n -m ),当m 、n 分别为何值时? (1)A 、B 关于x 轴对称; (2)A 、B 关于y 轴对称.20.(本题8分)已知A 、B 两点的坐标分别为(-2,1)和(2,3).(1)在图1中分别画出线段AB 关于x 轴和y 轴的对称线段11A B 及22A B ,并写出相应端点的坐标;(2)在图2中分别画出线段AB 关于直线x =1和直线y =1的对称线段33A B 及44A B ,并写出相应端点的坐标.21.(本题8分)如图,∠AOB =45°,角内有一点P ,1P 、2P 分别是点P 关于两边OA 、OB 的对称点,连接1P 2P 与角两边交于点Q 、R . (1)连接O 1P ,O 2P ,则△O 1P 2P 为_________三角形; (2)求∠QPR 的度数.B A RQP 21OP22.(本题10分)如图,在△ABC 中,边AB 、AC 的垂直平分线分别交BC 于D 、E . (1)已知BC =10,求△ADE 的周长. (2)已知∠BAC =128°,求∠DAE 的度数.M NEDBA C23.(本题10分)在△ABC 中,BD 平分∠ABC 交AC 于点D .(1)作图:如图1,作BC 边的垂直平分线分别交BC 、BD 于点E 、F .(用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)的条件下,连接CF ,若∠A =60°,∠ABD =24°,求∠ACF 的度数; (3)如图2,若CF 平分∠ACB 交AB 于点E ,∠A =60°,求证:BE +CD =BC .图1图224.(本题12分)已知A (a ,0),B (b ,0)||0a b +=. (1)如图1,求证:OA =OB ; (2)如图2,将△A OB 沿x 轴翻折得△AOC ,D 为线段AB 上一动点,OE ⊥OD 交AC 于点,E ,求ODAE S 四边形; (3)如图3,D 为AB 上一点,过点B 作BF ⊥OD 于点G ,交x 轴于点F ,点H 为x 轴正半轴上一点,OH =AF ,连接DH ,求证:∠BFO =∠DHO .1-5ABABD 6-10BBADC二.填空题(每小题3分,共18分) 11. 6 . 12.(5.5,5). 13. 714. 6 . 15. 2 16. 3解:AM 平分∠CAB ,∠C =∠MNA =90°, AC =AN =6 cm ,∴CM =MN ,AB =BN +AN =4+6=10 cm ,设CM =MN =x cm ,则BM =BC -CM =(8-x )cm ,ABM S ∆=12BM AC •=12AB MN •,即12(8-x ) ×6=12×10x ,解得x =3,∴CM =3cm .三.解答题 17.解:证△BF A ≌△DEA . 18.解:∠HEF =72°. 19.. 解:(1)∵A (2m +n ,2),B (1,n -m ),A 、B 关于x 轴对称, ∴2m +n=1,n -m=-2,解得m=1,n=-1. (2) ∵A (2m +n ,2),B(1,n -m ),A 、B 关于y 轴对称, ∴2m +n =-1,n -m =2,解得m =-1,n =1 20. 解:(1)1A (-2,-1),1B (2,-3),2A (2, 1),2B (-2,3); (2)3A (4, 1),3B (0, 3),4A (-2, 1),4B (2,-1). 21. 解:(1)等腰直角,(2)∠QPR =90°. 22. 解:(1)∵AB 、AC 的垂直平分线分别交BC 于D 、E ,∴AD =BD ,AE =CE .ADE C ∆=AD +DE +AE =BD +DE +CE =BC =10. (2) ∵AB 、AC 的垂直平分线分别交BC 于D 、E , ∴AD =BD ,AE =CE .∴∠B =∠BAD ,∠C =∠CAE . ∵∠BAC =128°,∴∠B +∠C =52°,∴∠DAE =∠BAC -(∠BAD +∠CAE )= ∠BAC -(∠B +∠C )=76°.23. 解:(1)略;(2)∵BD 平分∠ABC ,∴∠ABC =2∠ABD ,∠ABD =∠CBD , ∵∠ABD =24°,∴∠ABC =48°,∠DBC =24°, ∵∠A =60°,∴∠ACB =180°-60°-48°=72°, ∵EF 是BC 的垂直平分线,∴BF =C F , ∴∠FCB =∠FBC =24°, ∴∠A CF =72°-24°=48°.(3)设CE 与BD 相交于O ,在 BC 上截取CK =CD , 易证∠BOE =∠COD =60°,再证△COD ≌△COK ,△BOE ≌△BOK , ∴BE =BK ,CD =CK ,∴BE +CD =BK +CK =BC .24. 解:(1)OA =OB =2(2)ODAE S 四边形=AOB S =2(3)过O 作OM 平分∠AOB 交BF 于M , 证△BOM ≌△OAD ,则OM =AD ,再证△FOM ≌△HAD ,∠BFO=∠DHO .。
第十三章达标测试卷一、选择题(每题3分,共30分)1.下列四个交通标志图中为轴对称图形的是()2.已知点P(3,-2)与点Q关于x轴对称,则点Q的坐标为() A.(-3,2) B.(-3,-2)C.(3,2) D.(3,-2)3.一个等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为() A.16 B.21C.27 D.21或274.等腰三角形的一个角为50°,则这个等腰三角形的顶角为() A.50°B.65°C.80°D.50°或80°5.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线对称D.周长相等的两个三角形一定关于某条直线对称6.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40 n mile 的速度向正北方向航行,2 h后到达灯塔P的北偏东40°方向的N处,则N 处与灯塔P的距离为()A.40 n mile B.60 n mileC.70 n mile D.80 n mile(第6题) (第7题) (第8题)7.如图,等腰三角形ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.14 C.15 D.168.如图,若△ABC是等边三角形,AB=6,BD是∠ABC的平分线,延长BC到E,使CE=CD,则BE的长为()A.7 B.8 C.9 D.109.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD =3 cm,则AB的长度是()A.3 cm B.6 cm C.9 cm D.12 cm(第9题) (第10题)10.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,分别交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE的周长等于AB+AC.其中正确的是()A.①②③B.②③④C.①③④D.①②④二、填空题(每题3分,共24分)11.若点M(m,-n)与点N(3,m-1)关于y轴对称,则mn=________,直线MN与x轴的位置关系是________.12.如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=________.(第12题) (第13题) (第14题)13.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有________种.14.如图,在△ABC中,∠C=90°,∠B=30°,AB边的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为________.15.如图,在等腰三角形ABC中,AB=AC,P,Q分别是边AC,AB上的点,且AP=PQ=QC=BC,则∠PCQ的度数为________.(第15题) (第17题) (第18题)16.若等腰三角形的顶角为150°,则它一腰上的高与另一腰的夹角的度数为________.17.如图,点D,E分别在等边三角形ABC的边AB,BC上,将△BDE沿直线DE翻折,使点B落在B1处.若∠ADB1=70°,则∠CEB1=________.18.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于点E,F.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为________.三、解答题(19~22题每题8分,25题14分,其余每题10分,共66分) 19.如图,已知AB=AC,AE平分∠DAC,那么AE∥BC吗?为什么?20.如图,在四边形ABCD中,已知A(4,4),B(1,3),C(1,0),D(3,1),在平面直角坐标系内分别作出四边形ABCD关于x轴和y轴对称的图形.21.如图,P为∠MON的平分线上的一点,P A⊥OM于A,PB⊥ON于B.求证:OP垂直平分AB.22.如图,在△ABC中,∠C=2∠A,BD平分∠ABC交AC于D.求证AB=BC +CD.23.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.24.如图,已知点D为等腰直角三角形ABC内一点,AC=BC,∠ACB=90°,∠CAD=∠CBD=15°,E为AD的延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证ME=BD.25.(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E.求证DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图③,D,E是过点A的直线m上的两动点(D,A,E三点互不重合),且△ABF和△ACF均为等边三角形,连接BD,CE.若∠BDA=∠AEC =∠BAC,试判断△DEF的形状,并说明理由.答案一、1.D 2.C 3.C 4.D 5.A 6.D 7.A 8.C 9.D 10.C 二、11.-12;平行 12.40° 13.3 14.6 15.⎝ ⎛⎭⎪⎫3607° 16.60° 17.50°18.10 点拨:如图,连接AD ,交EF 于点M ′,连接CM ′,当点M 与点M ′重合时CM +MD 最短,因此△CDM 周长最小.∵直线EF 垂直平分AC , ∴AM ′=CM ′.∵AB =AC ,D 为BC 的中点, ∴AD ⊥BC ,CD =BD .∴AD 是△ABC 的边BC 上的高.又∵△ABC 的底边BC 长为4,面积是16,∴AD =16×2÷4=8. ∴△CDM 周长的最小值为8+4÷2=10. 三、19.解:AE ∥BC .理由如下:∵AB =AC ,∴∠B =∠C .由三角形的外角性质得∠DAC =∠B +∠C =2∠B .∵AE 平分∠DAC ,∴∠DAC =2∠DAE ,∴∠B =∠DAE . ∴AE ∥BC .20.解:如图,四边形A 1B 1C 1D 1为四边形ABCD 关于x 轴对称的图形,四边形A 2B 2C 2D 2为四边形ABCD 关于y 轴对称的图形.(第20题)21.证明:∵OP 平分∠MON ,P A ⊥OM ,PB ⊥ON ,∴P A =PB . 又OP =OP ,∴Rt △POA ≌Rt △POB (HL ). ∴OA =OB . ∵OP 平分∠MON , ∴OP 垂直平分AB .22.证明:延长BC 至点E ,使BE =BA ,连接DE . ∵BD 平分∠ABC ,∴∠ABD =∠EBD . 又AB =EB ,BD =BD , ∴△ABD ≌△EBD (SAS ). ∴∠A =∠E .∵∠ACB =2∠A ,∴∠ACB =2∠E . ∵∠ACB =∠E +∠CDE , ∴∠CDE =∠E .∴CD =CE . 又∵AB =BE ,BE =BC +CE , ∴AB =BC +CD .23.(1)证明:∵AB =AC , ∴∠B =∠C .在△DBE 和△ECF 中,⎩⎨⎧BE =CF ,∠B =∠C ,BD =CE ,∴△DBE ≌△ECF (SAS ).∴DE =EF .∴△DEF 是等腰三角形.(2)解:由(1)可知△DBE ≌△ECF ,∴∠1=∠3. ∵∠A +∠B +∠C =180°,∠A =40°,∠B =∠C , ∴∠B =12(180°-40°)=70°. ∴∠1+∠2=110°. ∴∠3+∠2=110°.∴∠DEF =70°.24.证明:(1)∵AC =BC ,∠ACB =90°,∴∠BAC =∠ABC =45°. ∵∠CAD =∠CBD =15°, ∴∠BAD =∠ABD =30°. ∴AD =BD .又∵AC =BC ,∠CAD =∠CBD , ∴△ADC ≌△BDC (SAS ). ∴∠ACD =∠BCD =45°, ∴∠ADC =∠BDC =120°. ∵∠ADC +∠CDE =180°, ∴∠CDE =60°,∴∠BDE =120°-60°=60°. ∴∠BDE =∠CDE , 即DE 平分∠BDC . (2)连接CM .∵DC =DM ,∠CDE =60°, ∴△CDM 为等边三角形. ∴∠CMD =60°,CD =CM , ∴∠CME =120°, ∴∠CME =∠BDC . ∵CE =CA , ∴∠CAE =∠E . ∵∠CAE =∠CBD , ∴∠E =∠CBD . 在△CME 和△CDB 中,⎩⎨⎧∠E =∠CBD ,∠CME =∠CDB ,CM =CD ,∴△CME ≌△CDB (AAS ). ∴ME =BD .25.(1)证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°.又∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°.∴∠BAD+∠DBA=90°.∴∠CAE=∠DBA.又∵AB=AC,∴△BDA≌△AEC(AAS).∴BD=AE,AD=EC.∴DE=AD+AE=EC+BD,即DE=BD+CE.(2)解:成立.证明如下:∵∠BDA=∠BAC,∴∠DAB+∠DBA=∠DAB+∠CAE,∴∠DBA=∠CAE.又∵∠BDA=∠AEC,AB=AC,∴△BDA≌△AEC(AAS).∴BD=AE,AD=EC.∴DE=AE+AD=BD+CE.(3)解:△DEF是等边三角形.理由如下:由(2)知△BDA≌△AEC,∴∠BAD=∠ACE,AD=EC. 又∵△ABF和△ACF是等边三角形,∴FC=F A,∠AFC=∠FCA=∠F AB=60°.∴∠BAD+∠F AB=∠ACE+∠FCA,即∠DAF=∠ECF.∴△F AD≌△FCE(SAS).∴FD=FE,∠DF A=∠EFC.又∵∠EFC+∠AFE=60°,八年级数学上册第十三章达标测试卷及答案∴∠DF A+∠AFE=60°.∴∠DFE=60°.∴△DEF是等边三角形.。